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Background: In recent decades, cancer immunotherapy has transformed the 
treatment landscape, offering significant advantages over traditional therapies by 
improving progression-free survival (PFS) and overall survival (OS). However, 
immune checkpoint inhibitors (ICIs) treatment has been associated with an 
increased risk of mortality in its early stages. Therefore, identifying reliable 
biomarkers to predict which patients will benefit clinically from ICIs therapy is 
critical. Depression, a common form of chronic psychological stress, has 
emerged as a regulator of tumor immunity and is gaining attention as a target 
for novel cancer treatments. To date, no studies have explored the potential of 
depression-related genes in predicting response to ICIs therapy. 

Methods: Public datasets of ICIs-treated patients were obtained from the TCGA 
and GEO databases, followed by comprehensive analyses, including bulk mRNA 
sequencing (mRNA-seq), co-expression network construction, and Gene 
Ontology enrichment. Regression analysis, using Cox proportional hazards and 
least absolute shrinkage and selection operator (Lasso), identified eight 
depression-related genes to build a predictive model for clinical outcomes in 
ICIs therapy. Additionally, correlations were explored between the depression-
related predictive score and clinical parameters, including tumor mutational 
burden (TMB) and immune cell infiltration, establishing the score as a potential 
predictor of ICIs response. 

Results: The model categorized patients into high- and low-responsiveness 
groups, with significant differences in disease-free survival (DFS) between them. 
Validation using both internal and external datasets demonstrated the model’s 
strong predictive accuracy. Further analysis revealed that this response 
stratification correlates with immune cell abundance and TMB in cancer patients. 
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Conclusion: This study suggests that depression-related genetic traits could 
serve as biomarkers for ICIs therapy response, tumor mutations, and immune 
system alterations. Our findings offer insights into personalized therapeutic 
strategies for early intervention and prognosis in specific cancer types. 
KEYWORDS 

psychological stress, psycho-biomarkers, breast cancer, immunotherapy efficacy, 
predictive model 
1 Introduction 

The global cancer burden is projected to reach 28.4 million cases by 
2040, representing a 47% increase compared to 2020 (1). Cancer remains 
one of the most critical global health challenges. For decades, 
conventional treatments have relied on chemotherapy and ionizing 
radiation to target and reduce tumor mass. However, recent 
advancements in cancer immunotherapy have revolutionized the 
treatment of both solid and hematologic malignancies (2). The 
theoretical foundation for cancer immunotherapy emerged from the 
discovery of ‘immune checkpoints’—pathways that allow tumors to 
manipulate immune self-tolerance, evade immune detection, and 
escape immune surveillance (3). The development of immune 
checkpoint inhibitors (ICIs) through monoclonal antibodies, designed 
to prevent immune evasion, has spurred significant progress in immuno­

oncology. In 2011, the US Food and Drug Administration (FDA) 
approved the first ICIs targeting cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4 or CD152) (4). Since then, inhibitors targeting 
programmed cell death protein 1 (PD-1 or CD279) and its ligand 
(PD-L1 or CD274) have gained approval for a broadening array of 
solid tumors, including melanoma, renal cell carcinoma (RCC), non-
small cell lung carcinoma (NSCLC), and urothelial carcinoma, among 
others (5–8). Despite promising outcomes in responding patients, the 
early stages of ICIs therapy have been associated with an increased risk of 
mortality, as reflected in mortality curves (9). Potential explanations for 
this phenomenon include primary resistance, leading to accelerated 
tumor progression, and immune-related adverse events. Thus, 
determining whether ICIs therapy benefits individual patients is of 
paramount importance. 

Extensive research has been conducted on pre-treatment 
biomarkers—biological indicators capable of reliably predicting 
l survival; ICIs, immune 
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clinical benefit in advance. Several factors have been identified as 
influencing the effectiveness of ICIs therapy, including age, viral status, 
tumor mutational burden (TMB), chemotherapy, antibiotic use, PD-L1 
expression, epidermal growth factor receptor (EGFR) status, 
granulocyte-macrophage colony-stimulating factor (GM-CSF), and 
geographic heterogeneity (10, 11). Despite substantial efforts, only 
three biomarkers have received FDA approval for clinical use: tumor 
tissue PD-L1 protein expression, TMB, and mismatch repair (MMR) 
deficiency (12). These biomarkers are entirely dependent on access to 
tumor tissue for genomic testing and immunohistochemical staining. 
Moreover, the predictive value of these biomarkers can vary based on 
the therapeutic regimen. For instance, the CA209–538 clinical trial of 
combined anti-PD-1/CTLA-4 blockade therapies suggested that TMB’s 
predictive value in monotherapy might not be relevant in the context of 
combination therapies (13). Recent evidence also highlights host-
related factors—such as smoking status (10), obesity (14), alcohol 
consumption (15), and psychological disorders (16)—as potential 
predictors of how a patient’s cancer responds to ICIs. Notably, 
modifying certain factors could offer opportunities for co-therapy 
strategies to extend the efficacy of ICIs treatment (17, 18). 

