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Sepsis is a life-threatening systemic inflammatory syndrome characterized by a

complex immune biphasic imbalance. Monitoring of immune status has not yet

been implemented in clinical practice due to lack of direct therapeutic utility.

Immune dysregulation in sepsis patients is heterogeneous and dynamic. The use

of artificial intelligence to drive the integration of multi-omics data, including

genomics, transcriptomics, proteomics, and metabolomics, enables biomarker

monitoring and immunoassays. This review revisits gut microbes as critical illness

drivers and important regulatory players in sepsis immunity. It focuses on the

synthesis of clinical biomarkers of sepsis and parameters related to the gut

microenvironment with the help of artificial intelligence, enabling marker

identification, immunostratification and predictive modeling. This feasible

clinical decision-making algorithm based on “combinatorial typing” is an

important tool for realizing precision medicine for sepsis patients.
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1 Introduction

Sepsis is a dysregulated systemic immune response of the host to infection, often

accompanied by severe systemic inflammation and multiple organ dysfunction syndrome

(MODS), and is one of the leading causes of death in intensive care unit (ICU) patients. The

Global Burden of Disease (GBD) study estimated that there were approximately 11 million

sepsis-related deaths worldwide in 2017, accounting for nearly 20% of global deaths (1–4).

Despite significant advances in antimicrobial therapy and critical care medicine over the

past decades, sepsis deaths remain high, especially when early diagnosis is not timely or

treatment strategies are inadequate (5, 6).

The complex pathomechanism of sepsis involves a biphasic imbalance characterizing

the host immune response: i.e., early immune hyperactivation (manifested as systemic

inflammatory response syndrome, SIRS) and late immune suppression (e.g., T-cell failure

and immune tolerance), which predisposes patients to secondary infections and

significantly affects long-term prognosis (7–10). Against the backdrop of the 2025 Japan

influenza outbreak, dominated by the A(H1N1)pdm09 subtype, immunotargeted

treatment strategies for severe cases have further highlighted the potential of immune
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system-based therapies in sepsis treatment (11–13). Additionally,

the gut microbiota (gut microbiota) plays an important role in the

regulation of immune homeostasis sepsis in of intestinal origin

sepsis (14). novel immunomodulatory therapeutic strategies

centered on restoration of intestinal microbiological homeostasis

have gradually gained attention to assist in remodeling the host

immune homeostasis, identify individual patient’s immune status

and optimize early diagnosis, thereby improving survival and

treatment outcome of septicemia patients.

Current conventional biomarkers used clinically for the

diagnosis and evaluation of sepsis include procalcitoninogen

(PCT), C-reactive protein (CRP), white blood cell count (WBC),

and a variety of inflammatory cytokines (15–17).However, these

conventional markers are often abnormally expressed in the

presence of trauma, surgery, and non-infectious diseases, resulting

in insufficient specificity and limited sensitivity in distinguishing

sepsis from non-infectious inflammation, these traditional markers.

In addition, due to the high degree of heterogeneity of immune

imbalances in sepsis, it is difficult for a single biomarker to

comprehensively reflect the complexity of the immune dynamics.

Such limitations have prompted researchers to turn to more

comprehensive and precise biomarker discovery methods to

improve the accuracy of disease diagnosis and prognosis (18).

In recent years, with the rapid development of multi-omics

technologies (including genomics, transcriptomics, proteomics, and

metabolomics), the emergence of large-scale and high-dimensional

biological data has posed a great challenge to the traditional means

of analysis (19–22). Artificial Intelligence (AI), especially machine

learning (ML) and deep learning (DL) algorithms are becoming an

important tool in sepsis research due to their powerful data mining

capabilities (23). AI algorithms are not only capable of efficiently

integrating clinical data (e.g., electronic health records,

physiological monitoring data) with multi-omics data, but also

identifying complex non-linear features that cannot be captured

by traditional methods, thus enabling more accurate patient

stratification, immune status assessment and disease progression

prediction (24–27).

