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Background: In recent decades, cancer immunotherapy has transformed the
treatment landscape, offering significant advantages over traditional therapies by
improving progression-free survival (PFS) and overall survival (OS). However,
immune checkpoint inhibitors (ICls) treatment has been associated with an
increased risk of mortality in its early stages. Therefore, identifying reliable
biomarkers to predict which patients will benefit clinically from ICls therapy is
critical. Depression, a common form of chronic psychological stress, has
emerged as a regulator of tumor immunity and is gaining attention as a target
for novel cancer treatments. To date, no studies have explored the potential of
depression-related genes in predicting response to ICls therapy.

Methods: Public datasets of ICls-treated patients were obtained from the TCGA
and GEO databases, followed by comprehensive analyses, including bulk mRNA
sequencing (MRNA-seq), co-expression network construction, and Gene
Ontology enrichment. Regression analysis, using Cox proportional hazards and
least absolute shrinkage and selection operator (Lasso), identified eight
depression-related genes to build a predictive model for clinical outcomes in
ICls therapy. Additionally, correlations were explored between the depression-
related predictive score and clinical parameters, including tumor mutational
burden (TMB) and immune cell infiltration, establishing the score as a potential
predictor of ICls response.

Results: The model categorized patients into high- and low-responsiveness
groups, with significant differences in disease-free survival (DFS) between them.
Validation using both internal and external datasets demonstrated the model's
strong predictive accuracy. Further analysis revealed that this response
stratification correlates with immune cell abundance and TMB in cancer patients.
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Conclusion: This study suggests that depression-related genetic traits could
serve as biomarkers for ICls therapy response, tumor mutations, and immune
system alterations. Our findings offer insights into personalized therapeutic
strategies for early intervention and prognosis in specific cancer types.

psychological stress, psycho-biomarkers, breast cancer, immunotherapy efficacy,

predictive model

1 Introduction

The global cancer burden is projected to reach 28.4 million cases by
2040, representing a 47% increase compared to 2020 (1). Cancer remains
one of the most critical global health challenges. For decades,
conventional treatments have relied on chemotherapy and ionizing
radiation to target and reduce tumor mass. However, recent
advancements in cancer immunotherapy have revolutionized the
treatment of both solid and hematologic malignancies (2). The
theoretical foundation for cancer immunotherapy emerged from the
discovery of ‘immune checkpoints—pathways that allow tumors to
manipulate immune self-tolerance, evade immune detection, and
escape immune surveillance (3). The development of immune
checkpoint inhibitors (ICIs) through monoclonal antibodies, designed
to prevent immune evasion, has spurred significant progress in immuno-
oncology. In 2011, the US Food and Drug Administration (FDA)
approved the first ICIs targeting cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4 or CD152) (4). Since then, inhibitors targeting
programmed cell death protein 1 (PD-1 or CD279) and its ligand
(PD-L1 or CD274) have gained approval for a broadening array of
solid tumors, including melanoma, renal cell carcinoma (RCC), non-
small cell lung carcinoma (NSCLC), and urothelial carcinoma, among
others (5-8). Despite promising outcomes in responding patients, the
early stages of ICIs therapy have been associated with an increased risk of
mortality, as reflected in mortality curves (9). Potential explanations for
this phenomenon include primary resistance, leading to accelerated
tumor progression, and immune-related adverse events. Thus,
determining whether ICIs therapy benefits individual patients is of
paramount importance.

Extensive research has been conducted on pre-treatment
biomarkers—biological indicators capable of reliably predicting

Abbreviations: PFS, progression-free survival; OS, overall survival; ICIs, immune
checkpoint inhibitors; mRNA-seq, mRNA sequencing; TMB, tumor mutational
burden; FDA, Food and Drug Administration; CTLA-4, T-lymphocyte-associated
protein 4; PD1, programmed cell death protein 1; PDLI, programmed cell death
protein 1 ligand; RCC, renal cell carcinoma; NSCLC, non-small cell lung carcinoma;
EGEFR, epidermal growth factor receptor; GM-CSF, granulocyte-macrophage colony-
stimulating factor; MMR, mismatch repair; DCA, decision curve analysis; HPA,
hypothalamus-pituitary-adrenal; SNS, sympathetic nervous system; TAM, tumor-

