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Machine learning-driven
identification of exosome-
related biomarkers in head and
neck squamous cell carcinoma
Yaodong He †, Yun Li †, Jiaqi Tang †, Yan Wang, Zhenyan Zhao,
Rong Liu, Zihui Yang, Huan Li* and Jianhua Wei*

State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, National Clinical
Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of
Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an, China
Background: Head and neck squamous cell carcinoma (HNSCC) is a common

cancer associated with elevatedmortality rates. Exosomes, diminutive extracellular

vesicles, significantly contribute to tumour development, immunological evasion,

and treatment resistance. Identifying exosome-associated biomarkers in HNSCC

may improve early diagnosis, treatment targeting, and patient classification.

Methods: We acquired four publically accessible HNSCC gene expression datasets

from the Gene Expression Omnibus (GEO) database and mitigated batch effects

utilising the ComBat technique. Differential expression analysis and exosome-related

gene screening found a collection of markedly exosome-associated differentially

expressed genes (ERDEGs). Subsequently, 10 key exosome-related genes were

further screened by combining three machine learning methods, LASSO regression,

SVM-RFE and RF, and a clinical prediction model was constructed. Furthermore, we

thoroughly investigated the biological roles of these genes in HNSCC and their

prospective treatment implications via functional enrichment analysis, immune

microenvironment assessment, and molecular docking confirmation.

Results: The study indicated that 10 pivotal exosome-related genes identified by

themachine learningmethod had considerable differential expression in HNSCC.

Clinical prediction models developed from these genes have shown high

accuracy in prognostic evaluations of HNSCC patients. Analysis of the

immunological microenvironment indicated varying immune cell infiltration in

HNSCC, and the association with ERDEGs proposed a potential mechanism for

immune evasion. Molecular docking validation indicated novel small molecule

medicines targeting these genes, establishing a theoretical foundation for

pharmacological therapy in HNSCC.

Conclusion: This research identifies new exosome-related indicators for HNSCC

through machine learning methodologies. The suggested biomarkers, particularly

ANGPTL1, exhibit significant promise for diagnostic and prognostic uses. The

investigation of the immunological microenvironment yields insights into immune

modulation in HNSCC, presenting novel avenues for therapeutic targeting.
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Introduction

Head and Neck Squamous Cell Carcinoma (HNSCC) is among

the most prevalent malignant neoplasms of the head and neck, with

significant morbidity and mortality rates globally (1, 2).

Notwithstanding advancements in the diagnosis and treatment of

HNSCC in recent years, the prognosis for patients, particularly

those in advanced stages, remains unfavourable, characterised by a

low five-year survival rate (3, 4). Consequently, a thorough

investigation of the molecular pathways of HNSCC, together with

identifying novel biomarkers and prospective therapeutic targets, is

crucial for enhancing the clinical management of patients.

In recent years, exosomes, as significant extracellular vesicles,

have garnered considerable attention in tumour biology research.

An exosome is a nanoscale vesicle released by cells, abundant in

biomolecules, including proteins, RNA, DNA, and lipids, which can

modulate the tumour microenvironment via intercellular

communication and is pivotal in carcinogenesis, progression,

metastasis, and medication resistance (5–7). Research indicates

that exosomes play a role in tumour cell signalling and affect

tumour immune evasion by modulating immune cell activity

(8). Moreover, exosomes’ particular molecular constituents

(e.g., miRNAs, lncRNAs, and proteins) have demonstrated

significant diagnostic and prognostic significance across various

malignancies (9, 10). The precise functions of exosome-related

genes in HNSCC and their potential as biomarkers have not been

comprehensively examined.

Concurrently, machine learning (ML) is progressively

employed as a potent data analysis instrument in the biomedical

sector. Machine learning can extract essential elements from

extensive datasets using algorithms, develop prediction models,

and offer accurate disease diagnosis, classification, and therapy

assistance (11–13). In tumour research, machine learning has

been effectively utilised for analysing gene expression data,

biomarker screening, and developing clinical prognostic models

(14, 15). The integration of machine learning and exosome-

associated gene study in HNSCC remains nascent, and its

potential has yet to be thoroughly investigated.

This study systematically identified exosomal biomarkers in

HNSCC by integrating multi-omics data and machine learning. We

explored their roles in the tumour immune microenvironment and

drug discovery. Four HNSCC gene expression datasets were

obtained from the Gene Expression Omnibus (GEO) database,

with batch effects mitigated via the ComBat technique to ensure

uniformity. Through differential expression analysis, exosome-

associated gene screening, and functional enrichment, we

identified highly differentiated exosome-related genes (ERDEGs).