Accumulating investigations have indicated that host-related 
characteristics such as emotional disorders are crucial players in 
cancer management (19). Psychological stress, a core component of 
emotional disorders, is a key feature of conditions like anxiety 
disorders, depression, and post-traumatic stress disorder. It can 
manifest depression, anxiety, sadness, and even physical symptoms 
(20). Serious health challenges, including a diagnosis of cancer, are 
recognized as precipitants of psychological stress, which is highly 
prevalent among patients with malignancies. For instance, among 
individuals with breast cancer, the reported prevalence of depressive 
and anxiety symptoms ranges from 32.2% to 41.9%, respectively (21, 
22). Notably, the incidence of psychological stress in patients with 
cancer is estimated to be nearly fourfold higher than that in the general 
population (23, 24). 

Psychological stress is also significantly associated with prognosis 
and survival in patients with cancer, as the presence of depressive or 
anxiety symptoms has been linked to an increased risk of disease 
recurrence and elevated mortality (25–27). Despite its clinical 
significance, the screening and monitoring of psychological stress are 
not routinely incorporated into contemporary medical practice (28). 
With the impressive anti-tumor activity and durable clinical benefits in 
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diverse malignancies, elucidating the relationship between 
psychological stress and the ICIs efficacy has become increasingly 
important. To explore the potential role of psychological stress in ICIs 
outcomes, we introduced the TCGA and GEO databases to obtain 
intersected genes related to depression and ICIs efficacy. Through 
comprehensive bioinformatics analysis, a prognostic model for ICIs 
efficacy was developed based on depression-related genes. ICIs 
recipients were categorized into high-response and low-response 
subtypes according to their predicted therapeutic response. Further 
validation confirmed that this model serves as a reliable, independent 
indicator of immune response. Additionally, depression-related 
features were found to correlate with changes in clinicopathological 
factors and gene mutations. These findings may illuminate the 
potential relationship between depression-related genes and ICIs 
efficacy across various malignancies, offering novel insights into pre­
treatment features for identifying ICIs responders. 
2 Materials and methods 

2.1 Sources of data, pre-processing, and 
training set profile 

Clinical follow-up information and RNA sequencing data from 
patients with cancer were obtained from The Cancer Genome Atlas 
(TCGA, https://portal.gdc.cancer.gov/) and the Gene Expression 
Omnibus (GEO) database using the ‘TCGAbiolinks’ R package (29). 
Data preprocessing involved the following steps: (i) conversion of 
FPKM data to TPM format; (ii) removal of genes whose expression 
level was 0 in more than half of the samples; (iii) conversion of 
Ensembl IDs to gene symbols, where the median expression value 
was used for gene symbols with multiple corresponding Ensembl 
IDs; and (iv) log2 transformation of expression profile data. 
Frontiers in Immunology 03 
ICBatlas compiled transcriptome and clinical data from ICIs­
treated patient samples sourced from multiple databases, including 
the Gene Expression Omnibus (GEO), ArrayExpress, TCGA, and 
dbGaP. The dataset includes transcriptome features of ICIs therapy 
derived from 1,515 ICB-treated samples across 25 studies and 9 types 
of cancer. Samples were initially classified into response/nonresponse 
groups in ICBatlas. In this study, 4,782 differentially expressed genes 
(DEGs) were identified as transcriptome features of patients who 
received clinical benefits from ICIs therapy. 

The 3539 Depression-related genes were retrieved from three 
databases:  NCBI, GeneCards, and  GSEA. From GeneCards, these

genes with a relevance score greater than 1.0 were selected for 
further investigation. Additionally, the Molecular Signatures Database 
(MSigDB) was queried using the keyword “depression,” and seven 
depression-annotated gene sets were included for analysis. 
Furthermore, three depression-related datasets were retrieved from 
NCBI (using the keywords “depression” and “Homo sapiens”), and 
differential expression analysis between depression patients and control 
samples was conducted using the GEO2R tool to identify depression-
related genes. 

