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Advances in neutrophil
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ferroptosis in sepsis-induced
cardiomyopathy
Man Zeng, Yuying Niu, Jiahao Huang and Liehua Deng*

Department of Critical Care Medicine, Affiliated Hospital of Guangdong Medical University,
Zhanjiang, China
Sepsis-induced cardiomyopathy is a reversible non-ischemic acute cardiac

dysfunction associated with sepsis. It is strongly associated with an abnormal

immune response. It emerges as a vital threat to public health owing to its high

mortality rate. However, the exact pathogenesis requires further investigation. In

recent years, NETosis and ferroptosis, which are novel modes of programmed

cell death, have been identified and found to play important roles in sepsis-

related organ damage. This article outlines the mechanisms of these two modes

of cell death, discusses the role of neutrophil extracellular traps in myocardial

injury and the importance of ferroptosis in sepsis-induced cardiomyopathy, and

reviews the potential interconnection between these two types of programmed

cell death in sepsis-induced cardiomyopathy.
KEYWORDS
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1 Introduction

Sepsis is a physiological, pathological, and biochemical disorder caused by infection,

accompanied by multiorgan functional damage, inflammatory flare-ups and septic shock

(1). Sepsis-induced cardiomyopathy (SIC) is a non-ischemic acute cardiac dysfunction

associated with sepsis. It is associated with ventricular dilatation, reduced contractility and/

or dysfunction, and decreased volumetric perfusion response (2). Myocardial dysfunction

due to sepsis poses a risk that greatly increases mortality (3). The heart, as a pump organ,

plays an important role in the pathophysiology of sepsis. In a retrospective study, it was

found that cardiovascular and pulmonary injuries were dominant in sepsis induced organ

dysfunction. And even after recovery from cardiomyopathy, SIC may continue to affect the

patient’s body system (4, 5). Therefore, further exploration of the pathogenesis of SIC plays

an important role in improving patient prognosis.

As the pathophysiology of sepsis is being increasingly studied, dysregulation of immune

and non-immune cell death processes and mitochondrial dysfunction are being revealed in

the context of sepsis-related organ damage (6). Numerous studies have shown that in
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addition to pyroptosis, programmed cell death (PCD) such as

autophagy, apoptosis, NETosis, necrotic apoptosis, and ferroptosis

are also involved in the development of organ damage in sepsis (7,

8). These new ideas may contribute to the development of novel

therapeutic strategies for SIC.

In this paper, a brief overview of the mechanisms of SIC and the

process of occurrence between the two types of programmed cell

death, NETosis and ferroptosis, are described. The roles of these two

types of cell death in the pathogenesis of SIC and myocardial injury

as well as their possible interrelationships are also discussed.
2 Results

2.1 Pathogenesis of sepsis-induced
cardiomyopathy

SIC is a key feature of sepsis-related cardiovascular failure (2).

Endothelial disruption and uneven distribution of blood flow occur

in the microcirculation during sepsis. In sepsis that brings local

ischemia, the distribution of coronary artery blood flow to the heart

is uneven, but it does not induce significant cellular ischemia in the

heart (9). The existing studies mainly involve dysregulation of the

inflammatory response, nitric oxide (NO) production,

mitochondrial dysfunction and abnormal Ca2+ regulation Figure 1.

The innate immune system plays a crucial role in the patient’s

first line of defense against microbial invasion. The innate immune

system is activated by pathogen-associated molecular patterns

(PAMPs) (e.g., Bacterial lipopolysaccharide (LPS), viral double-

stranded RNA) and damage-associated molecular patterns

(DAMPs) (e.g., high mobility group protein B1 (HMGB1),

extracellular histones, mtDNA, IL-1a/IL-33) via pattern

recognition receptors (PRRs), which trigger inflammation (10–

12). In addition, specific pathways activated by different PAMPs

and DAMPs may lead to different outcomes of organ damage. For

example, the activation of different TLRs may lead to different

inflammatory features, which may affect the degree of organ

damage (13). In the study of the pathogenesis of acute kidney

injury, PAMPs and DAMPs can bind to TLR4, and the expression

of TLR4 increases with kidney injury and/or infection (14). DAMPs

mediated TLR4 signaling also plays a central role in acute lung

injury (ALI) (15). Changes in intestinal permeability also may lead

to the transfer of PAMPs and DAMPs into the systemic circulation,

exacerbating inflammatory responses and causing organ

dysfunction (16). During the development of SIC, PAMPs can be

recognized. The Toll-like receptor family of proteins act as an

innate immune response as a first line of defense against infection in

sepsis (17). When SIC occurs, the released endotoxins activate Toll

like receptors and produce pro-inflammatory cytokine (TNF-a, IL-
1b, etc.) through the (TLR)4/NF-kB pathway. This directly affects