Three machine learning approaches—Least absolute shrinkage and

selection operator (LASSO) regression, Support Vector Machine

Recursive Feature Elimination (SVM-RFE), and Random Forest

(RF)—were integrated to pinpoint 10 core exosome-related genes,

enabling the development of a clinical prediction model.
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Additionally, we analysed associations between these genes and

the immunological microenvironment, while screening potential

small-molecule drugs, thereby providing a theoretical basis for

future translational research.
Materials and methods

Data acquisition and preprocessing

Four HNSCC gene expression datasets—GSE25099

(57 tumours vs. 22 normals from Taiwan, Affymetrix), GSE30784

(167 tumours vs. 45 normals from US, Affymetrix), GSE37991 (40

tumour-normal pairs from Taiwan, Illumina), and GSE127165 (57

laryngeal SCC-normal pairs from China, Illumina)—were retrieved

from GEO and harmonised using ComBat batch correction (sva

v3.46.0) to preserve biological variance while eliminating platform-

specific technical artefacts. Raw microarray data underwent

rigorous preprocessing: RMA background correction with

quantile normalisation, log2 transformation, and filtering of genes

expressed (CPM > 1) in ≥ 50% samples. Quality control retained

samples with median intensity > 2 SDs above cohort mean and

> 85% detection rate, alongside genes exhibiting > 0.2 coefficient of

variation (CV). Missing values were imputed via k-nearest

neighbours (k = 15), with batch effect removal efficacy confirmed

through principal component analysis (PCA) clustering patterns

and interquartile range consistency in boxplots.
Differential expression analysis

Differentially expressed genes (DEGs) were identified using the

Limma pipeline, defined by statistical significance (p < 0.05) and

absolute log2 fold change (|log2FC|) > 1. Results were visualised

through a heatmap (pheatmap R package) displaying hierarchical

clustering of top DEGs across samples, and a volcano plot (ggplot2

R package) contrasting log2FC against—log10 (p-value), with

significant DEGs highlighted.
Exosome-related gene screening

Exosome-related genes were extracted from the GeneCards

database (Supplementary Table 1). Genes linked to exosomes

were found using the search phrase “exosome” and filtered

according to a relevance score > 2 to guarantee high-confidence

relationships. The list of DEGs derived from the Limma pipeline

was cross-referenced with the curated exosome-related gene list.

The Venn diagram was created utilising the VennDiagram R tool,

visually illustrating the intersection between the two gene sets.

Genes located in the intersection were identified as exosome-

related differentially expressed genes (ERDEGs).
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Functional enrichment profiling

Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and

Genomes (KEGG) pathway enrichment studies were conducted

utilising the clusterProfiler R package to investigate the biological

activities and pathways related to the ERDEGs. The enrichment

analysis was conducted using a significance threshold of adjusted

p-value < 0.05, and the findings were illustrated using bar graphs

and dot plots. Gene Set Enrichment Analysis (GSEA) was

performed to further examine the functional characteristics of the

ERDEGs at the gene set level. The Hallmark gene sets from the

Molecular Signatures Database (MSigDB) served as the reference

gene sets. GSEA was conducted utilising the fgsea R package, and

enrichment scores were computed to ascertain gene sets

significantly enriched in the ERDEGs. The results were illustrated

by enrichment plots, with the foremost enriched gene sets given

according to their normalised enrichment score (NES) and a false

discovery rate (FDR) < 0.25.
Machine learning-based biomarker
discovery

Three machine learning approaches were sequentially applied

for feature selection: (1) LASSO regression (glmnet v4.1-6)

performed dimensionality reduction via L1 regularisation, where

the optimal l value minimising prediction error was determined

through 10-fold cross-validation, retaining genes with non-zero

coefficients as candidate biomarkers; (2) SVM-RFE (e1071 v1.7-13)

iteratively refined the feature subset by recursively eliminating

lowest-weight features based on linear kernel SVM classifier

performance until peak classification accuracy was achieved; (3)

RF (randomForest v4.7-1.1) quantified feature importance via Gini

impurity reduction across 500 decision trees, with final biomarker

prioritisation based on descending importance scores, thereby

establishing a robust multi-algorithm consensus for subsequent

translational validation.
Clinical predictive model construction

Receiver Operating Characteristic (ROC) curve analysis was

performed to assess the efficacy of the clinical predictive model. The

ROC curve was produced with the pROC R package, which

computes the area under the curve (AUC) to assess the model’s

discriminatory capacity. A nomogram was created with the

Regression Modelling Strategies (RMS) R package to enhance the

clinical implementation of the predictive model. The nomogram

graphically illustrates the correlation between predictor variables

and the anticipated outcome, enabling doctors to assess the

likelihood of a specific clinical event for individual patients. The

model’s coefficients were utilised to allocate point values to each

predictor, and the cumulative points were correlated with the
Frontiers in Immunology 03
projected likelihood. Calibration curves were constructed to

evaluate the concordance between expected and observed

outcomes, confirming the nomogram’s reliability.
Immune microenvironment
characterisation

Single-sample Gene Set Enrichment Analysis (ssGSEA) was

conducted utilising the LM22 signature matrix, which encompasses

gene expression profiles of 22 immune cell types to delineate the

immune cell composition inside the tumour microenvironment.