associated macrophages; ED, emotional distress.
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clinical benefit in advance. Several factors have been identified as
influencing the effectiveness of ICIs therapy, including age, viral status,
tumor mutational burden (TMB), chemotherapy, antibiotic use, PD-L1
expression, epidermal growth factor receptor (EGFR) status,
granulocyte-macrophage colony-stimulating factor (GM-CSF), and
geographic heterogeneity (10, 11). Despite substantial efforts, only
three biomarkers have received FDA approval for clinical use: tumor
tissue PD-L1 protein expression, TMB, and mismatch repair (MMR)
deficiency (12). These biomarkers are entirely dependent on access to
tumor tissue for genomic testing and immunohistochemical staining.
Moreover, the predictive value of these biomarkers can vary based on
the therapeutic regimen. For instance, the CA209-538 clinical trial of
combined anti-PD-1/CTLA-4 blockade therapies suggested that TMB’s
predictive value in monotherapy might not be relevant in the context of
combination therapies (13). Recent evidence also highlights host-
related factors—such as smoking status (10), obesity (14), alcohol
consumption (15), and psychological disorders (16)—as potential
predictors of how a patient’s cancer responds to ICIs. Notably,
modifying certain factors could offer opportunities for co-therapy
strategies to extend the efficacy of ICIs treatment (17, 18).

Accumulating investigations have indicated that host-related
characteristics such as emotional disorders are crucial players in
cancer management (19). Psychological stress, a core component of
emotional disorders, is a key feature of conditions like anxiety
disorders, depression, and post-traumatic stress disorder. It can
manifest depression, anxiety, sadness, and even physical symptoms
(20). Serious health challenges, including a diagnosis of cancer, are
recognized as precipitants of psychological stress, which is highly
prevalent among patients with malignancies. For instance, among
individuals with breast cancer, the reported prevalence of depressive
and anxiety symptoms ranges from 32.2% to 41.9%, respectively (21,
22). Notably, the incidence of psychological stress in patients with
cancer is estimated to be nearly fourfold higher than that in the general
population (23, 24).

Psychological stress is also significantly associated with prognosis
and survival in patients with cancer, as the presence of depressive or
anxiety symptoms has been linked to an increased risk of disease
recurrence and elevated mortality (25-27). Despite its clinical
significance, the screening and monitoring of psychological stress are
not routinely incorporated into contemporary medical practice (28).
With the impressive anti-tumor activity and durable clinical benefits in
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diverse malignancies, elucidating the relationship between
psychological stress and the ICIs efficacy has become increasingly
important. To explore the potential role of psychological stress in ICIs
outcomes, we introduced the TCGA and GEO databases to obtain
intersected genes related to depression and ICIs efficacy. Through
comprehensive bioinformatics analysis, a prognostic model for ICIs
efficacy was developed based on depression-related genes. ICIs
recipients were categorized into high-response and low-response
subtypes according to their predicted therapeutic response. Further
validation confirmed that this model serves as a reliable, independent
indicator of immune response. Additionally, depression-related
features were found to correlate with changes in clinicopathological
factors and gene mutations. These findings may illuminate the
potential relationship between depression-related genes and ICIs
efficacy across various malignancies, offering novel insights into pre-
treatment features for identifying ICIs responders.

2 Materials and methods

2.1 Sources of data, pre-processing, and
training set profile

Clinical follow-up information and RNA sequencing data from
patients with cancer were obtained from The Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov/) and the Gene Expression
Omnibus (GEO) database using the “TCGAbiolinks’ R package (29).
Data preprocessing involved the following steps: (i) conversion of
FPKM data to TPM format; (ii) removal of genes whose expression
level was 0 in more than half of the samples; (iii) conversion of
Ensembl IDs to gene symbols, where the median expression value
was used for gene symbols with multiple corresponding Ensembl
IDs; and (iv) log, transformation of expression profile data.