A comprehensive analysis was conducted on the 867 intersected 
genes in purple circle, and a volcano plot was used to display the 
number and distribution of DEGs (|log2FC| > 2, p < 0.05). Heatmaps of 
DEGs were generated using the heatmap (v1.0.12) package. DEGs were 
then subjected to gene function enrichment analysis using the Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways databases, with statistical significance assigned to 
p-values < 0.05. The protein–protein interaction (PPI) network was 
constructed using Cytoscape software. Significant genes identified from 
univariate Cox regression analysis, based on response status, were 
visualized in a forest plot, and a gene correlation network was 
constructed using the survminer [v0.4.9] and igraph [v2.0.3] 
packages. The analytical flow of the study is presented in Figure 1. 
FIGURE 1 

The flowchart of this study. 
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2.2 The construction, evaluation, and 
validation of the predictive model 

Patients in GSE140901 and GSE176307 were classified according 
to their clinical response. Responders were defined as those meeting the 
response evaluation criteria in solid tumors (RECIST) for either a full 
or partial response, or stable disease with progression-free survival 
(PFS) lasting more than six months. Non-responders were those with 
progressive disease or stable disease with PFS of fewer than six months, 
based on RECIST criteria. 

For univariate Cox analysis, the coxph function from the R survival 
[v3.7-0] package was utilized, with a threshold of P < 0.05 applied for 
filtering. Subsequently, LASSO regression was performed using the R 
package ‘glmnet’ [v4.1-8] to refine the results of the univariate Cox 
regression. From the training datasets, LASSO regression identified 
eight depression-related genes associated with PFS in cancer patients. 
These eight genes, which were linked to both depression and ICIs 
therapy response, were further analyzed using multivariate Cox 
regression to establish a predictive model. The predictive model was 
constructed using the following formula: 

n 
RiskScore = ocoef (i) x gene(i) 

i=1 

where coef(i) represents the coefficient for gene i, and gene(i) denotes 
the expression level of gene i. The predictive formula derived from the 
coefficients of 8 genes is as follows: responsive score = (-2.13444) * 
(CD244 expression) + 1.26592 * (CMA1 expression) + (-0.78558) * 
(CSF1 expression) + 1.05026 * (FCGR2B expression) + 1.03112 * 
(IFNA1 expression) + (-3.27085) * (IL10 expression) + (-0.43313) * 
(SPP1 expression) + (-0.38439) * (TAP1 expression). To visualize the 
results, the ggrisk package [v1.3] was used to create scatter plots showing 
high- and low-response patients, along with their PFS times and survival 
statuses. A heatmap of the expression levels of the eight depression-
related predictive genes was also generated. For external validation, 
patients from external datasets were categorized into high-response 
and low-response groups based on the median value of all samples. 
Kaplan-Meier survival curves were constructed to evaluate PFS, and log-
rank tests were conducted to assess statistical significance across the 
training cohort (GSE140901), the external validation cohort 
(GSE176307), and the combined cohort (GSE140901 + GSE176307). 
Additionally, to assess the model’s performance, the area under the curve 
(AUC) of receiver operating characteristic (ROC) curves was calculated 
to determine the accuracy of the model in predicting PFS at 1, 3, and 5 
years across these three datasets. 
2.3 Analysis of the relationship between 
predictive models and other clinical 
features 

To further validate the model’s prognostic value in relation to 
various clinical attributes and ICIs treatment response, univariate 
analysis was performed to explore the correlation between the 
predictive score and patients’ PFS. A nomogram was then 
Frontiers in Immunology 04
developed, incorporating the responsive score along with clinical 
parameters such as age, gender, pathological stage, TMB, and PD-1 
expression, using the rms package [v6.8-2] as independent 
prognostic factors. The precision of the nomogram was evaluated 
through decision curve analysis (DCA), which assessed the overall 
benefit of using the nomogram and clinical features separately. 
Additionally, ROC curves for PFS probabilities at 1 and 3 years were 
generated using the pROC package [v1.18.5] to further evaluate 
model accuracy. 
2.4 Immune correlation analysis 