the contractility of cardiomyocytes, leading to increased myocardial

depression (2). Secondly, TLR2-5, TLR7, and TLR9, which are

activated by inflammatory factors and NF-kB, are associated with

septic cardiac dysfunction (18, 19). TLR2–5 are highly expressed in

the myocardium (20). TLR2 also recognizes lipoproteins and
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peptidoglycans from Gram-positive bacteria, giving rise to

myocardial damage. Whereas TLR2 and 4 can affect myocardial

contractile function in sepsis (21). In addition, endotoxin induces

an increase in malondialdehyde (MDA) levels, reactive oxygen

species (ROS) production, and sarcoplasmic reticulum Ca2+

leakage through activation of TLR4 (22, 23). DAMPs include

HMGB1, extracellular cold-inducible RNA-binding protein

(eCIRP), adenosine triphosphate (ATP), and histones (24). It has

been confirmed that HMGB1 and histones play an important role in

cardiotoxicity in sepsis (13). Upon release, HMGB1 binds to TLR4

causing an increase in intracellular ROS and mediates Ca2+ release

from the sarcoplasmic reticulum. It promotes cardiac inflammatory

injury, cardiac regeneration and remodeling (25). At the same time,

histones released from the myocardium can be cytotoxic to

cardiomyocytes through TLR4- and NF-kB-independent signaling

(26). In contrast, extracellular histones released from neutrophils

mediated by complement C5a activate TLR2–4 and TLR9, affecting

Ca2+ homeostasis in cardiomyocytes and leading to cardiomyocyte

damage (27).

In advanced sepsis cardiac dysfunction, inflammatory cytokines

(IL-1b, TNF-a) activated by increasing the inducible nitric oxide

synthase (iNOS), which further sustains the production of excess

NO (28). Meanwhile, small amounts of NO produced by

endothelial (eNOS) and neuronal (nNOS) nitric oxide synthase

(29). Many studies have suggested that in the late stage of sepsis

with cardiac dysfunction, changes in ventricular preload/afterload,

downregulation of b-adrenergic receptors, attenuated myofilament

Ca2+ response, and mitochondrial dysfunction can all contribute to

NO production through increased iNOS expression (2).

Mitochondrial dysfunction also promotes SIC, with the main

changes about the disorders in mitochondrial quality control

system, structural changes (swelling, vesicle formation, cristae

abnormalities), mitochondrial DNA damage, and mitochondrial

uncoupling (2, 30). LPS also promotes cardiac damage from

oxidative stress in cardiac mitochondria, and brings to excessive

mitochondrial uncoupling through uncoupling proteins (UCPs).

These further results in ATP depletion and myocardial cell death

(31, 32). During the occurrence of SIC, Ca2+ overload also induces

abnormal opening of the mitochondrial permeability transition

pore (mPTP). It causes mitochondrial membrane potential

disorder, mitochondrial outer membrane swelling and rupture (33).

Sarcoplasmic reticulum Ca2+-ATPase (SERCA2) is a key

regulator of Ca2+ in cardiomyocytes. TNF-a released during

sepsis enhances methylation of the SERCA2 promoter region,

leading to down-regulation of SERCA2 expression. It reduces

sarcoplasmic reticulum Ca2+ reabsorption and brings disorders to

ventricular diastolic function (2, 34).
2.2 Formation of neutrophils extracellular
traps