10.3389/fimmu.2025.1590670

ICBatlas compiled transcriptome and clinical data from ICIs-
treated patient samples sourced from multiple databases, including
the Gene Expression Omnibus (GEO), ArrayExpress, TCGA, and
dbGaP. The dataset includes transcriptome features of ICIs therapy
derived from 1,515 ICB-treated samples across 25 studies and 9 types
of cancer. Samples were initially classified into response/nonresponse
groups in ICBatlas. In this study, 4,782 differentially expressed genes
(DEGs) were identified as transcriptome features of patients who
received clinical benefits from ICIs therapy.

The 3539 Depression-related genes were retrieved from three
databases: NCBI, GeneCards, and GSEA. From GeneCards, these
genes with a relevance score greater than 1.0 were selected for
further investigation. Additionally, the Molecular Signatures Database
(MSigDB) was queried using the keyword “depression,” and seven
depression-annotated gene sets were included for analysis.
Furthermore, three depression-related datasets were retrieved from
NCBI (using the keywords “depression” and “Homo sapiens”), and
differential expression analysis between depression patients and control
samples was conducted using the GEO2R tool to identify depression-
related genes.

A comprehensive analysis was conducted on the 867 intersected
genes in purple circle, and a volcano plot was used to display the
number and distribution of DEGs (|log,FC| > 2, p < 0.05). Heatmaps of
DEGs were generated using the heatmap (v1.0.12) package. DEGs were
then subjected to gene function enrichment analysis using the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways databases, with statistical significance assigned to
p-values < 0.05. The protein—protein interaction (PPI) network was
constructed using Cytoscape software. Significant genes identified from
univariate Cox regression analysis, based on response status, were
visualized in a forest plot, and a gene correlation network was
constructed using the survminer [v0.4.9] and igraph [v2.0.3]
packages. The analytical flow of the study is presented in Figure 1.
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FIGURE 1
The flowchart of this study.
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2.2 The construction, evaluation, and
validation of the predictive model

Patients in GSE140901 and GSE176307 were classified according
to their clinical response. Responders were defined as those meeting the
response evaluation criteria in solid tumors (RECIST) for either a full
or partial response, or stable disease with progression-free survival
(PFES) lasting more than six months. Non-responders were those with
progressive disease or stable disease with PES of fewer than six months,
based on RECIST criteria.

For univariate Cox analysis, the coxph function from the R survival
[v3.7-0] package was utilized, with a threshold of P < 0.05 applied for
filtering. Subsequently, LASSO regression was performed using the R
package ‘glmnet’ [v4.1-8] to refine the results of the univariate Cox
regression. From the training datasets, LASSO regression identified
eight depression-related genes associated with PES in cancer patients.
These eight genes, which were linked to both depression and ICIs
therapy response, were further analyzed using multivariate Cox
regression to establish a predictive model. The predictive model was
constructed using the following formula:

RiskScore = icoef(i) x gene(i)
i=1

where coef(i) represents the coefficient for gene i, and gene(i) denotes
the expression level of gene i. The predictive formula derived from the
coefficients of 8 genes is as follows: responsive score = (-2.13444) *
(CD244 expression) + 1.26592 * (CMA1 expression) + (-0.78558) *
(CSF1 expression) + 1.05026 * (FCGR2B expression) + 1.03112 *
(IFNAL expression) + (-3.27085) * (IL10 expression) + (-0.43313) *
(SPPI expression) + (-0.38439) * (TAPI expression). To visualize the
results, the ggrisk package [v1.3] was used to create scatter plots showing
high- and low-response patients, along with their PES times and survival
statuses. A heatmap of the expression levels of the eight depression-
related predictive genes was also generated. For external validation,
patients from external datasets were categorized into high-response
and low-response groups based on the median value of all samples.
Kaplan-Meier survival curves were constructed to evaluate PES, and log-
rank tests were conducted to assess statistical significance across the
training cohort (GSE140901), the external validation cohort
(GSE176307), and the combined cohort (GSE140901 + GSE176307).
Additionally, to assess the model’s performance, the area under the curve
(AUC) of receiver operating characteristic (ROC) curves was calculated
to determine the accuracy of the model in predicting PFS at 1, 3, and 5
years across these three datasets.