Immune cell infiltration profiles were evaluated using the 
Xenophanean dataset, with immune cell infiltration assessed 
t h rough  EPIC ,  CIBERSORT ,  IPS ,  MCPCOUNTER ,  
QUANTISEQ, TIMER, and XCELL algorithms within the IOBR 
[v0.99.0] package. Stromal, immune, and estimate scores, along 
with tumor purity, were calculated for high-response and low-
response groups using the estimate [v1.0.13] package and the 
ssGSEA algorithm. The expression levels of genes associated with 
ICIs, extracted from published literature, were analyzed to compare 
variations between the high- and low-response groups. All 
statistical analyses and visualizations were performed using R 
software (v4.4.1), with statistical significance set at P < 0.05. 
2.5 Analysis of differences between high 
and low responses of patients 

To investigate potential causes of ICIs resistance in low-
response patients, two groups were formed, and DEGs were 
identified using DESeq2 [v1.44.0]. GO, KEGG, and GSEA 
enrichment analyses were performed on the DEGs using the 
clusterProfile [v4.12.6] package. A heatmap of GSEA-enriched 
pathway scores was generated using pheatmap. Expression 
differences were analyzed with the GSEA algorithm to assess 
pathway enrichment disparities between groups, with pathways 
having P < 0.05 considered statistically significant. 
2.6 Mutational landscape and the model of 
TMB predictive ability 

To assess the predictive ability of TMB, data were gathered from a 
bladder cancer cohort (ICIs-treated BLCA, N = 455) undergoing 
immunotherapy, which included mutation, expression, and 
immunotherapy prognosis data from the IMvigor210CoreBiologies R 
package. Gene mutation patterns were extracted from the TCGA 
database and visualized using the maftools [v2.20.0] software. The 
depression-related predictive score was integrated with the gene 
mutation data, and variations in these genes within the cancer 
population were calculated. The association between the predictive 
model and TMB was assessed and visualized using ggpubr [v0.6.0]. 
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2.7 Statistical methods 

Group comparisons were conducted using Student’s t-tests (*P 
< 0.05, **P < 0.01, ***P < 0.001). 
3 Results 

3.1 Screening of predictive genes of 
immunotherapy efficacy related to 
depression 

Figure 1 presents the flow diagram of the study. To obtain a 
comprehensive resource for characterizing ICIs therapy at the 
transcriptional  level,  ICBatlas  was  utilized  to  provide  
transcriptome features from the analysis of 1,515 ICB-treated 
samples across 25 studies spanning nine cancer types. As shown 
in Figure 2A, the green circle represents the 4,782 DEGs identified 
between response and non-response cohorts in ICBatlas, while the 
orange circle contains 3539 depression-related genes sourced from 
Genecards, NCBI, and GSEA databases (Supplementary Table 1). 
The transcriptional data from the hepatocellular carcinoma cohort 
Frontiers in Immunology 05 
treated with ICIs (GSE140901) was subsequently selected as the 
training set. Primarily, DEGs between different outcomes of ICIs 
therapy for HCC in GSE140901 were obtained. A total of 122 DEGs 
with statically significance were identified, with 81 genes upregulated 
and 41 downregulated (Figures 2B, C; Supplementary Table 2). To 
validate their potential roles in immunotherapy efficacy, GO 
enrichment and KEGG pathway analyses were performed on the 
122 DEGs. The results revealed cytokine-cytokine receptor 
interaction were intensively enriched in KEGG analysis, and 
several GO terms related to the regulation of leukocytes and 
cytokines, which were closely involved in modulating the tumor 
microenvironment (TME) (Figure 2D). A protein–protein 
interaction (PPI) network was constructed to investigate the 
potential mechanism underlying depression and immunotherapy 
response. Figure 2E illustrated the protein–protein interaction (PPI) 
network consisting of 36 genes from GSE140901, which are also 
intersected with the 867 overlapping genes in Figure 2A. This 
analysis exhibited several cytokines and receptors, including IL10, 
CXCL9, and CXCR4, as key components in the relationship between 
depression and immunotherapy efficacy. Collectively, these results 
suggest that these cytokines may play a pivotal role in influencing the 
efficacy of immunotherapy. 
FIGURE 2 

Transcriptomic analysis of DEGs in GSE140901. (A) The intersection of genes obtained in depression geneset, ICBatlas-DEGs, and GSE140901 
database. (B) Differentially expressed genes (DEGs) volcano plot of the 122 DEGs in GSE140901, red represents significantly upregulated genes, blue 
represents significantly downregulated genes, grey represents genes with non-significant differences, the horizontal axis is log2Fold Change and the 
vertical axis is -log10q-value. (C) Heat map displaying the 122 DEGs created with the pheatmap R package (https://cran.r-project.org/bin/windows/ 
base/old/4.1.3/). (D) GO and KEGG analysis of the 122 DEGs in GSE140901. (E) PPI network map of the 36 genes from the intersection of depression 
geneset, ICBatlas DEGs, and GSE140901 database. 
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3.2 Construction and validation of 
depression-related predictive model for 
immunotherapy efficacy 