The Gene Set Variation Analysis (GSVA) R software was utilised to

compute enrichment scores for each immune cell type in individual

samples. Box plots illustrated the findings to emphasise

discrepancies in immune cell prevalence among samples. The

relationship between ERDEGs and immune cell infiltration was

assessed using Spearman correlation, followed by visualisation of

the results with the pheatmap software.
Drug sensitivity prediction

To forecast drug sensitivity based on the discovered ERDEGs, drug-

gene connection data were sourced from the Drug Signatures Database

(DSigDB). Drug enrichment analysis was conducted to find possible

therapeutic agents that target ERDEGs. The fgsea R package was utilised

for the study, wherein ERDEGs were evaluated for enrichment against

the drug-gene sets derived from DSigDB. The enrichment scores were

computed, and statistical significance was evaluated with an FDR < 0.25.

The outcomes were prioritised according to the NES, and the most

enriched pharmaceuticals were determined. The data were visualised

through bar and enrichment plots, emphasising the most promising

compounds for further examination.
Molecular docking validation

The three-dimensional structures of the target proteins were

obtained from the AlphaFold Protein Structure Database to

confirm the interactions between projected drug candidates and

their target proteins. The three-dimensional structures of small-

molecule compounds found by drug sensitivity prediction were

obtained from the PubChem database. Molecular docking

simulations were performed utilising AutoDock Vina, a prevalent

method for forecasting ligand-protein interactions. The target protein

and small-molecule compounds were formatted in PDBQT, and a

grid box was established to surround the putative binding site.

Docking simulations used an exhaustiveness parameter of 8 to

guarantee comprehensive sampling of the binding conformations.

The highest-ranking postures’ binding affinities (measured in kcal/

mol) were evaluated, and the findings were illustrated using PyMOL

to investigate the molecular interactions.
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Regulatory network analysis

The starBase database examined the relationships between RNA-

binding proteins (RBPs) and their target transcripts. The outcomes

were refined according to high-confidence connections (e.g.,

corroborated by numerous CLIP-seq datasets), and the RBP-target

gene network was illustrated using Cytoscape to emphasise critical

regulatory linkages. The Transcriptional Regulatory Relationships

Unravelled by Sentence-based Text Mining (TRRUST) database was

utilised to deduce transcription factor (TF) regulatory interactions.

The interactions between transcription factors and target genes were

extracted to form a regulatory network. The network was depicted

using Cytoscape, with nodes symbolising transcription factors and

target genes and edges denoting regulatory interactions.
Cell lines

Human Oral Keratinocytes (HOK) and human HNSCC cell lines,

HN4, HN6, SCC9, and CAL27, were obtained from Wuhan Pricella

Biotechnology Co. Ltd. DMEMmedium was used for cultivation. The

above medium was supplemented with 10% foetal bovine serum and

1% penicillin/streptomycin. All cell lines were cultured in a cell

incubator at 37°C with 5% CO2 concentration.
RNA extraction and quantitative real-time
polymerase reaction

Total RNA was extracted using a silica-membrane column-

based purification kit (Takara #9767), wherein the gDNA-Eraser

column adsorbed genomic DNA while the RNA Pure column

selectively bound RNA, yielding high-purity total RNA. Reverse

transcription was performed with PrimeScript™ RT Reagent Kit

(Takara #RR037A), followed by SYBR Green-based qPCR (Takara)

on a Bio-Rad CFX96 system. Reactions were conducted in duplicate

under two-step cycling: 95°C/30 sec denaturation, 40 cycles of

95°C/5 sec and 60°C/30 sec. GAPDH served as endogenous

control, with relative gene expression quantified via 2−DDCt
method against normalised cycle threshold (Ct) values.
Plasmids design and transfection

Firstly, the primers of angiopoietin like 1 (ANGPTL1) gene

were designed by Anhui General Gene Technology Co., Ltd. and

amplified by PCR, and the ends of cDNA were digested using XbaI

and BamHI restriction endonucleases, and the pcDNA3.1(+) empty

vector was digested in the same way; then, DNA ligase was utilised

to ligate the amplified target fragment with the vector, and

pcDNA3.1(+)-ANGPTL1 (containing the target vector for the

ANGPTL1 gene) was obtained, and the ligated product was

transformed into the receptor cells. The ANGPTL1 plasmid

construction was successful after shaking the bacteria, coating the
Frontiers in Immunology 04
plate, selecting the positive clones, sequencing, amplifying the