Neutrophils, as immune cells, are the line of defense against

infection and play a significant role in limiting the expansion and

spread of bacterial and viral infections (35). When the organism is
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infected, a large number of bone marrow neutrophils are released

into the circulation to play a phagocytic role or release

inflammatory cytokines, reactive oxygen species, and other

antibacterial substances (35). In addition to traditional

antibacterial mechanisms, there is a significant correlation

between specific neutrophil functional phenotypes and the

severity of sepsis (36). During sepsis, the bone marrow releases a

large amount of immature granulocyte (IGs) through emergency

granulopoiesis (37), such as CEACAM8+Neu, S100A8/9hiNeu,

I L 1 R 2 +Neu , PAD I 4 +Neu , MPO+Neu a n d c y c l i n g

MK167+CYP1B1+Neu (38). In the early stage of sepsis, CD64pos
and CD16dim IGs significantly increase with the severity of sepsis,

which can predict the severity of early sepsis and provide guidance

for further treatment (39, 40). In the late stage and recovery period

of sepsis, studies have found that infiltrating neutrophils have

immunomodulatory effects. Neutrophil subpopulations with high

expression of PD-L1 can exert immunosuppressive effects in direct

contact mode (41). Meanwhile, CD66b+Neu can inhibit the

proliferation and activation of CD4+T cells and produce the

effection of immunosuppressive (38).The marker for neutrophil
Frontiers in Immunology 03
activation and release of neutrophil extracellular traps (NETs) is

S100A8/A9, which is mainly released by polymorphonuclear

neutrophils (PMNs) (42).S100A8/A9 can not only inhibits

mitochondrial function as the main regulator of myocardial cell

death (43), but also promotes the secretion of interleukin-1 b,
leading to stimulates granulopoiesis (44). Some studies have also

found that S100A8 is an independent risk factor for poor prognosis

in sepsis patients (45).

In 1996, a novel type of neutrophil death independent of

apoptosis and necrosis was first discovered when neutrophils were

stimulated (46). This kind of neutrophil death is accompanied by

depolymerizing chromatin, dissolving the nuclear membrane and

releasing chromatin encapsulated in granulin (46). In 2004,

Brinkmann’s group defined extracellular structures consisting of

DNA, histones and granzymes (e.g. neutrophil elastase) as NETs

(47). NETosis is usually categorized into two different types - suicidal

NETosis that relies on NADPH oxidase (NOX) and vital NETosis

that is NOX independent (48) Figure 2.

Suicidal NETosis is formed during active cell death, which

requires membrane rupture and loss of neutrophil function, which
FIGURE 1

Pathogenesis of Sepsis-induced Cardiomyopathy. The release of LPS, HMGB1, and histone activates Toll-like receptors, increases the level of MDA
and ROS. Through the (TLR)4/NF-kB pathway, chromosomal translocation occurs and inflammatory cytokines (TNF-a, IL-1b) are produced. These
produced inflammatory cytokines activate nitric oxide synthase (including iNOS, eNOS, nNOS). It promotes the excessive production of NO during
the conversion of arginine to citrulline, leading to cardiac dysfunction. The upregulation of inflammation leads to the occurrence of some
dysfunctions in mitochondria, such as disorders in the quality control system, Mitochondrial uncoupling, Oxidative Stress, mPTP anomalous opening.
These changes lead to structural changes in mitochondria (swelling, vesicle formation, abnormal cristae), ATP depletion, and an increase in
mitochondrial reactive oxygen species (mtROS). TNF-a can downregulate the expression of SERCA2 in the sarcoplasmic reticulum, leading to
reduced Ca2+ reabsorption in the sarcoplasmic reticulum. Created with www.figdraw.com.
frontiersin.org
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is dependent on NOX for the production of ROS (48). During the

suicidal NETosis, different neutrophil receptors are activated. This

triggers the release of endoplasmic reticulum (ER) calcium stores,

thus leading to an increase in cytoplasmic Ca2+ (49). Excess Ca2+

accumulation activates protein kinase C (PKC), phosphorylation of

gp91phox and assembly of functional NADPH oxidase, ultimately

resulting in the generation of ROS (50). Excessive ROS causes

neutrophil elastase (NE) and myeloperoxidase (MPO) to escape

from azurophilic granules and translocate to the nucleus, where

they partially degrades specific histones, promoting chromatin

decondensation (51). Concurrently, Ca2+ acts as cofactors for

peptidyl arginase deaminase 4 (PAD4), which promotes chromatin

depolymerization by facilitating the loss of the positive charge

required for histone-DNA interaction (52, 53).