To explore the relationship between depression and the clinical 
benefits of immunotherapy in patients, the training dataset from 
GSE140901 was utilized to construct the model. A total of 36 
intersected genes from GSE140901, depression geneset and 
ICBatlas DEGs were collected to perform univariate Cox analysis, 
with identification of 18 predictive genes (Supplementary Table 1). 
A LASSO-Cox regression was conducted to address collinearity 
among these genes (Figures 3A, B). A multivariate stepwise 
regression analysis refined this list, ultimately selecting 8 genes for 
model development (Figure 3C). Corresponding predictive formula 
was derived from the 8 genes and applied to calculate the scores for 
each sample, with median values used to classify patients into high-
response and low-response groups. Among the 8 genes, 3 were 
identified as risk factors, while the remaining 5 were protective 
factors (Figure 3D). Gene expression levels for both groups were 
visualized via a heatmap, which also revealed a shorter PFS period 
in the low-response group (Figure 3E). Validation was performed 
using data from a cohort of metastatic urothelial cancer patients 
treated with immune checkpoint blockade (ICB) between 2014 and 
2021. Predictive analysis across the training cohort (GSE140901), 
external validation cohort (GSE176307), and combined cohort 
(GSE140901+GSE176307) confirmed that the low-response group 
exhibited poorer prognosis in all cohorts (Figures 3F–H). ROC 
curve analysis further assessed the accuracy of the depression-
related gene signature in predicting immunotherapy efficacy, 
showing notable differences in AUC values at one year between 
high- and low-response groups across the training, test, and overall 
cohorts: 0.71, 0.57, and 0.78, respectively. At three years, the 
training cohort displayed an AUC of 0.872 (Figures 3I–K). These 
results support the robustness of the 8-gene signature in predicting 
survival benefits from immunotherapy. 
3.3 A nomogram’s construction and 
validation 

To further evaluate the predictive model’s contribution relative 
to other biomarkers in assessing immunotherapy response, a 
nomogram was constructed. This nomogram serves as a clinical 
decision-support tool, assisting in identifying high-response 
patients for targeted therapies. Additionally, DCA was conducted 
to assess the clinical impact of various contributors by analyzing 
their AUC and the horizontal axis for no intervention. As shown in 
Figure 4A, predictive scores, PD-L1 expressions, and TMB were 
identified as protective factors, while advanced T stage emerged as a 
risk factor for poor ICIs efficacy. Nomogram analysis further 
demonstrated that the nomogram outperformed other clinical 
indicators in predicting patient response to immunotherapy, 
confirming its potential as an effective clinical decision-making 
tool (Figures 4B, C). ROC curve analysis revealed that the 
Frontiers in Immunology 06
nomogram exhibited an AUC of 0.779 at 1 year and 0.792 at 3 
years, indicating robust predictive accuracy (Figures 4D, E). 
3.4 Distinction of immune landscape based 
on prediction score 

To deepen our understanding of the tumor immune 
microenvironment in both low- and high-response groups, 
several methods were employed to quantify immune cell 
infiltration levels. As illustrated in Figure 5A, the  ssGSEA
algorithm was used to compute enrichment scores of 24 immune 
cell types, revealing that the low-response group exhibited a reduced 
presence of key immune cells, including B cells, T cells, CD8+ T 
cells, cytotoxic cells, dendritic cells, and mast cells. Using the 
TIMER and EPIC algorithms, which calculated immune cell 
enrichment scores for six and seven immune cell types, 
respectively, both analyses confirmed a lower abundance of CD4+ 
T cells and B cells in the low-response group. The low-response 
group was characterized by markedly reduced immune infiltration, 
whereas the high-response group showed decreased tumor purity 
but higher ESTIMATE and stromal scores (Figures 5B, C). These 
results underscore the relationship between immune infiltration 
and varying responses to immunotherapy. Additionally, with 
increasing focus on immunotherapy targeting immune co-
suppressor molecules, the expression levels of several immune 
checkpoints were examined across both response groups. As 
depicted in Figure 5D, the high-response group exhibited elevated 
expressions of BTLA, LGALS9, PDCD1LG2, TIGIT, TNFSF15, and 
VTCN1 compared to the low-response group, suggesting that 
patients with this tumor profile may benefit from ICIs therapy. 
3.5 Identification of differentiated 
expressed genes and analysis of functional 
enrichment across two subtypes 