bacterial solution, and carrying out plasmid extraction

and purification.
Cell counting kit-8 proliferation assay

Transfected SCC9 and CAL27 cells were seeded in 96-well

plates at a density of 2,000 cells per well (six replicates per

group). Cell proliferation was assessed at 0, 24, 48, and 72 h. For

CCK-8 assays, 10 mL of CCK-8 solution was added to each well

containing 100 mL of culture medium. After incubation at 37°C for

2 h, absorbance at 450 nm was measured using a microplate reader

to quantify proliferation differences between groups.
Colony formation assay

Transfected SCC9 and CAL27 cells were seeded in 6-well plates

(200 cells/well) and cultured under standard conditions. The

medium was refreshed every 3 days for 1–2 weeks until visible

colonies formed. Cells were then washed with PBS, fixed with 4%

paraformaldehyde for 30 min, and stained with 0.1% crystal violet

for 10 min. After rinsing to remove excess stain, plates were air-

dried at room temperature. Colony numbers were quantified using

ImageJ software.
Wound healing assay

The transfected SCC9 and CAL27 cells were added to 6-well

plates with 5×105 cells per well, respectively. Incubate in the

incubator overnight. Two parallel lines were drawn in the 6-well

plate with a 100 mL pipette tip the next day. Wash the cells with PBS

solution and add serum-free medium. Continue to incubate in the

incubator, and observe and photo record under the inverted

microscope at 0 h and 24 h.
Transwell migration and invasion assays

Transfected SCC9 and CAL27 cells were resuspended at

1 × 105 cells/mL. 100 mL cell suspension (10,000 cells/well) was

seeded into Transwell inserts, with 600 mL medium containing

30% FBS added to the lower chamber. After 24 h incubation,

inserts were fixed with 4% paraformaldehyde (10 min), stained

with 0.1% crystal violet (15 min), and washed with PBS. Non-

migrated cells on the upper membrane surface were removed by

cotton swab. Migrated cells were imaged under a light microscope

and quantified using ImageJ. For the invasion test, the protocol

matched the migration assay except that transwell membranes

were pre-coated with Matrigel (BD Biosciences; 1:8 dilution in

serum-free medium) for 1 h at 37°C before cell seeding.
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Statistical analysis

Statistical analyses were performed using GraphPad 9.4.1. The

Mann-Whitney U test was used to compare the means between the

two groups, which are characterised by continuous measures that

are not normally distributed. The t-test was used to analyse the

comparison of means between the two groups, which are

characterised by the need to conform to normally distributed

measures. The chi-square test was used to analyse the difference

between the two groups for count data.
Results

Identification of ERDEGs in HNSCC

We developed a comprehensive analytical framework by

integrating four separate HNSCC datasets (GSE25099, GSE30784,

GSE37991, and GSE127165), which included 321 tumour samples

and 164 normal tissue samples. PCA indicated substantial batch

effects among cohorts before normalisation (Figure 1A,
Frontiers in Immunology 05
Supplementary Figure 1B). After ComBat batch correction, the

variation in batch effects on gene expression distribution

was substantially eliminated across all cohorts (Figure 1B,

Supplementary Figure 1B). Utilising the limma program

(p < 0.05, |log2FC| > 1), we found 514 consistently dysregulated

genes across all datasets. The volcano plot identified 237

upregulated genes and 277 downregulated genes (Figure 1C).

Hierarchical clustering of the top 50 differentially expressed genes

distinctly separated tumour from normal tissues (Figure 1D). We

curated 878 experimentally confirmed exosome-related genes from

the GeneCards database (Relevance score > 2). The investigation of

the intersection between DEGs and exosome genes identified 39

ERDEGs (Figure 1E).
Functional enrichment analysis of ERDEGs

GO enrichment study identified numerous considerably

enriched biological processes, cellular components, and molecular

functions. The most significant biological processes encompassed

the positive regulation of neuroinflammatory responses and the
FIGURE 1

Differential expression analysis. (A) Pre-batch-corrected PCA plot. (B) Post-batch-corrected PCA plot. (C) Volcano plot of DEGs. (D) Heatmap of top
50 DEGs across cohorts. (E) Venn diagram of DEG-exosome gene intersection.
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positive regulation of leukocyte activation, indicating the potential

involvement of these genes in immunological responses and

neuroinflammatory pathways. Enriching the vesicle lumen and

secretory granule lumen indicates that these genes may

participate in vesicular transit and secretion. The enrichment of

cytokine receptor binding and protease inhibitory activity indicates

a significant involvement of these genes in immunological signalling

and protease regulation (Figure 2A). KEGG pathway analysis

identified several pathways strongly linked to the genes, including

fluid shear stress and atherosclerosis, graft-versus-host disease, and

ferroptosis. Enriching the TNF signalling pathway and the

rheumatoid arthritis pathway indicates that these genes may be

pivotal in inflammatory responses and autoimmune disorders

(Figure 2C). To enhance our comprehension of the association

between genes, functions, and pathways, we further developed a

gene-function network relationship map and a gene-pathway

network relationship map. The gene-function network diagram

illustrated the strong correlation between genes and essential

functions, including immune response and neuroinflammation

(Figure 2B). In contrast, the gene-pathway network diagram

elucidated how these genes performed their biological roles by

engaging in various significant signalling pathways (e.g., IL-17

signalling pathway, TNF signalling pathway, etc.) (Figure 2D).