2.3 Analysis of the relationship between
predictive models and other clinical
features

To further validate the model’s prognostic value in relation to
various clinical attributes and ICIs treatment response, univariate
analysis was performed to explore the correlation between the
predictive score and patients’ PFS. A nomogram was then
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developed, incorporating the responsive score along with clinical
parameters such as age, gender, pathological stage, TMB, and PD-1
expression, using the rms package [v6.8-2] as independent
prognostic factors. The precision of the nomogram was evaluated
through decision curve analysis (DCA), which assessed the overall
benefit of using the nomogram and clinical features separately.
Additionally, ROC curves for PFS probabilities at 1 and 3 years were
generated using the pROC package [v1.18.5] to further evaluate
model accuracy.

2.4 Immune correlation analysis

Immune cell infiltration profiles were evaluated using the
Xenophanean dataset, with immune cell infiltration assessed
through EPIC, CIBERSORT, IPS, MCPCOUNTER,
QUANTISEQ, TIMER, and XCELL algorithms within the IOBR
[v0.99.0] package. Stromal, immune, and estimate scores, along
with tumor purity, were calculated for high-response and low-
response groups using the estimate [v1.0.13] package and the
ssGSEA algorithm. The expression levels of genes associated with
ICIs, extracted from published literature, were analyzed to compare
variations between the high- and low-response groups. All
statistical analyses and visualizations were performed using R
software (v4.4.1), with statistical significance set at P < 0.05.

2.5 Analysis of differences between high
and low responses of patients

To investigate potential causes of ICIs resistance in low-
response patients, two groups were formed, and DEGs were
identified using DESeq2 [v1.44.0]. GO, KEGG, and GSEA
enrichment analyses were performed on the DEGs using the
clusterProfile [v4.12.6] package. A heatmap of GSEA-enriched
pathway scores was generated using pheatmap. Expression
differences were analyzed with the GSEA algorithm to assess
pathway enrichment disparities between groups, with pathways
having P < 0.05 considered statistically significant.

2.6 Mutational landscape and the model of
TMB predictive ability

To assess the predictive ability of TMB, data were gathered from a
bladder cancer cohort (ICIs-treated BLCA, N = 455) undergoing
immunotherapy, which included mutation, expression, and
immunotherapy prognosis data from the IMvigor210CoreBiologies R
package. Gene mutation patterns were extracted from the TCGA
database and visualized using the maftools [v2.20.0] software. The
depression-related predictive score was integrated with the gene
mutation data, and variations in these genes within the cancer
population were calculated. The association between the predictive
model and TMB was assessed and visualized using ggpubr [v0.6.0].
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2.7 Statistical methods

Group comparisons were conducted using Student’s t-tests (*P
< 0.05, **P < 0.01, **P < 0.001).

3 Results

3.1 Screening of predictive genes of
immunotherapy efficacy related to
depression

Figure 1 presents the flow diagram of the study. To obtain a
comprehensive resource for characterizing ICIs therapy at the
transcriptional level, ICBatlas was utilized to provide
transcriptome features from the analysis of 1,515 ICB-treated
samples across 25 studies spanning nine cancer types. As shown
in Figure 2A, the green circle represents the 4,782 DEGs identified
between response and non-response cohorts in ICBatlas, while the
orange circle contains 3539 depression-related genes sourced from
Genecards, NCBI, and GSEA databases (Supplementary Table 1).

The transcriptional data from the hepatocellular carcinoma cohort

10.3389/fimmu.2025.1590670

treated with ICIs (GSE140901) was subsequently selected as the
training set. Primarily, DEGs between different outcomes of ICIs
therapy for HCC in GSE140901 were obtained. A total of 122 DEGs
with statically significance were identified, with 81 genes upregulated
and 41 downregulated (Figures 2B, C; Supplementary Table 2). To
validate their potential roles in immunotherapy efficacy, GO
enrichment and KEGG pathway analyses were performed on the
122 DEGs. The results revealed cytokine-cytokine receptor
interaction were intensively enriched in KEGG analysis, and
several GO terms related to the regulation of leukocytes and
cytokines, which were closely involved in modulating the tumor
microenvironment (TME) (Figure 2D). A protein-protein
interaction (PPI) network was constructed to investigate the
potential mechanism underlying depression and immunotherapy
response. Figure 2E illustrated the protein—protein interaction (PPI)
network consisting of 36 genes from GSE140901, which are also
intersected with the 867 overlapping genes in Figure 2A. This
analysis exhibited several cytokines and receptors, including IL10,
CXCL9, and CXCR4, as key components in the relationship between
depression and immunotherapy efficacy. Collectively, these results
suggest that these cytokines may play a pivotal role in influencing the
efficacy of immunotherapy.
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FIGURE 2