A total of 310 up-regulated and 275 down-regulated genes were 
observed among the two response groups in Figure 6A (Fold 
change>2, pvalue<0.05). KEGG and GO analyses were then 
conducted based on these 585 genes. KEGG analysis highlighted 
the enrichment of DEGs in neurobiological and metabolic pathways 
(Figure 6B), including neuroactive ligand-receptor interactions, 
tyrosine metabolism, glycolysis, and linoleic acid metabolism. GO 
enrichment analysis, as depicted in Figure 6C, identified relevant 
biological processes, cellular components, and molecular functions. 
Additionally, the GSVA algorithm was utilized to assess variations 
in biological pathways between the two groups with differing 
immunotherapy responses. A total of 50 statistically significant 
biological pathways were identified based on the contrasts in GSVA 
scores between the groups (Figure 6D). These results suggest that 
the low-response group is significantly linked to neurobiological 
and metabolic functions, which may contribute to poor 
immunotherapy efficacy. 
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FIGURE 3 

Construction of predictive signature. (A) Unitivariate Cox analysis was performed on the 36 intersected genes from the intersection of depression 
geneset, ICBatlas-DEGs, and GSE140901 database. (B) LASSO regression analysis based on the 36 intersected genes to develop the predictive 
model. (C) The 8 genes that ultimately built the signature. (D) Hazard ratios of the 8 model genes sourced from LASSO. (E) Variations in disease-free 
survival status and the expression levels of the 8 genes between groups with high and low responsive rates. (F–H) Values of AUC for the TCGA train, 
test, and full cohort. (I–K) Analysis of survival within the TCGA train, test, and full cohort. *P<0.05, **P< 0.01, ***P<0.001, ns indicates 
No significance. 
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3.6 Clinicopathological and mutation 
landscape analysis of the predictive 
signature 

To explore clinical attributes differentiating the two response 
groups, a clinical heatmap was generated. As shown in Figure 7A, 
the high-response group had a higher proportion of patients with 
elevated TMB and PD-L1 expression compared to the low-response 
group. This observation aligns with the predictive value of 
established biomarkers and reinforces their utility in forecasting 
the clinical benefits of immunotherapy in depressed patients. 

Mutation analysis is summarized in Figure 7B, with missense 
mutations being the predominant mutation type. The top three 
genes with the highest mutation frequencies were TP53, TTN, and 
MUC16. Representative gene variants for each group were also 
assessed. In the low-response group, the most frequent mutations 
occurred in WT1, PTPN11, KIT, KRAS, and U2AF1, whereas in the 
high-response group, the highest mutation frequencies were 
observed in APC, DNMT3A, TP53, MUC16, and IDH1 
(Figure 7C). Figure 7D details the mutations in 8 depression-
related genes incorporated into the predictive model, including 
TAP1, CD244, CSF1, FCGR2B, SPP1, and IL-10. A significant 
difference in TMB levels between the two groups was observed, 
with risk scores exhibiting a positive correlation with TMB 
values (Figure 7E). 
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4 Discussion 

Chronic psychological stress, particularly depression, is a major 
contributor to global health disorders and a common comorbidity 
in cancer, affecting more than 10% of patients (30). Accumulating 
evidence from animal models and human studies suggests that 
depression can activate either the hypothalamus-pituitary-adrenal 
(HPA) axis or the sympathetic nervous system (SNS), thereby 
influencing the initiation and progression of specific cancer types 
(31). Stress hormones and/or neurotransmitters, secreted 
systemically or locally released in the TME from activated 
sympathetic nerve endings, can enhance the malignant properties 
of cancer cells (32–34). Infiltrating nerves activated by depression 
can further influence various tumor biological processes through 
exosomes and neurotransmitters (35), thus reinforcing the clinical 
relevance of depression in cancer progression. 