The aim of this review is to explore the application of artificial

intelligence (AI) and multi-omics technologies in the study of

immune response in sepsis, focusing on the analysis of how AI

integrates genomics, transcriptomics, proteomics and

metabolomics data for the discovery of new and efficient

biomarkers to optimize the early diagnosis, risk assessment, and

individualized therapeutic strategies for sepsis. In addition, we will

also discuss the challenges and future research directions of AI and

multi-omics in the process of clinical translation, with the aim of

providing theoretical basis and practical reference for the

promotion of sepsis precision medicine.
2 Applying AI and machine learning to
the immune response in sepsis

AI has evolved from its early days, limited by reliance on expert

rules, to its current incarnations of ML and DL, both of which are
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subdivided into Supervised Learning and Reinforcement Learning.

Both are subdivided into supervised, unsupervised and

reinforcement learning. ML involves algorithms that define their

own rules from input data through iterative training and

refinement, without human intervention (28). DL uses multi-layer

neural networks to simulate the way the human brain processes

information, such as the large language models that are currently

popular (ChatGPT, Deepseek) (29, 30). Due to its complex

structure and large computational volume, it requires more high-

performance computing resources than traditional machine

learning methods. And because its internal working mechanism is

complex and difficult to be understood by human beings (i.e., the

“black box” effect), how to explain its decision-making process and

how to be accountable when something goes wrong is an important

challenge at present (31).

Early recognition of sepsis can reduce mortality, and current

common clinical surveillance relies on predefined rules (e.g.,

specific symptoms or signs). In the quest for more effective

disease management strategies, the development of Machine

Learning Algorithms (MLA) for sepsis prediction algorithms is

more dynamic and time-sensitive (32–34). Moreover, machine

learning techniques effectively mine patterns in histological data

to help classify and identify different biometric subgroups of

patients, revealing the heterogeneity of sepsis.

Neonatal sepsis as a cause of high infant mortality rate (35). Due

to the rapid progression of symptoms, timely diagnosis of neonatal

sepsis requires a combination of clinical indicators, inflammatory

biomarkers, and blood cultures to reduce the risk of mortality (36).

These diagnostic complexities can be leveraged with machine

learning models to process large, structurally complex datasets,

enabling stratified, individualized prediction and early warning.
3 Intestinal immune dysregulation in
sepsis

The gastrointestinal tract is integral to the pathophysiologic

process of sepsis and plays a catalytic role in driving and sustaining

multi-organ dysfunction (37–39). The establishment of intestinal

immunity is dependent on both the intestinal flora and the physical

barrier between the host and microorganisms and the immune cells

at the barrier (14, 40).

The mucosal immune system consists of GALT (gut-associated

lymphoid tissue, including Peyer’s patches and isolated lymphoid

follicles) at the induction site and the lamina propria and intestinal

epithelium at the primary effector site (41–43). As the outermost

outpost, the intestinal epithelium is the active component of

immunity and promotes the innate immune response (44, 45).

The intestinal epithelium is divided into absorptive and lymphoid-

associated epithelia (46). T cells, B cells, and dendritic cells

accumulate in the subepithelial dome region of lymphoid tissue,

creating a protective immune barrier (47). Dependent on M-cell

(Peyer’s patches located in the intestinal epithelium) transport,

macromolecules and Ag from the lumen are sampled and

presented locally to T cells (48). Whereas the lamina propria is
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enriched with effector T cells (Th1, Th17), regulatory T cells (Treg),

plasma cells (secreting IgA), and tolerogenic CX3CR1+

macrophages (Macs) (49, 50).

In the early stages of sepsis of intestinal origin, overwhelming

infection induces a hyperinflammatory state in the organism, which

leads to intestinal hyperpermeability. The compromised mucosal

barrier permits the transfer of bacteria and their products (e.g., LPS,

peptidoglycan, lipophosphatidic acid, etc.) to the mesenteric lymph

nodes, liver, spleen, and bloodstream, activating the host immune

system (51). The immune response is initially activated by the

perception of pathogen-associated molecular patterns (PAMPs) by

pattern recognition receptors (PRRs), which in turn induce a wide

range of biological responses (52, 53).