Transcriptomic analysis of DEGs in GSE140901. (A) The intersection of genes obtained in depression geneset, ICBatlas-DEGs, and GSE140901
database. (B) Differentially expressed genes (DEGs) volcano plot of the 122 DEGs in GSE140901, red represents significantly upregulated genes, blue
represents significantly downregulated genes, grey represents genes with non-significant differences, the horizontal axis is log2Fold Change and the
vertical axis is -log10g-value. (C) Heat map displaying the 122 DEGs created with the pheatmap R package (https://cran.r-project.org/bin/windows/
base/old/4.1.3/). (D) GO and KEGG analysis of the 122 DEGs in GSE140901. (E) PPl network map of the 36 genes from the intersection of depression

geneset, ICBatlas DEGs, and GSE140901 database.
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3.2 Construction and validation of
depression-related predictive model for
immunotherapy efficacy

To explore the relationship between depression and the clinical
benefits of immunotherapy in patients, the training dataset from
GSE140901 was utilized to construct the model. A total of 36
intersected genes from GSE140901, depression geneset and
ICBatlas DEGs were collected to perform univariate Cox analysis,
with identification of 18 predictive genes (Supplementary Table 1).
A LASSO-Cox regression was conducted to address collinearity
among these genes (Figures 3A, B). A multivariate stepwise
regression analysis refined this list, ultimately selecting 8 genes for
model development (Figure 3C). Corresponding predictive formula
was derived from the 8 genes and applied to calculate the scores for
each sample, with median values used to classify patients into high-
response and low-response groups. Among the 8 genes, 3 were
identified as risk factors, while the remaining 5 were protective
factors (Figure 3D). Gene expression levels for both groups were
visualized via a heatmap, which also revealed a shorter PFS period
in the low-response group (Figure 3E). Validation was performed
using data from a cohort of metastatic urothelial cancer patients
treated with immune checkpoint blockade (ICB) between 2014 and
2021. Predictive analysis across the training cohort (GSE140901),
external validation cohort (GSE176307), and combined cohort
(GSE140901+GSE176307) confirmed that the low-response group
exhibited poorer prognosis in all cohorts (Figures 3F-H). ROC
curve analysis further assessed the accuracy of the depression-
related gene signature in predicting immunotherapy efficacy,
showing notable differences in AUC values at one year between
high- and low-response groups across the training, test, and overall
cohorts: 0.71, 0.57, and 0.78, respectively. At three years, the
training cohort displayed an AUC of 0.872 (Figures 31-K). These
results support the robustness of the 8-gene signature in predicting
survival benefits from immunotherapy.

3.3 A nomogram'’s construction and
validation

To further evaluate the predictive model’s contribution relative
to other biomarkers in assessing immunotherapy response, a
nomogram was constructed. This nomogram serves as a clinical
decision-support tool, assisting in identifying high-response
patients for targeted therapies. Additionally, DCA was conducted
to assess the clinical impact of various contributors by analyzing
their AUC and the horizontal axis for no intervention. As shown in
Figure 4A, predictive scores, PD-L1 expressions, and TMB were
identified as protective factors, while advanced T stage emerged as a
risk factor for poor ICIs efficacy. Nomogram analysis further
demonstrated that the nomogram outperformed other clinical
indicators in predicting patient response to immunotherapy,
confirming its potential as an effective clinical decision-making
tool (Figures 4B, C). ROC curve analysis revealed that the
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nomogram exhibited an AUC of 0.779 at 1 year and 0.792 at 3
years, indicating robust predictive accuracy (Figures 4D, E).