The network maps corroborated the aforementioned enrichment

analysis findings and offered novel insights into the probable

processes of genes in disease. Moreover, GSEA analysis

corroborated the activation of numerous significant signalling

pathways, including Cell Cycle and Cytokine Cytokine Receptor

Interaction, which exhibited robust positive enrichment. The

substantial enrichment of pathways, including ECM-receptor

interaction and Cell Cycle, indicates their potential roles in cell

adhesion and division, which may be linked to tissue remodelling

and cancer progression (Figure 2E). Metabolic pathways, including

Drug Metabolism Cytochrome P450, Metabolism of Xenobiotics by

Cytochrome P450, and Tyrosine Metabolism, exhibited significant

negative enrichment, indicating that these genes may be crucial in

drug metabolism and the detoxification of exogenous

compounds (Figure 2F).
Machine learning-based biomarker
discovery

We conducted a one-way logistic regression analysis with a

significance threshold of p < 0.05 to develop the HNSCC risk model,

initially identifying 39 critical ERDEGs. This work employs three

machine learning algorithms—LASSO, SVM-RFE, and RF—

concurrently to improve the reliability of feature selection

through comprehensive screening. LASSO regression effectively

handles high-dimensional data by incorporating L1 regularisation,

filtering out 17 essential ERDEGs while maintaining predictive

efficacy. This method is particularly suited for datasets with many

features, as it promotes sparsity in the model by selecting the most

influential variables (Figures 3A, B). SVM-RFE iteratively

eliminates less important features based on classifier accuracy,
Frontiers in Immunology 06
ultimately identifying 30 optimal candidate genes. This technique

excels in selecting features that maximise classification

performance, even in complex datasets (Figures 3C, D). Random

Forest utilises out-of-bag error estimation and Gini importance

scores to identify 17 hallmark genes with diagnostic significance. Its

robust ensemble learning approach ensures that important features

are consistently identified, even when faced with noisy or high-

dimensional data (Figures 3E, F). By synthesising the outcomes

from all three algorithms using a Venn diagram, we identified ten

diagnostic ERDEGs, which were consistently highlighted across the

different approaches (Figure 3G). This integrated feature selection

strategy ensures the robustness and reliability of the final gene set

for HNSCC risk modelling.
Clinical validation of diagnostic models

Boxplot analysis demonstrated significant differential

expression of critical genes between control and treatment groups

(p < 0.001 for all comparisons). Genes such as matrix

metallopeptidase 9 (MMP9), ANGPTL1, bone marrow stromal

cell antigen 2 (BST2), ubiquitin-like 3 (UBL3), baculoviral IAP

repeat containing 5 (BIRC5), Thy-1 cell surface antigen (THY1),

clusterin (CLU), myocilin (MYOC), profilin 2 (PFN2), and

fibronectin 1 (FN1) demonstrated distinct expression profiles,

with MMP9 and FN1 exhibiting the most significant upregulation

in the treatment group (Figure 4A). Correlation analysis revealed

intricate relationships among the genes. FN1 highly correlated with

THY1 (r = 0.74, p < 0.001). BIRC5 had inverse correlations with

ANGPTL1 (r = -0.52) and UBL3 (r = -0.52). CLU demonstrated

moderate co-expression with ANGPTL1 (r = 0.51) (Figure 4B).

The Circos plot analysis delineated critical genes to particular

chromosomal regions. CLU (chromosome 8) and THY1

(chromosome 11) are in regions that regulate the extracellular

matrix. UBL3 on chromosome 13 and BIRC5 on chromosome 17

are located in regions associated with apoptosis (Figure 4C). To

evaluate the diagnostic efficacy of pivotal genes identified by the

LASSO risk model for HNSCC, logistic regression diagnostic

models and column line plots were employed to demonstrate the

impact of the expression of 10 selected ERDEGs on HNSCC. ROC

curve analysis designated UBL3 as the most potent single-gene

biomarker (AUC = 0.927, 95% CI: 0.901–0.953), surpassing other

poss ib i l i t ie s such as ANGPTL1 (AUC = 0.895) and

MMP9 (AUC = 0.885) (Figure 4E). The multivariate model

encompassing all genes attained remarkable diagnostic accuracy

(AUC = 0.983, 95% CI: 0.973–0.991), greatly above that of

individual markers (Figure 4D). To rigorously evaluate model

generalizability, we performed independent validation using the

TCGA-HNSCC dataset (n = 546), which was completely

independent from all prior training and feature selection

procedures. The diagnostic model achieved near-perfect

discrimination with an AUC of 0.999 (95% CI: 0.996–1.000)

(Supplementary Figure 2A). Individual biomarkers demonstrated

robust predictive capacity, including BIRC5 (AUC = 0.962), MMP9

(AUC = 0.951), and ANGPTL1 (AUC = 0.889), with all 10 genes
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showing AUC > 0.75 (Supplementary Figure 2B). Calibration

curves exhibited robust concordance between projected

probabilities and actual outcomes (Brier score = 0.083), with

negligible discrepancy between apparent and bias-corrected

estimates (Figure 4F). The decision curve study validated clinical

utility within 10–80% threshold probabilities, demonstrating
Frontiers in Immunology 07
enhanced net benefit relative to treat-all or treat-none approaches

(Figure 4G). The nomogram assessed the contributions of

individual genes to disease risk, with UBL3 (5.5–9.5 points) and

FN1 (3–12 points) exhibiting the highest weightings. Total scores of

300 points or higher indicated a predicted risk exceeding 90%,

facilitating accurate categorising of high-risk patients (Figure 4H).
FIGURE 2

Enrichment analysis of ERDEGs. (A) GO enrichment analysis of ERDEGs. (B) Network diagram of ERDEGs with functional correlations. (C) KEGG
enrichment analysis of ERDEGs. (D) Network diagram of ERDEGs related to pathway. (E, F) GSEA enrichment analysis of ERDEGs.
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Immune microenvironment
characterisation