Finally, the dissociated chromatin is released into the extracellular

space through membrane pores and accompanied with cell death

(54). However, in the study of healthy donor neutrophils, unlike

oxidase-independent NETosis induced by Ca2+, calcium ionophores

can also induce mtROS formation, thereby stimulating NOX to

produce NETosis (55).

In 2012, rapid release of NETs from living PMNs in vivo was

first observed, which is distinguished from the traditional suicidal

NETosis (56). This type of NETosis, without cell death, is called,

vital NETosis (48). Unlike suicide NETosis, which takes up to 3–4

hours to occur through NOX dependence, the vital NETosis only

takes 5–60 minutes and is mainly induced by Ca2+ carriers to
Frontiers in Immunology 04
appear independently of NOX (57). The characteristic of important

NETosis is the opening of mPTP. It activates SK3 channels through

Ca2+ in mitochondria, generates mtROS to catalyze histone

citrullination and forms DNA vesicles (55, 58). These DNA

vesicles sprout from the nuclear membrane, pass through the

cytoplasm, and fuse with the plasma membrane to be released

outside the cell without the need for membrane perforation (59).

NETosis stimulated by different agonists occurs through

different pathways (60). Interestingly, all NETs generated by

stimuli are mainly composed of chromosomal DNA and can

degrade proteins and kill bacteria (60, 61). Compared to the

nonphysiological NOX-dependent agonist PMA, the sepsis

experimental model stimulated by LPS found in gram-negative

bacterial infections more closely simulated in vivo conditions (62).

It has been demonstrated that LPS activates the TLR4-JNK

activation axis in a dose-dependent manner to initiate NOX-

dependent suicidal NETosis, which differs from PMA (63).
2.3 Vital role of NETs in myocardial injury

NETs are key components of the immune response under

various pathological conditions. In 2004, it was found that during

the fusion of antibacterial granules and phagosomes in neutrophils,

NETs are released to clear pathogens and protect the organism (47).

However, after excessive production of NETs by neutrophils, tissue
FIGURE 2

Formation of neutrophils extracellular traps. Created with www.figdraw.com.
frontiersin.org
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damage is induced in sepsis (64). This increases various

inflammatory factors, cell death in different organs and aggravates

the progression of the disease (65).

NETs are involved in various myocardial injury diseases by

causing microvascular dysfunction, impaired cardiac contractile

function, myocardial fibrosis, and inflammatory responses. Firstly,

with the intensive study of microvascular dysfunction, it has been

found that oxidative stress induced by the inflammatory response to

ROS accumulation can drive coronary microvascular dysfunction

(66). The accumulation of NETs in small blood vessels increases

thrombus formation. This leads to a scarcity of myocardial capillary

density, a decrease in myocardial blood flow, and an increase in the

expression of ischemic markers (67). These factors trigger restrictive

myocardial ischemia, cardiomyocyte death, and ultimately cardiac

hypertrophic remodeling (68). NETs are equally involved in

myocardial microcirculatory obstruction induced by ischemia-

reperfusion injury. Further studies demonstrated that the

combination of the inhibitor of NETs (DNase I) and recombinant

tissue-type plasminogen activator (rt-PA) exerted a protective effect

against myocardial ischemia-reperfusion (69).

Additionally, myocardial dysfunction is characterized by transient

biventricular impairment of intrinsic myocardial contractility. It has

shown that extracellular guanidine histones driven by NETs can induce

alterations in intracellular mitochondrial respiration. This affects the

contractile performance of cardiomyocytes (70), e.g. reduced left

ventricular ejection fraction (LVEF) (67). Reduced LVEF also occurs

in sepsis induced myocardial injury, but further research is still needed

to confirm whether sepsis induced myocardial injury worsens in the

occurrence of NETosis (71). Nevertheless, several factors, including the

release of transforming growth factor (TGF) from NETosis, stimulate

cardiac fibrosis. These bring to the development of ischemic

cardiomyopathy (ICM) and dilated cardiomyopathy (DCM) (72).