3.4 Distinction of immune landscape based
on prediction score

To deepen our understanding of the tumor immune
microenvironment in both low- and high-response groups,
several methods were employed to quantify immune cell
infiltration levels. As illustrated in Figure 5A, the ssGSEA
algorithm was used to compute enrichment scores of 24 immune
cell types, revealing that the low-response group exhibited a reduced
presence of key immune cells, including B cells, T cells, CD8+ T
cells, cytotoxic cells, dendritic cells, and mast cells. Using the
TIMER and EPIC algorithms, which calculated immune cell
enrichment scores for six and seven immune cell types,
respectively, both analyses confirmed a lower abundance of CD4+
T cells and B cells in the low-response group. The low-response
group was characterized by markedly reduced immune infiltration,
whereas the high-response group showed decreased tumor purity
but higher ESTIMATE and stromal scores (Figures 5B, C). These
results underscore the relationship between immune infiltration
and varying responses to immunotherapy. Additionally, with
increasing focus on immunotherapy targeting immune co-
suppressor molecules, the expression levels of several immune
checkpoints were examined across both response groups. As
depicted in Figure 5D, the high-response group exhibited elevated
expressions of BTLA, LGALS9, PDCD1LG2, TIGIT, TNFESF15, and
VTCN1 compared to the low-response group, suggesting that
patients with this tumor profile may benefit from ICIs therapy.

3.5 ldentification of differentiated
expressed genes and analysis of functional
enrichment across two subtypes

A total of 310 up-regulated and 275 down-regulated genes were
observed among the two response groups in Figure 6A (Fold
change>2, pvalue<0.05). KEGG and GO analyses were then
conducted based on these 585 genes. KEGG analysis highlighted
the enrichment of DEGs in neurobiological and metabolic pathways
(Figure 6B), including neuroactive ligand-receptor interactions,
tyrosine metabolism, glycolysis, and linoleic acid metabolism. GO
enrichment analysis, as depicted in Figure 6C, identified relevant
biological processes, cellular components, and molecular functions.
Additionally, the GSVA algorithm was utilized to assess variations
in biological pathways between the two groups with differing
immunotherapy responses. A total of 50 statistically significant
biological pathways were identified based on the contrasts in GSVA
scores between the groups (Figure 6D). These results suggest that
the low-response group is significantly linked to neurobiological
and metabolic functions, which may contribute to poor
immunotherapy efficacy.
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FIGURE 4

The Construction of nomogram based on predictive score and clinical factors. (A) Multivariate Cox analysis of responsive score and clinical factors.
(B) Nomogram to predict the ICls outcomes of patients with cancer. (C) Decision curve for the nomogram. (D, E) Nomogram'’s 1- and 3-year
disease-free survival time ROC curve, respectively. *P<0.05, **P<0.01, ***P<0.001.

3.6 Clinicopathological and mutation
landscape analysis of the predictive
signature

To explore clinical attributes differentiating the two response
groups, a clinical heatmap was generated. As shown in Figure 7A,
the high-response group had a higher proportion of patients with
elevated TMB and PD-L1 expression compared to the low-response
group. This observation aligns with the predictive value of
established biomarkers and reinforces their utility in forecasting
the clinical benefits of immunotherapy in depressed patients.

Mutation analysis is summarized in Figure 7B, with missense
mutations being the predominant mutation type. The top three
genes with the highest mutation frequencies were TP53, TTN, and
MUCI16. Representative gene variants for each group were also
assessed. In the low-response group, the most frequent mutations
occurred in WT1, PTPN11, KIT, KRAS, and U2AF1, whereas in the
high-response group, the highest mutation frequencies were
observed in APC, DNMT3A, TP53, MUC16, and IDHI
(Figure 7C). Figure 7D details the mutations in 8 depression-
related genes incorporated into the predictive model, including
TAP1, CD244, CSF1, FCGR2B, SPP1, and IL-10. A significant
difference in TMB levels between the two groups was observed,
with risk scores exhibiting a positive correlation with TMB
values (Figure 7E).
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4 Discussion

Chronic psychological stress, particularly depression, is a major
contributor to global health disorders and a common comorbidity
in cancer, affecting more than 10% of patients (30). Accumulating
evidence from animal models and human studies suggests that
depression can activate either the hypothalamus-pituitary-adrenal
(HPA) axis or the sympathetic nervous system (SNS), thereby
influencing the initiation and progression of specific cancer types
(31). Stress hormones and/or neurotransmitters, secreted
systemically or locally released in the TME from activated
sympathetic nerve endings, can enhance the malignant properties
of cancer cells (32-34). Infiltrating nerves activated by depression
can further influence various tumor biological processes through
exosomes and neurotransmitters (35), thus reinforcing the clinical
relevance of depression in cancer progression.