In the post-acute phase of sepsis, the immune response enters

a state of hyporesponsiveness. When the phase of immune paralysis

(i.e., immune imbalance) takes center stage, it is characterized by

hypofunction of antigen-presenting cells (APCs), depletion of T-cells,

and reprogramming of antigen-presenting cells (54, 55). These

cells have a reduced ability to produce pro-inflammatory cytokines

in response to stimulation, making the organism highly susceptible

to secondary infections. At the same time, there is an increase in death-

associated molecules (programmed cell death-1 (PD-1), caspases) and

a decrease in the expression of HLA-DR (54, 56, 57). A decrease in

commensal bacteria and colonization by conditionally pathogenic

bacteria (e.g., Enterobacteriaceae, Clostridium difficile) during periods

of high inflammation and an imbalance in the intestinal microecology

lead to an increased risk of secondary infections (58). This in turn

drives sepsis and perpetuates the inflammatory response, inducing

SIRS and increasing the prognostic burden of sepsis. It is shown that

the microbiota is associated with systemic tolerance of the host

immune system.

However, data suggest that not all T-cell responses are

suppressed in sepsis survivors and that some specific CD4 T cells

may be restored (59–61). For example, in microbial sepsis induced

by cecum ligation and puncture (CLP), the influenza A virus (IAV)

NP311-specific CD4 T cell population, CD4 T cells, showed Ag-

dependent proliferation (62).

In conclusion, the pathophysiology of sepsis centers around a

hyperinflammatory phenotype or an immunosuppressive

phenotype. The high mortality rate in sepsis remains severe,

mainly due to the lack of effective treatment strategies that can

support the recovery of immune system function and reverse

immune imbalances. Therefore, immunotherapy to target this

dysregulation is expected to identify appropriate treatments and

therapeutic windows.
4 Exploring novel biomarkers for
sepsis based on multi-omics analysis

4.1 Genomics

Through genome-wide association studies (GWAS) and analysis

of single nucleotide polymorphisms (SNPs), the study revealed

multiple genetic variants associated with immune response (63)
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(Figure 1). AI was able to mine genetic markers associated with

susceptibility to sepsis and immune response from these genomic

data (64, 65). For example, an integrative analysis based on publicly

available datasets found that immune-related genes such as LTB4R,

HLA-DMB, and IL4R were strongly associated with 28-day mortality

in patients with sepsis, potentially influencing prognosis by

modulating the strength of the immune response (66). In addition,

differential expression analysis for MS1 cells from ICU-SEP and ICU-

NoSEP patients revealed that the expression of PLAC8 gene was

associated with sepsis, while CLU was specifically up-regulated in

MS1 cells, which may be a new sepsis biomarker (67). AI analyzed

these variations by deep learning algorithms, which could accurately

identify the genes associated with immune response, for providing

strong support personalized treatment of sepsis. For example,

Sweeney et al. integrated transcriptomic data from 21 sepsis

cohorts (1113 patients in total) and constructed four sepsis

prognostic prediction models using supervised learning algorithms

such as Gradient Boosting Trees. The study started with data

downscaling and feature selection using batch effect correction and

principal component analysis (PCA), followed by model training and

evaluation in the training and validation sets. The final model

obtained an area under the ROC curve (AUROC) of approximately

0.85 in the independent validation set, which significantly

outperformed traditional clinical scoring systems (e.g., SOFA

score). Through this AI-driven multi-omics data analysis process,

the clinic is able to more accurately type and prognostically assess the

patient’s immune status for more individualised diagnostic and

therapeutic decisions [PMID: 36470834].
4.2 Transcriptomics

Transcriptomics reveals specific gene expression patterns

associated with viral or bacterial infections by analyzing mRNA

expression profiles in the blood and tissues of sepsis patients, for of

sepsis providing new biomarkers personalized treatment (68, 69).