An examination of immune infiltration was conducted using

the CIBERSORT method to investigate the link between

immunoreactivity and HNSCC, revealing the infiltration of 28

immune cell types, with 14 kinds exhibiting significant differences

between the treatment and control groups. Neutrophils were more

prevalent in HNSCC, but Natural Killer T cells, Activated CD4 T

cells, Activated B cells, and Memory B cells were more prevalent in

the control group (Figure 5A). The Spearman analysis

demonstrated a link between immune cells and ERDEGs, as

illustrated in Figure 5B. UBL3 was prevalent in activated CD8 T

cells, gamma delta T cells, myeloid-derived suppressor cells

(MDSCs), and natural killer cells, exhibiting a favourable

correlation with inflammation-related signalling pathways,

potentially contributing significantly to the control of innate

immunity. BIRC5 exhibits a strong negative correlation in

Immature B cells, Activated CD8 T cells, and Regulatory T cells,

suggesting that these innate immune cells are inhibited during T

cell proliferation. ANGPTL1 is prominently expressed in effector

memory CD4 T cells and myeloid-derived suppressor cells

(MDSCs), potentially contributing to immunosuppression and

the regulation of the tumour microenvironment. MYOC is

significantly expressed in effector memory CD4 T cells and type

2 T helper cells, indicating its potential influence on antigen

presentation functionality.
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Therapeutic target exploration

Small molecule medicines modulating hub gene expression

were gathered from DSigDB on the Enrichr platform. The

outcomes for prospective small molecules were produced using

their P-values to signify the closeness between the small molecule

and the gene. Figure 6A and Supplementary Table 2 illustrate the

prospective small molecule therapeutics for the hub genes. To

clarify the binding activity between the hub gene proteins and

their respective medications, additional molecular docking of the

HNSCC-related hub genes (BIRC5, MMP9, THY1, FN1, CLU) and

the initial five small-molecule medicines was conducted.

Consequently, receptor-ligand docking outcomes were acquired

utilising the identical methodology. In molecular docking,

intermolecular forces, primarily hydrogen bonding, were

considered. Figures 6B–F depicts the docking configuration of

small molecule pharmaceuticals and proteins.
Regulatory network analysis

This study established a regulatory network for RBPs, with

green nodes denoting RBPs and orange nodes indicating target

genes. Central to the network, genes, including BIRC5, FN1, CLU,

MMP9, and UBL3, were co-regulated by various RBPs. BIRC5, an

established anti-apoptotic gene integral to cell survival and

carcinogenesis, is modulated by several RNA-binding proteins
FIGURE 3

Machine learning screens for disease characterising genes. (A) Change in model bias under cross-validation. (B) LASSO regression coefficient L1
paradigm change. (C) Cross-validation accuracy and number of features change. (D) Cross-validation error and number of features change. (E) Plot
of number of trees versus error rate in RF. (F) Ranking of importance of genetic variables in contributing to model prediction. (G) Venn diagram of
LASSO, RF and SVM-RFE selected feature genes.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1590331
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


He et al. 10.3389/fimmu.2025.1590331
and may be intricately regulated at the post-transcriptional level.

FN1 is an extracellular matrix protein essential for cell adhesion,

migration, and tissue repair, and its interactions with several RBPs

indicate a sophisticated regulatory mechanism at the RNA level

(Figure 7A). This study also established a TF regulatory network,

wherein yellow nodes denote TFs and orange nodes signify target

genes. Central to the network, genes including MMP9, BIRC5,

CLU, BST2, and THY1 were co-regulated by various transcription
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factors. MMP9, a gene integral to extracellular matrix

disintegration and cancer spread, is modulated by many

transcription factors and may be meticulously regulated

throughout cellular migration and tissue remodelling. BIRC5, an

anti-apoptotic gene crucial for cell survival and carcinogenesis, is

regulated by many transcription factors, indicating its modulation

by different signalling pathways at the transcriptional

level (Figure 7B).
FIGURE 4

Construction and characterisation of characterisation genes. (A) Box line plot comparing gene expression in control and treated groups.
(B) Correlation plots reveal expression relationships between genes. (C) Loop plots demonstrate the distribution and association of genes on
chromosomes. (D) Model ROC plot to assess overall diagnostic performance. (E) ROC plot for each gene. (F) Calibration curve graph compares
predicted probability with actual probability. (G) Decision curve plots measure the net benefit of clinical applications. (H) Column line graphs
construct individualised risk prediction models. Data were showed as mean ± SD, *P < 0.05, **P < 0.01, ***P < 0.001.
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ANGPTL1 inhibited HNSCC cell
proliferation, migration, and invasion