This study identified eight depression-related genes through
Cox and Lasso regression analysis and developed a predictive model
for immunotherapy response. Based on median risk values, patients
were categorized into high and low-response groups. ROC curve
analysis across the training, test, and full cohorts confirmed the
model’s accuracy, with a maximum AUC value of 0.872 at 3 years.
To compare the decision-making value of this model with other
clinical characteristics in predicting ICIs outcomes, a nomogram
was constructed by integrating responsive scores, TMB status, TNM
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FIGURE 5
Immune infiltration analysis between two subtypes. (A) The full cohort’s distribution and correlation of the 22 tumor-infiltrating immune cells (TICs).
(B, C) Analysis of the correlation between immune score and responsive score, ESTIMATE score and responsive score, stromal score and responsive
score, tumor purity and responsive score. (D) Variations in the abundance levels related to immune-checkpoint-related genes between groups with

high and low responses. *P<0.05, **P< 0.01, ***P<0.001.

stages, and tumor PD-L1 expression (36). The results demonstrated ~ immunotherapy outcomes and highlighting the significance of
that responsive scores were more efficient than other clinical ~ “psycho-biomarkers” in cancer treatment (37).

features in predicting immunotherapy effectiveness, offering a The distinct clinical features and TME landscapes between the
broader framework for identifying potential predictors of  two response groups were further examined. A higher proportion of
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Analysis of functional enrichment across two subtypes. (A) Genes that were expressed differently between two subtypes in the entire cohort were
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expressed genes ([FC|>2, p < 0.05). (D) Differences in GSVA scores between two subtypes were displayed by heat map. *P<0.05, **P< 0.01, ***P<0.001.

patients with high TMB and PD-L1 positivity was observed in the
high-response group compared to the low-response group,
suggesting the potential utility of the model in predicting patient
responses to ICIs. Given the established link between depression
and tumor immunity, ESTIMATE, TIMER, EPIC, and ssGSEA
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algorithms were employed to investigate the relationship between
responsive scores and the TME. Our analysis revealed that higher
responsive scores were significantly associated with an increased
abundance of immune cells such as B cells, T cells, CD8+ T cells,
cytotoxic cells, and dendritic cells. Additionally, the high-response
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FIGURE 7

Clinical relevance and gene mutation analysis between two subtypes. (A) There were significant differences in PD-L1 expression, TMB status, N stage,
and progression-free survival between groups with high and low responses. (B) Mutation landscape in full cohort, including variant classification,
variant type, SNV class, variants per sample, variant classification summary, and top 10 mutated genes. (C) The representative gene mutations of the
two subtypes. (D) The mutations of 8 model genes. (E) The correlation between TMB and responsive score.

group exhibited elevated expressions of immune co-inhibitory
genes, including LAG3, PDCD1, CD274, and PDCDILG2,
indicating a low-affinity immune state in these patients. Previous
studies have shown that T cells, when functionally exhausted over
extended periods, co-express multiple co-inhibitory proteins,
suggesting that targeting several checkpoints simultaneously or
sequentially in high-response groups could elicit a stronger anti-
tumor response (38). Notably, a positive correlation was also
identified between TMB levels and responsive scores. Previous
research has established TMB status as a predictive biomarker for
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identifying patients likely to benefit from ICIs treatments (39). Our
findings support this, with responsive scores showing a positive
correlation with TMB, consistent with prior results.

To further investigate depression-related genes central to
modulate immunotherapy response, functional enrichment
analysis was performed using the ssGSEA algorithm. The results
indicated that the high-response group favored neurobiological and
metabolic pathways, as evidenced by elevated enrichment scores for
gene clusters involved in neuroactive ligand-receptor interactions,
tyrosine metabolism, glycolysis, and linoleic acid metabolism.

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1590670
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zuo et al.

Abnormal metabolic activity is crucial in tumor progression, as
supported by numerous studies (40, 41).