This study identified eight depression-related genes through 
Cox and Lasso regression analysis and developed a predictive model 
for immunotherapy response. Based on median risk values, patients 
were categorized into high and low-response groups. ROC curve 
analysis across the training, test, and full cohorts confirmed the 
model’s accuracy, with a maximum AUC value of 0.872 at 3 years. 
To compare the decision-making value of this model with other 
clinical characteristics in predicting ICIs outcomes, a nomogram 
was constructed by integrating responsive scores, TMB status, TNM 
FIGURE 4
 

The Construction of nomogram based on predictive score and clinical factors. (A) Multivariate Cox analysis of responsive score and clinical factors.
 
(B) Nomogram to predict the ICIs outcomes of patients with cancer. (C) Decision curve for the nomogram. (D, E) Nomogram’s 1- and 3-year 
disease-free survival time ROC curve, respectively. *P<0.05, **P<0.01, ***P<0.001. 
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stages, and tumor PD-L1 expression (36). The results demonstrated 
that responsive scores were more efficient than other clinical 
features in predicting immunotherapy effectiveness, offering a 
broader framework for identifying potential predictors of 
Frontiers in Immunology 09
immunotherapy outcomes and highlighting the significance of 
“psycho-biomarkers” in cancer treatment (37). 

The distinct clinical features and TME landscapes between the 
two response groups were further examined. A higher proportion of 
FIGURE 5 

Immune infiltration analysis between two subtypes. (A) The full cohort’s distribution and correlation of the 22 tumor-infiltrating immune cells (TICs). 
(B, C) Analysis of the correlation between immune score and responsive score, ESTIMATE score and responsive score, stromal score and responsive 
score, tumor purity and responsive score. (D) Variations in the abundance levels related to immune-checkpoint-related genes between groups with 
high and low responses. *P<0.05, **P< 0.01, ***P<0.001. 
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patients with high TMB and PD-L1 positivity was observed in the 
high-response group compared to the low-response group, 
suggesting the potential utility of the model in predicting patient 
responses to ICIs. Given the established link between depression 
and tumor immunity, ESTIMATE, TIMER, EPIC, and ssGSEA 
Frontiers in Immunology 10 
algorithms were employed to investigate the relationship between 
responsive scores and the TME. Our analysis revealed that higher 
responsive scores were significantly associated with an increased 
abundance of immune cells such as B cells, T cells, CD8+ T cells, 
cytotoxic cells, and dendritic cells. Additionally, the high-response 
FIGURE 6 

Analysis of functional enrichment across two subtypes. (A) Genes that were expressed differently between two subtypes in the entire cohort were 
displayed on the volcano map. (B) Differentially expressed genes were selected for KEGG analysis (|FC|>2, p < 0.05). (C) GO analysis of differentially 
expressed genes (|FC|>2, p < 0.05). (D) Differences in GSVA scores between two subtypes were displayed by heat map. *P<0.05, **P< 0.01, ***P<0.001. 
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group exhibited elevated expressions of immune co-inhibitory 
genes, including LAG3, PDCD1, CD274, and PDCD1LG2, 
indicating a low-affinity immune state in these patients. Previous 
studies have shown that T cells, when functionally exhausted over 
extended periods, co-express multiple co-inhibitory proteins, 
suggesting that targeting several checkpoints simultaneously or 
sequentially in high-response groups could elicit a stronger anti-
tumor response (38). Notably, a positive correlation was also 
identified between TMB levels and responsive scores. Previous 
research has established TMB status as a predictive biomarker for 
Frontiers in Immunology 11 
identifying patients likely to benefit from ICIs treatments (39). Our 
findings support this, with responsive scores showing a positive 
correlation with TMB, consistent with prior results. 

To further investigate depression-related genes central to 
modulate immunotherapy response, functional enrichment 
analysis was performed using the ssGSEA algorithm. The results 
indicated that the high-response group favored neurobiological and 
metabolic pathways, as evidenced by elevated enrichment scores for 
gene clusters involved in neuroactive ligand-receptor interactions, 
tyrosine metabolism, glycolysis, and linoleic acid metabolism. 
FIGURE 7
 

Clinical relevance and gene mutation analysis between two subtypes. (A) There were significant differences in PD-L1 expression, TMB status, N stage,
 
and progression-free survival between groups with high and low responses. (B) Mutation landscape in full cohort, including variant classification,
 
variant type, SNV class, variants per sample, variant classification summary, and top 10 mutated genes. (C) The representative gene mutations of the
 
two subtypes. (D) The mutations of 8 model genes. (E) The correlation between TMB and responsive score.
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Abnormal metabolic activity is crucial in tumor progression, as 
supported by numerous studies (40, 41). 