Using qRT-PCR to detect the differences in ANGPTL1 mRNA

expression among different HNSCC cell lines, the ANGPTL1

mRNA expression levels in HNSCC cells were significantly lower

than those in the HOK cell line (Figure 8A). HNSCC samples from

the HPA database showed absent ANGPTL1 protein expression
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(staining intensity score = 1), while normal oral mucosa

maintained moderate expression (score = 2) (Supplementary

Figure 3A), and expression was further reduced in patients with

TNM stage II-III (stage I/II vs stage III/IV: log2FC = 0.47, p =

0.0038) (Supplementary Figure 3B). Selected two head and neck

squamous cell carcinoma cell lines, SCC9 and CAL27, with low

ANGPTL1 expression as subjects for subsequent research. We

created a model for overexpression of the ANGPTL1 gene and
FIGURE 5

Immune properties of characterised genes. (A) Immune difference plot comparing the change in distribution of immune cells between control and
treated groups. (B) Correlation heatmap demonstrating correlation and significant differences between genes and immune cells. Data were showed
as mean ± SD, *P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 7

(A) RBP regulatory network diagram (RNA binding protein). (B) TF transcription factor regulatory network diagram.
FIGURE 6

Molecular docking of small molecule drugs. (A) Drug Regulatory Networks. The 3D structure of molecular docking shows the results of molecular
docking of BIRC5 with 5-hydroxy-1-(4-hydroxy-3-methoxyphenyl)decan-3-one (B), MMP9 with beclomethasone (C), THY1 with UNII-768N7QO4KH
(D), FN1 with Ethylene dimethacrylate (E), and CLU with Seocalcitol (F).
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introduced vector-NC and oe-ANGPTL1 into HNSCC cells by

transfection. The results of the CCK-8 experiment showed that the

cell proliferation rate in the ANGPTL1 overexpression group of

SCC9 and CAL27 cells was significantly lower than that in the

control group cells (Figure 8B). The results of the colony formation

assay showed that the cell cloning ability of the ANGPTL1

overexpression group in SCC9 and CAL27 cells was significantly

inhibited (Figure 8C). To further verify the role of ANGPTL1

protein in the migration and invasion abilities of HNSCC cells,

scratch assay results showed that in SCC9 and CAL27 cells, the cell

migration ability in the ANGPTL1 overexpression group

was significantly lower than that in the control group

(Figure 8D). In the transwell experiment, after ANGPTL1

protein overexpression in HNSCC cells SCC9 and CAL27, a
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decrease in the transmembrane invasion ability of the cells was

observed (Figure 8E).
Discussion

This study utilised sophisticated machine learning methods to

systematically discover exosome-related indicators in HNSCC, a

cancer marked by significant morbidity and death. We found 10

ERDEGs with substantial diagnostic and prognostic potential by

integrating multi-omics data and analysing the immunological

microenvironment. UBL3 was identified as a strong single-gene

biomarker with an AUC of 0.927, whereas a combined model

utilising all 10 ERDEGs had outstanding diagnostic accuracy
FIGURE 8

Effect of overexpression of ANGPTL1 on the functional phenotype of HNSCC cells. (A) Results of qRT-PCR assay of ANGPTL1 mRNA in various
HNSCC cell lines. (B) CCK-8 proliferation assay of HNSCC cells affected by overexpression of ANGPTL1. (C) Clone formation assay to verify the
effect of overexpression of ANGPTL1 on the proliferation of HNSCC cells. (D) The effect of overexpression of ANGPTL1 on the migration ability of
HNSCC cells was verified by scratch assay. (E) Transwell assay was performed to verify the effect of overexpression of ANGPTL1 on the migration
and invasion ability of HNSCC cells. Data were showed as mean ± SD, *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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(AUC = 0.983). These findings underscore the effectiveness of

machine learning in transforming intricate information into

clinically applicable insights. The development of a nomogram

facilitated accurate risk classification, with a total score beyond

300 points associated with over 90% disease risk, highlighting its

effectiveness in individualised patient management. Genes such as

THY1, FN1, and BIRC5 function as diagnostic markers and

demonstrate significant correlations with immune cell infiltration

and tumour growth, indicating their dual involvement in disease

identification and therapeutic intervention.

MMP9 facilitates tumour invasion and metastasis through

the degradation of the extracellular matrix (16). In HNSCC,

elevated MMP9 expression was substantially correlated with

lymph node metastases and unfavourable prognosis (17, 18).

Exosomes transport MMP9 to distant tissues, altering the

microenvironment to establish a pre-metastatic niche and

increasing the invasiveness of HNSCC (19). ANGPTL1 functions

as an anti-angiogenic agent and a tumour suppressor (20, 21).

ANGPTL1 is downregulated in several malignancies, and multiple

studies have evidenced its inhibitory function in tumour growth

and metastasis (22, 23). Exosomal ANGPTL1 reprograms Kupffer

cells and reduces their MMP9 expression, averting hepatic

vascular leakage and impeding colorectal cancer liver metastases

(24). BST2 participates in immunological modulation and viral

suppression (25, 26). In HNSCC, the overexpression of BST2 may

enhance tumour cell survival by activating the AKT/ERK1/2

pathway and is linked to immune evasion (27). UBL3 modulates

the ubiquitin cascade process (28). Recently, UBL3 was identified

as a post-translational modification that facilitates protein sorting

into tiny extracellular vesicles (29). BIRC5 is an anti-apoptotic

protein that significantly influences cell proliferation,

differentiation, migration, and invasion (30–33); its elevated

expression in HNSCC is associated with treatment resistance

and unfavourable prognosis (34, 35). THY1 participates in the

regulation of cell adhesion and migration (36, 37). Research

indicates that THY1 on the surface of extracellular vesicles

(EVs) or the receptor cell surface interacts with corresponding

integrins to facilitate the binding, uptake, and distribution of EV

contents (38). The function of THY1 in intracellular vesicles

remains unclear; nevertheless, it has been identified in non-

follicular vesicles and neuronal synaptic vesicles (39). CLU

functions as a molecular chaperone that participates in stress

response and the regulation of apoptosis (40, 41). In oral cancer

cells, CLU overexpression enhances the activation of the AMPK/

Akt/mTOR-mediated autophagy pathway, hence promoting cell

survival (42). MYOC is mainly linked to glaucoma and has

received limited research attention in the context of cancer (43).