Finally, NETs, with highly pro-inflammatory properties, are

observed to form and induce the occurrence of myocarditis (73),

which is induced by cytokine mediator factor (MK) (74). It is worth

noting that the main extracellular structures of NETs include DNA,

histones, and neutrophil elastases. However, in the progression of

myocardial injury, it is still unclear which component plays a key

role in the pathogenesis or the synergist ic effect of

multiple components.
2.4 Mechanisms of ferroptosis

Ferroptosis is characterized by lipid peroxidation, which is

distinct from apoptosis, necrosis, and autophagy. Its main

morphological changes include the condensation of mitochondrial

membrane density, the reduction or disappearance of

mitochondrial cristae, and the rupture of the outer mitochondrial

membrane (75). Ferroptosis was first identified in 2001 as known as

oxidative glutamate toxicity. It is caused by exogenous glutamate

inhibiting cysteine uptake through cysteine/glutamate reverse

transporters, leading to depletion of glutathione (76). In 2012,

Dixon’s group first named this cell death as ferroptosis while

studying the mechanism in an oncogenic RAS mutant cell line
Frontiers in Immunology 05
killed by erastin (77). These following mechanisms are primarily

involved in ferroptosis Figure 3.

Glutathione peroxidase 4 (GPX4)-mediated cysteine metabolism

is mainly involved in ferroptosis. It was found that the cystine/

glutamate reverse transporters (system Xc-) present on the cell

surface act as reverse transporter, driving cysteine and glutamate to

enter and exit the cell in a 1:1 ratio based on concentration gradients

(78). Cysteine is transported into the cell and reduced to cysteine by

GSH or thioredoxin reductase 1 (TRXR1), which provides the raw

material for intracellular GSH synthesis (79–81). Simultaneously,

GSH is produced in an enzymatic reaction with GCL (glutamate-

cysteine ligase) and GSS (glutathione synthetase) (82). GPX4 is a

selenoprotein that can degrade PUFA-PL-OOH to PUFA-PL-OH

through glutathione (GSH) and reduce the accumulation of lipid

peroxides (83, 84). GSH is also an essential reaction substrate for the

degradation of LPO by GPX4 (79). After inhibiting the activity of

system Xc-, it affects the absorption of cysteine and the synthesis of

GSH. This decreases the activity of GPX4, cellular antioxidant

capacity and lipid ROS accumulation, and the outcome of oxidative

damage and ferroptosis (85).

Unrestricted lipid peroxidation occurs within cells. Acyl

coenzyme A synthetase long-chain family member 4 (ACSL4)

and lysophosphatidylcholine acyltransferase 3 (LPCAT3) are also

the key proteins in the development of ferroptosis (86, 87).

Polyunsaturated fatty acids (PUFAs) are components of cell

membranes that are highly susceptible to peroxidation. It was

shown that free PUFAs are incorporated into membrane lipids by

activation of ACSL4 and form acyl-CoA with coenzyme A (CoA).

Subsequently, with the effect of lysophosphatidylcholine

acyltransferase 3 (LPCAT3), acyl-CoA can be re-esterified in

phospholipids to form PUFA-PL (88, 89). ACSL4 can also be

phosphorylated by PKCbII to further activate this process (80).

Then PUFA-PL is oxidized by labile Fe2+ and Fe2+-dependent

enzymes to PUFA-PL-OOH, which ultimately undergoes lipid

peroxidation and ferroptosis (88).

Cellular toxicity by accumulation of Fe2+: Transferrin (Tf) safely

delivers iron through circulation to cells (90). The extracellular Fe3+

bound to transferrin receptor (TfR)1 enters the cell by endocytosis

and is reduced to Fe2+ under the action of iron oxide reductase

(STEAP3) (91). NRAMP2 is also an iron transport protein first

discovered by Nancy and later renamed DMT1 (92, 93). The

reduced Fe2+ is transported to the labile iron pool (LIP) via

DMT1 and then translocated to the mitochondria to participate

in generation of ROS. Upon accumulation of excess Fe2+, the

Fenton reaction is initiated to rapidly generate PUFA-PL-OOH to

induce ferroptosis (80, 88, 91). In the last few years, non-GPX4-

dependent ferroptosis has also been found to occur, e.g., ferroptosis

suppressor protein 1 (FSP1) was identified as a key component of

the non-mitochondrial coenzyme Q (CoQ10) antioxidant system. It

plays a parallel role to the classical glutathione-dependent GPX4

pathway (94).