Heterogeneity of the immune system in sepsis patients could be

identified by analysis of single-cell RNA sequencing (scRNA-seq)

technology, which revealed significant changes in certain immune cell

populations (70, 71). For example, the CD14+ monocyte subset

(MS1) undergoes an expansion in sepsis patients and correlates

with immunosuppressive states (72). Such techniques allow

researchers to reveal the profound effects of sepsis on the immune

system at the single-cell level, providing possible directions for future

immunomodulatory therapies and precision medicine.

Whole blood gene expression profiling further revealed that

different subtypes (immune response endotypes) of sepsis could be

recognized. For example, the Mars1 endotype is characterized by an

impaired immune response, mainly manifested by reduced expression

of genes related to lymphocyte signaling and antigen presentation

pathways, which is strongly associated with poor patient prognosis

(73). In addition, similar immunosuppressive features are also seen in

childhood sepsis in the A endotype (74, 75). The identification of these

endotypes provides a basis for early stratification of patients with sepsis

and promotes the development of personalized treatment strategies.
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In studies of sepsis-associated liver failure (ACLF), activation of the

transcription factor C/EBPb has been found to be one of the key factors
contributing to the loss of liver function. Studies have shown that C/

EBPb expression is significantly increased in both mouse models and

human ACLF patients.C/EBPb contributes to sepsis-induced liver

failure by activating endothelial dysfunction and regulating

Angiopoietin-1/Angiopoietin-2 ratio and HGF production (76).

These transcriptomic markers provide new molecular

mechanisms for our understanding of sepsis-induced multi-organ

failure, as well as for using new ideas failure. These markers as

potential therapeutic targets to ameliorate sepsis-associated organ.
4.3 Proteomics

In the immune response to sepsis, proteomic studies have revealed

the multiple roles of cytokines, chemokines, and other related proteins

in immune regulation (77, 78). These proteins not only directly reflect

the degree of activity of the immune system, but also play key roles in

the transformation of an over-excited or immunosuppressed state.

Pro-inflammatory cytokines such as tumor necrosis factor

alpha (TNF-a), interleukin 6 (IL-6), and interleukin 1 (IL-1) are

overexpressed during the acute phase of sepsis, leading to immune

over-responses, which in turn induces a SIRS and multi-organ

failure (79–82). IL-10 may contribute to immune tolerance or

inhibit immune responses and under specific circumstances

increase the risk of secondary infections, but its effects are

spatiotemporally specific (83, 84).

S100A8 and S100A9 are key calcium-binding proteins in sepsis,

and their immunomodulatory effects are not limited to the systemic

immune response, but also the intestinal immune system play an

important role in (85). studies have shown that S100A8 and S100A9

are involved in intestinal inflammatory responses and immune cell

recruitment. In patients with sepsis, the expression of S100A8 and

S100A9 was significantly elevated at sites of inflammation such as

the intestine and lungs, exacerbating the local immune response.

Mice deficient in these proteins exhibited impaired immune

function and an increased risk of bacterial spread outside the gut.

Supplementation with S100A8 and S100A9 restored immune cell

function and improved gut microbiota balance, thereby reducing

the incidence of sepsis (86).

These proteins not only serve as immune markers, but may also

be novel targets for regulating intestinal immune responses,

providing new ideas for personalized treatment of sepsis.
4.4 Metabolomics

Metabolomics is the study of small molecule metabolites and

their changes in living organisms, and in recent years,

metabolomics has played an important role in the study of

immune response in sepsis (87, 88). Immune response is closely

related to metabolism, and the activation and functional demands

of immune cells are often accompanied by alterations in metabolic
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pathways, and metabolites, in turn, modulate the metabolic

pathways, and the strength and direction of immune responses.

During the immune response to sepsis, significant changes in

metabolic pathways occur. For example, sepsis-induced

abnormalities in amino acid metabolism are closely associated

with immunosuppression. It has been found that tryptophan,

when metabolized to kynurenine via the indoleamine-2,3-

dioxygenase (IDO) pathway, inhibits T-cell proliferation,

promotes T-cell apoptosis, and enhances T-regulatory cell (Treg)

production, leading to the development of an immune tolerance

state (89).