In contrast, the low-response group displayed activity in various
pathways, including high enrichment scores for E2F targets related
to G2M checkpoints, unfolded protein responses, MYC targets,
oxidative phosphorylation, DNA repair, and other functions
associated with tumor progression. Importantly, the high-
response group showed significant enrichment in signaling
pathways such as Wnt-B-catenin, p53, TNF-o, IFN-y/a, IL6-JAK-
STAT3, PI3K-AKT-mTOR, TGF-f, and Notch. Abnormal
activation of these pathways plays a pivotal role in tumor cell
growth, migration, and invasion, thus remodeling the TME and
correlating with poorer prognosis (42-44).

The mechanisms of immune modulation associated with the
eight predictive depression-related genes involve several key
immune regulators. IL-10, CSF-1, and IFNa1 are active cytokines
involved in immune responses (45-48). CD244, an inhibitory
receptor primarily found on NK cells, T cells, and other immune
cells, modulates their activation and function (49). FCGR2B,
another inhibitory receptor, regulates the interaction between
antibodies and immune cells, particularly B cells and CD8+ T
cells (50). TAP1 is a crucial component of the TAP complex,
responsible for transporting peptides to major histocompatibility
complex (MHC) class I molecules for presentation to cytotoxic T
cells (51). SPPI1, secreted by tumor-associated macrophages
(TAMs), enhances cancer cell migration and invasion, as
demonstrated in A549 lung cancer cells (52). CMAI, a
glycosyltransferase expressed in mast cells, may influence immune
responses (53). Additionally, emerging studies suggest that
psychological stress plays a significant role in tumor immunity
(54). In vivo studies have demonstrated that depressed mice with
cancer exhibit lower activation levels of T helper cells, leading to
immune escape through immunosuppression (55, 56).
Furthermore, depression-related nervous signaling has been
shown to promote TAM growth in xenograft breast cancer
models (57). As experimental research advances, clinical studies
have increasingly explored the impact of depression on cancer
development and treatment. Most clinical investigations focus on
the epidemiology and risks associated with depression in cancer
patients, particularly the strong correlation between severe
depression and poorer clinical outcomes (24, 58, 59). A recent
prospective observational study demonstrated that emotional
distress (ED) significantly reduced the effectiveness of initial ICIs
therapy in advanced non-small-cell lung cancer patients. The ED
group had a 2-year overall survival rate of 46.5%, compared to
64.9% in the non-ED group, along with a decrease in quality of life.
This study provides direct evidence of the negative impact of
depression on immunotherapy efficacy, highlighting the potential
role of psychological factors in cancer immunotherapy.
Consequently, systematically exploring how depression-related
genes predict immunotherapy effectiveness is of practical
significance. Furthermore, this study offers a reference for future
clinical trials, suggesting that ED could be considered a baseline
characteristic in study designs.
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4.1 Study limitations

Despite the promising results, several limitations must be
acknowledged. First, our analysis was based on TCGA and GEO
databases, and this study only examines the association between
depression and ICIs outcomes in specific cancer types. Additional
validation with larger clinical study cohorts is necessary to confirm
the accuracy of our model. Second, the outcomes of
immunotherapy vary depending on the regimen and drugs used,
highlighting the need for future studies to assess the model’s efficacy
across different treatment protocols. Lastly, depression in this study
was inferred solely from molecular profiles rather than clinical
psychometric data. The absence of clinical depression phenotyping,
such as assessment with PHQ-9 scores, may introduce bias,
particularly given the retrospective nature of data mining.

4.2 Clinical implications and conclusions

This study contributes to a deeper understanding of the role of
“psycho-biomarkers” in cancer treatment, emphasizing the
potential significance of the psychological dimension in cancer
immunotherapy. The findings provide valuable insights into
future clinical trials, suggesting that ED should be considered a
baseline characteristic in study designs. Additionally, a detailed
study design is included in the supplementary files (Supplementary
Figure 1). Our results indicate that the model based on 8
depression-related genes is strongly correlated with ICIs therapy
outcomes, underscoring the relevance of psychological factors in
cancer immunotherapy. Further analysis revealed that this response
grouping could offer a potential approach for evaluating immune
cell abundance and tumor mutation burden in cancer patients.
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