In addition to ferroptosis, iron overload may also participate in

other inflammatory cell death mechanisms to cause disease. Free

Fe2+and Fe3+are easily converted to each other and catalyze the

Fenton reaction, which produces oxygen free radicals. The
frontiersin.org
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accumulation of these ROS can further lead to cellular damage (95).

Iron overload enhances the ROS signaling pathway induced by

carbonyl cyanide m-chlorophenyl hydrazone (CCCP), which can

amplify ROS signals to drive the occurrence of cell pyroptosis (96,

97). Excessive iron ions can not only disrupt cellular iron

homeostasis, leading to oxidative stress and apoptosis (98), but

also induce apoptosis by triggering endoplasmic reticulum (ER)

stress, resulting in mitochondrial dysfunction (99). In addition,

studies have shown that iron overload induced ROS can promote

necrotic apoptosis of osteoblasts (100). In the study of acute kidney

injury, it has also been confirmed that there is an interactive

relationship between ferroptosis and necrotic apoptosis, and

ferroptosis may become a driving factor for necrotic apoptosis

(101). The interconnection of these modes of death may further

deepen our understanding of the disease.
2.5 Role of ferroptosis in the pathogenesis
of Sepsis-induced cardiomyopathy

Ferroptosis has emerged as a hot research topic in the

development of diseases. In the early stages of the immune

response, it has been reported that ferroptosis helps macrophages

inhibit intracellular bacteria by reversing the input of ferrous iron

into bacterial vacuoles through iron transporters and acts as a
Frontiers in Immunology 06
protector of the organism (102). However, in Mycobacterium

tuberculosis-infected cells, ferroptosis similarly promotes cell

death and tissue necrosis (103). Viral infection usually leads to

the occurrence of viral myocarditis (104). With the development of

disease progresses, some patients may experience myocardial

damage (105). It was found that TRIM29 (Tripartite motif 29)

can regulate alveolar macrophage activation to mitigate bacteria-

induced sepsis (106) and controls viral myocarditis by modulating

protein kinase RNA-like endoplasmic reticulum kinase (PERK)-

mediated ER stress and ROS responses (107). Simultaneously, the

expression of PERK and SLC7A11 is positively correlated and

inhibits ferroptosis (108). TRIM18 (Tripartite motif 18) is also

one of the negative regulators of immune response. It can control

viral myocarditis by recruiting protein phosphatase 1A to regulate

TANK binding kinase 1 (TBK1)-mediated immune responses

(109). In addition, the regulation of TBK1 can also induce

ferroptosis (110). Similarly, PARP9 (poly (ADP-ribose)

polymerase 9) manages viral myocarditis by engaging the PI3K/

AKT pathway to drive type I interferon responses (111). A series of

studies have found the involvement of PI3K/AKT in the mechanism

of ferroptosis (112). Therefore, TRIM29, TRIM18, and PARP9 may

regulate ferroptosis to manage cardiomyopathy.

The role of ferroptosis in sepsis-induced cardiomyopathy has

received considerable attention. Lipid peroxidation is an important

step in ferroptosis. It has been shown that, in a mouse model of LPS
FIGURE 3

Mechanisms of Ferroptosis. GPX4-mediated ferroptosis control axis requires system Xc-, GSH, and TRXR1 to reduce cystine to cysteine. GSH also
participates in the reduction of PUFA-PL-OOH mediated by GPX4, inhibiting the occurrence of ferroptosis. Free PUFAs change into PUFA-PL under
the action of ACSL4 and LPCAT3 in unison. This process is further activated by phosphorylation of PKCbII. The oxidation reaction involving Fe2+

generates PUFA-PL-OOH, which undergoes lipid peroxidation and induces ferroptosis. TFR1 can help Fe3+ get into cells. Under the action of
STEAP3, Fe3+ is reduced to Fe2+. These excess Fe2+ are transported to the LIP via DMT1, participating in the initiation of the Fenton reaction to
rapidly generate PUFA-PL-OOH and induce ferroptosis. Created with www.figdraw.com.
frontiersin.org
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induced SIC, the increasing of ICA69 affects STING signaling,

thereby leading to the generation of lipid peroxidation in

cardiomyocyte. This ultimately results in ferroptosis and cardiac

injury (113). Meanwhile, miR-130b-3p was found to significantly

upregulate the expression of GPX4 and inhibit the activity of

ACSL4, which reduces the production of lipid ROS and

ferroptosis and improves the cardiac function of mice (114). By

upregulating the Sirt1/Nrf2 pathway, it can also reform myocardial

ferroptosis caused by iron metabolism imbalance and lipid

peroxidation damage (115).