There is insufficient evidence to establish a direct involvement in

HNSCC development or exosome function; nonetheless, it may

indirectly influence tumour behaviour through the modulation of

ECM hardness, warranting additional investigation. PFN2

modulates the reorganisation of the actin cytoskeleton (44). In

HNSCC, PFN2 enhances tumour invasiveness via epithelial-

mesenchymal transition (EMT) (45). PFN2 promotes tumour

angiogenesis within the tumour microenvironment via cancer-
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derived exosomes (46). FN1 is an essential extracellular matrix

element that facilitates tumour cell adhesion, motility, and

metastasis (47–49). In HNSCC, elevated FN1 expression

correlates with MDSC infiltration and an immunosuppressive

microenvironment (50). Exosomal FN1 can stimulate fibroblasts

through integrin signalling, facilitating pro-carcinogenic ECM

remodelling and enhancing metastasis (51).

Functional enrichment analysis indicated that ERDEGs are

primarily associated with pathways essential to HNSCC

pathogenesis, including TNF signalling, IL-17 signalling, and

ECM-receptor interactions. These pathways are pivotal to

inflammation, immune evasion, and metastasis. FN1, a crucial

extracellular matrix protein, promotes tumour cell adherence and

migration, and its noted association with heightened infiltration of

Activated CD8 T cells and MDSCs (52, 53). BIRC5, an anti-

apoptotic gene, exhibited an inverse correlation with regulatory

T cells, suggesting its role in inhibiting anti-tumour immune

responses (54). In vitro experiments provided experimental

support that ANGPTL1 plays an anti-cancer role, inhibiting the

proliferation, migration, and invasion of HNSCC cells. These

mechanistic findings highlight the diverse functions of exosome-

related genes in influencing tumour biology via intracellular

signalling and extracellular communication within the

tumour microenvironment.

Examining immune infiltration patterns in HNSCC tissues

indicated a tumour-promoting environment characterised by

increased neutrophils and reduced natural killer T cells. ERDEGs

such as UBL3 and ANGPTL1 displayed substantial connections

with immunosuppressive cell types, including MDSCs, suggesting

their involvement in immune evasion. Notably, UBL3 was

associated with Activated CD8 T cells and pro-inflammatory

pathways, highlighting its contradictory involvement in immune

activation and tumour growth. MMP9 and FN1 were linked to

extracellular matrix remodelling, a process essential for forming

metastatic niches (55–57). Based on these findings, drug sensitivity

estimates and molecular docking revealed prospective therapeutic

drugs targeting essential ERDEGs. BIRC5 showed affinity for anti-

mitotic agents such as berberine, aligning with its function in

cellular survival (58), whereas THY1 and FN1 were anticipated to

engage with immune checkpoint inhibitors, reinforcing their

promise in combinatorial therapy designed to augment anti-

tumour immunity.

Notwithstanding these gains, some limits merit attention.

During the development of the model, we employed cross-

validation as well as multiple feature selection methods to

minimise the risk of overfitting. However, despite this, overfitting

is still a concern, especially in the case of high-dimensional datasets.

To reduce the risk of overfitting, we suggest that future studies

should conduct further external validation and consider applying

more stringent regularisation techniques to improve the reliability

and generalisation of the model. Although in vitro investigations

offered preliminary insights into ANGPTL1 ’s functional

significance, extensive in vivo studies are necessary to clarify the

molecular contributions of other ERDEGs, including their role in

immune regulation. Translational initiatives might also benefit
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from experimental confirmation of anticipated medication

interactions using patient-derived models, such as organoids or

xenografts. Furthermore, future research should isolate tumour-

specific exosomes to directly correlate ERDEGs expression with

exosomal cargo and functional outcomes, thereby refining our

understanding of exosome-mediated intercellular communication

in HNSCC progression.
Conclusion

In conclusion, this work employed a machine learning

methodology to uncover dependable exosome-related

biomarkers for HNSCC. We conducted an extensive

bioinformatics analysis to thoroughly investigate exosome-

associated genes’ expression patterns and functional roles in

HNSCC, emphasising their significant contribution to tumour

growth and immune modulation. A molecular docking study

indicated distinct interactions between exosome-associated

proteins and pharmacological targets. These findings highlight

the significance of exosomes in cancer biology and offer new

avenues for future translational research focused on enhancing

the early diagnosis of HNSCC, personalised therapy approaches,

and patient prognosis.
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