Furthermore, in sepsis, dysregulation of glycolysis is closely

linked to functional alterations in immune cells. It was found that in

immune-mediated diseases such as acute liver injury, protein 4.1R

promotes the polarization of M1-type macrophages by regulating

glycolytic metabolism, driving immune activation and thus

exacerbating inflammatory responses (90).

These metabolites, as potential prognostic markers, need to be

further clinically validated and standardized for application in

practical diagnosis and treatment. In addition, the combination of

metabolomics and genomics, especially through multimodal

genomics techniques, can reveal systemic biological changes in

sepsis and provide a basis for the discovery of new therapeutic targets.

The immune response to sepsis is complex and diverse, and

with the advancement of multi-omics technology, AI technology

can effectively integrate big data from genomics, transcriptomics,

proteomics and metabolomics to reveal potential biomarkers. These

markers are important for early diagnosis of sepsis, assessment of

immune response, and personalized treatment.
5 Discussion

Accurate analysis of dysregulated immune responses and the

intestinal microenvironment is critical for the next step in optimizing

the treatment of sepsis patients or improving the prognosis of critically

ill patients. In immunomodulatory therapy research, specific

biomarkers show potential in screening patient populations. Oral

nanomedicinal immunotherapy has demonstrated unique advantages

inmodulating sepsis-associated gastrointestinal tract (GIT) factors with

a strategy to restore a healthy gut microbiome: 1) better targeting of

the GIT; 2) convenience of self-administration; and 3) better patient

compliance (91).

Currently, stratification efforts have been combined with

immunologic analyses, and the application of high-dimensional

histology techniques has opened up new opportunities for clinical

and translational sepsis research. Compared with traditional single-

cell genomics, spatial genomics is able to simultaneously preserve

the gene expression information of cells and their spatial

localization in tissues, revealing the dynamics of immune cells in

the pathological environment (92–94). Spatialomics can be used in

sepsis research to resolve the spatial heterogeneity of the

inflammatory microenvironment and reveal the distribution of

immune cells in the gut, liver, lungs and other organs. Combined
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with AI techniques (e.g., deep learning and graph neural networks),

it can optimize data integration, predict changes in immune cell

dynamics, and identify key biomarkers. Although the technology

has been applied to precision oncology, clinical translation in

sepsis still faces challenges such as data standardization and

experimental design optimization (95). In the future, AI-driven

spatial genomics is expected to drive the development of precision

immunomodulation and personalized therapy.

Dysbiosis of the gut microbiota may increase the risk of sepsis and

its triggered organ dysfunction. Although sepsis is uncommon in the

context of leaky gut barrier, the risk of bacterial translocation remains,

especially in specific clinical situations such as neutropenia. This does

not mean, however, that studying the gut (especially themicrobiome) is

not revealing for the treatment of critically ill septic patients. A

significant reduction in the number of butyrate-producing bacterial

species is observed in critical illness, which is associated with epithelial

cell loss, reduced mucosal tolerance, and bacterial translocation (96).

This suggests that balancing the host immune response by modifying

the gut microbiome before or during a sepsis episode may reduce sepsis

morbidity and mortality.
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FIGURE 1

AI-driven multi-omics profiling for biomarker discovery in digestive system-associated sepsis. (A) Digestive infection and onset of sepsis. (B) AI-
driven multi-omics analysis workflow: Demonstrates the analytical process of multi-omics technologies: genomics (top left, DNA structure),
transcriptomics (top right, single-cell RNA sequencing technology), proteomics (bottom left, protein transcription process and representative
elevated cytokines in sepsis) and metabolomics (bottom right, effect of ureide metabolic pathways on T cell function). The centrally located
horizontal conveyor belt symbolizes the AI-driven data analysis process, including sample collection (petri dishes, patient blood), AI computational
analysis (represented by a computer) and output of the analysis results (multi-omics data with pathogenic bacteria icon representing the identified
markers). (C) Biomarker discovery and clinical application.
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