In contrast, the low-response group displayed activity in various 
pathways, including high enrichment scores for E2F targets related 
to G2M checkpoints, unfolded protein responses, MYC targets, 
oxidative phosphorylation, DNA repair, and other functions 
associated with tumor progression. Importantly, the high-
response group showed significant enrichment in signaling 
pathways such as Wnt-b-catenin, p53, TNF-a, IFN-g/a, IL6-JAK­
STAT3, PI3K-AKT-mTOR, TGF-b, and Notch. Abnormal 
activation of these pathways plays a pivotal role in tumor cell 
growth, migration, and invasion, thus remodeling the TME and 
correlating with poorer prognosis (42–44). 

The mechanisms of immune modulation associated with the 
eight predictive depression-related genes involve several key 
immune regulators. IL-10, CSF-1, and IFNa1 are active cytokines 
involved in immune responses (45–48). CD244, an inhibitory 
receptor primarily found on NK cells, T cells, and other immune 
cells, modulates their activation and function (49). FCGR2B, 
another inhibitory receptor, regulates the interaction between 
antibodies and immune cells, particularly B cells and CD8+ T 
cells (50). TAP1 is a crucial component of the TAP complex, 
responsible for transporting peptides to major histocompatibility 
complex (MHC) class I molecules for presentation to cytotoxic T 
cells (51).  SPP1, secreted by  tumor-associated macrophages

(TAMs), enhances cancer cell migration and invasion, as 
demonstrated in A549 lung cancer cells (52). CMA1, a 
glycosyltransferase expressed in mast cells, may influence immune 
responses (53). Additionally, emerging studies suggest that 
psychological stress plays a significant role in tumor immunity 
(54). In vivo studies have demonstrated that depressed mice with 
cancer exhibit lower activation levels of T helper cells, leading to 
immune  escape  through  immunosuppression  (55, 56).  
Furthermore, depression-related nervous signaling has been 
shown to promote TAM growth in xenograft breast cancer 
models (57). As experimental research advances, clinical studies 
have increasingly explored the impact of depression on cancer 
development and treatment. Most clinical investigations focus on 
the epidemiology and risks associated with depression in cancer 
patients, particularly the strong correlation between severe 
depression and poorer clinical outcomes (24, 58, 59). A recent 
prospective observational study demonstrated that emotional 
distress (ED) significantly reduced the effectiveness of initial ICIs 
therapy in advanced non-small-cell lung cancer patients. The ED 
group had a 2-year overall survival rate of 46.5%, compared to 
64.9% in the non-ED group, along with a decrease in quality of life. 
This study provides direct evidence of the negative impact of 
depression on immunotherapy efficacy, highlighting the potential 
role of psychological factors in cancer immunotherapy. 
Consequently, systematically exploring how depression-related 
genes predict immunotherapy effectiveness is of practical 
significance. Furthermore, this study offers a reference for future 
clinical trials, suggesting that ED could be considered a baseline 
characteristic in study designs. 
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4.1 Study limitations 

Despite the promising results, several limitations must be 
acknowledged. First, our analysis was based on TCGA and GEO 
databases, and this study only examines the association between 
depression and ICIs outcomes in specific cancer types. Additional 
validation with larger clinical study cohorts is necessary to confirm 
the  accuracy  of  our  model.  Second,  the  outcomes  of  
immunotherapy vary depending on the regimen and drugs used, 
highlighting the need for future studies to assess the model’s efficacy 
across different treatment protocols. Lastly, depression in this study 
was inferred solely from molecular profiles rather than clinical 
psychometric data. The absence of clinical depression phenotyping, 
such as assessment with PHQ-9 scores, may introduce bias, 
particularly given the retrospective nature of data mining. 
4.2 Clinical implications and conclusions 

This study contributes to a deeper understanding of the role of 
“psycho-biomarkers” in cancer treatment, emphasizing the 
potential significance of the psychological dimension in cancer 
immunotherapy. The findings provide valuable insights into 
future clinical trials, suggesting that ED should be considered a 
baseline characteristic in study designs. Additionally, a detailed 
study design is included in the supplementary files (Supplementary 
Figure 1). Our results indicate that the model based on 8 
depression-related genes is strongly correlated with ICIs therapy 
outcomes, underscoring the relevance of psychological factors in 
cancer immunotherapy. Further analysis revealed that this response 
grouping could offer a potential approach for evaluating immune 
cell abundance and tumor mutation burden in cancer patients. 
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