An imbalance in iron homeostasis is also a prominent feature of

ferroptosis. After LPS stimulation, myocardial cells increase the

expression of nuclear receptor coactivator 4 (NCOA4), which in

turn participates in ferritin autophagy and releases a large amount

of Fe2+. Excessive accumulation of Fe2+ in the cytoplasm enters

mitochondria, producing mitochondrial ROS and affecting the

occurrence of ferroptosis (116). Exogenous lipid carrier protein 2

(LCN2) can also increase the intracellular LIP in cardiomyocytes,

resulting in cellular ferroptosis (117).

GPX4-mediated cysteine metabolism is also involved in sepsis-

associated myocardial injury. MiR-31-5p attenuates LPS-induced

cardiomyocyte ferroptosis by regulating SLC7A11 deubiquitination.

This provides new therapeutic ideas for the treatment of SIC (118).

N6-methyladenosine writer METTL3 can also accelerate the sepsis-

induced myocardial injury by m6A modification of SLC7A11 via

YTHDF2 pathway (119, 120).

Likewise, iron metabolism was found to crosstalk with the

glutathione cycle, inducing ferroptosis in cardiomyocytes.

Cardiac-specific knockdown of ferritin H (FTH) decreased

SLC7A11 in cardiomyocytes, reduced GSH levels and led to

dysregulation of iron homeostasis and myocardial oxidative stress

injury (121).
2.6 NETs interact with ferroptosis to
accelerate sepsis-induced cardiomyopathy

In previous studies, neutrophils have been found to be involved

in the pathogenesis of various systemic diseases by inducing

ferroptosis through a novel pathway, such as NETosis. During

abdominal aortic aneurysm (AAA) formation, NETs affect the

stability of the mitochondrial carrier protein SLC25A11. This

brings to depletion of mitoGSH, and promote ferroptosis in

smooth muscle cells (SMCs) (122). Inhibition of the PI3K/AKT

pathway by NETs also achieves this effect (122, 123). Inhibition of

NETs formation was also demonstrated in 2023 to attenuate

intestinal endothelial ferroptosis by improving Fundc1-dependent

mitochondrial autophagy. In 2023, it was also confirmed that

targeting NETs may be a promising approach for treating

intestinal microcirculation dysfunction, since it modulates

Fundc1-dependent mitochondrial autophagy to regulate intestinal

endothelial ferroptosis (124).

Several recent studies have shown that NETs play a close

synergistic role in the development of sepsis and ferroptosis.

When sepsis occurs, the overproduction of NETs, which act as
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DAMPs, causes an inflammatory response, increases cellular iron

transport and uptake, and makes cells more susceptible to

ferroptosis, and consequently brings to functional impairment of

various organs.

In the pathogenesis of sepsis associated acute lung injury, NETs

can promote m6A modification and mitochondrial metabolic

reprogramming of hypoxia inducible factor-1 a (HIF-1 a)
induced by METTL3, leading to ferroptosis of alveolar epithelial

cells and causing lung injury (125, 126). It has been found that

mesenchymal stem cells (MSCs) not only inhibit the formation of

NETs through the MEK/ERK signaling pathway, but also attenuate

the ferroptosis of lung tissue in sepsis-induced ALI (127). Further

studies revealed that inhibition of NETs production also attenuates

ferroptosis and plays an important role in ALI by maintaining the

normal SDC-1/HS/HGF/cMET signaling pathway (128). In

addition, redox regulators and ferroptosis inhibitors (such as FS-

1, Lpx-1, and DFO) can inhibit heme induced ferroptosis, and

platelet-mediated NETosis is prone to form pulmonary thrombosis.

They may be a potential adjunctive therapy for clinical

complications associated with respiratory distress (129).

Moreover, ACSL4 knockdown significantly reduced lipid

oxidation-induced ferroptosis in AKI model of mice (130). GPX4

has also been shown to be an important downstream mediator of

HDAC3 (histone deacetylase 3) aberrations and renal ferroptosis

during the AKI-CKD transition (131). Extracellular histones

contribute to the development of acute kidney injury by directly

releasing proinflammatory cytokines via TLR2/4. However, the

source of these extracellular histones still needs to be explored

whether they come from the components of NETs, and whether

they can become a new way to induce ferroptosis (132).

NETs and ferroptosis may have a potential synergistic effect on

SIC. It is characterized by sepsis-induced myocardial contractile

dysfunction manifested by a reduced left ventricular ejection

fraction. Interestingly, the accumulation of NETs negatively

correlated with cardiac contractile function, highlighting the

potential impact of NETosis on sepsis related cardiac injury

(133). But further clinical studies are still lacking. It has been

found that the ferroptosis related gene Mgst2 induces NOX-

dependent NETosis and exacerbates the damage caused by

cardiomyocytes, cardiac fibroblasts and endothelial cells (134).

However, further exploration is needed to determine whether

excessive NETs can drive ferroptosis in myocardial cells through

related pathways in SIC. In addition to the possible association

between NETs and ferroptosis in sepsis-induced cardiomyopathy,

more attentions should be paid to the relationship between these

two types of cell death and the studies in other sepsis related organ

damage, such as the lungs and kidneys.
3 Discussion

After the body is infected and sepsis occurs, the outbreak of

inflammation ultimately leads to systemic multi-organ dysfunction

and hypotension (septic shock) (135). Based on the high mortality

rate of sepsis-associated cardiac injuries in clinical practice, further
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investigation into the details of their pathogenesis is imminent (4).

With further studies of programmed cell death in sepsis, NETosis

and ferroptosis can provide new ideas for the treatment of sepsis-

induced cardiomyopathy (7).

This article describes the formation of NETs and the

mechanism of ferroptosis, summarizes the recent role of NETs in

myocardial injury, and discusses the relevant mechanisms and roles

of ferroptosis in the occurrence of SIC. After understanding the

relationship between NETs and ferroptosis in various diseases, it

was found that there are still many issues about the interaction

between NETs and ferroptosis in SIC that need further exploration.

Above all, in the pathophysiological process of sepsis, there are

many biomarkers that can mediate tissue damage, including pro-

inflammatory cytokines, chemokines, and markers of neutrophil

and monocyte activation (CD64, CD11b, TREM-1, etc.) (136).

However, NETosis can occur through different pathways, and the

ways in which NETosis is stimulated in sepsis still need to be

explored. NETs can effectively trap bacteria in the circulation,

during the occurrence of disease (137). In contrast, excessive

neutrophil activation and release of NETs may have pro-

inflammatory and procoagulant effects (137). Consequently, it is

still difficult to control the content of NETs and balance their

beneficial and harmful effects.

In addition, research on the mechanisms of ferroptosis in sepsis-

associated heart is still in its preliminary stages. Further studies and

experiments are needed to explore more pathways of ferroptosis in

sepsis and the major signaling pathways in cardiac injury; however,

the contribution of different organelles, including mitochondria, to

ferroptosis in sepsis-induced cardiac injury is not fully understood.

The relationship between NETs and ferroptosis still needs to be

explored through clinical and mechanistic studies.

Finally, there are still no drugs approved in clinical therapy that

specifically targets the formation of NETs and the occurrence of

ferroptosis. It is worth noting that some laboratories have found

that extracellular vesicles (MSC-EVs) derived from mesenchymal

stem cells can prevent the formation of abdominal aortic aneurysms

by inhibiting NET-induced ferroptosis (123). These MSC-EVs can

similarly reduce NETs formation by restoring mitochondrial

function, modulate ferroptosis and accelerate diabetic wound

healing through inhibition of the PI3K/AKT pathway (138).

Targeting the occurrence of NETs and ferroptosis through the
Frontiers in Immunology 08
combination of new biomaterials may become a new strategy for

the treatment of sepsis-related organ damage.
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