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Glioblastoma, the most common and aggressive primary brain tumor, remains a

significant challenge in oncology due to its immunosuppressive tumor

microenvironment (TME). This review summarizes the complex interplay of

immune cells and cytokines within the TME, which contribute to immune

evasion and tumor progression. We further emphasize the synergistic crosstalk

among these components and how it shapes therapeutic vulnerability. Besides,

we highlight recent advancements in immunotherapy, including immune

checkpoint inhibitors, CAR-T cell therapy, NK cell therapy, oncolytic viruses,

and vaccine-based strategies. Despite promising preclinical and clinical results,

overcoming the immunosuppressive TME remains a critical hurdle. This review

underscores the potential of targeting the TME to enhance therapeutic

outcomes in glioblastoma.
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1 Introduction

Glioblastoma, the most common primary malignant brain tumor in the central nervous

system (CNS), accounts for 80% of adult primary malignant brain tumors (1) and is the

leading cause of intracranial malignancy-related deaths (2). Traditional treatments like

surgical resection, radiotherapy, and temozolomide chemotherapy shows limited efficacy in

improving the long-term survival rates of patients with glioblastoma (3–5). Emerging

immunotherapies face challenges due to the immunosuppressive tumor immune

microenvironment, a dynamic ecosystem crucial for tumor survival (6). The TME,

comprising tumor-secreted cytokines, immune cells, and extracellular matrix, plays a

pivotal role in tumor initiation, growth, invasion, and metastasis (7). Immune cells and
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cytokines in the TME not only facilitate immune evasion but also

promote angiogenesis, proliferation, and invasiveness (8). This

review focuses on the immune evasion mechanisms through

immune cell infiltration and cytokines in the TME, and highlights

the advancements in immunotherapy for glioblastoma.
2 Immune microenvironment of
glioblastoma

2.1 Tumor-associated macrophages

Macrophages polarize into M1 (tumor-inhibiting) or M2

(tumor-promoting) phenotypes based on the microenvironment,

with M1 TAMs enhancing Th1-mediated anti-tumor responses and

counteracting immunosuppression (9). However, in advanced

tumor stages, M2 TAMs dominate, suppressing adaptive

immunity, promoting tumor growth, angiogenesis, and metastasis

(10). Besides, hypoxia−driven lactate acts through GPR81-mediated

signaling on TAMs to suppress NF-kB and YAP activation and

cytokine production, thereby attenuating anti-tumor immunity (11,

12). In glioblastoma, M2 TAMs correlate with poor prognosis (13).

Yu et al. (14) found TAM-derived CCL5 promotes glioblastoma cell

migration and invasion, while Dong et al. (15) showed TAMs drive

glioblastoma stem cell invasiveness via TREM1-mediated TGF-b2
secretion. These findings highlight TAMs’ critical role in the TME

and potential therapeutic targets.
2.2 Tumor-infiltrating T lymphocytes

T cells are essential to the adaptive immune system, responding

to antigens presented by dendritic cells and macrophages. They are

categorized into CD4+ and CD8+ subsets based on surface markers

and functions. CD4+ T cells recognize antigen-MHC class II

complexes, initiating immune responses and activating other

immune cells. Regulatory T cells (Tregs), a CD4+ subset

expressing FOXP3, suppress pathological immune responses and

maintain immune balance (16). CD8+ T cells, or cytotoxic T

lymphocytes, directly kill infected cells via MHC class I

interactions (17). In the TME, CD4+ T cells activate CD8+ T cells

and NK cells, enhancing immune responses (18). They also secrete

cytokines like IFN-g and TNF-a, which have cytotoxic effects on

tumors. Tregs maintain immune homeostasis by producing

inhibitory cytokines (IL-10, IL-35, TGF-b), suppressing excessive

immune activity, though their hyperactivity can impair anti-tumor

immunity. CD8+ T cells recognize tumor antigens via TCRs,

releasing perforin and granzyme to kill cancer cells and secreting

IFN-g and TNF-a to inhibit tumor growth (19). Glioblastomas

reprogram T cells into dysfunctional or pro-tumor states, recruiting

Tregs that secrete immunosuppressive cytokines (IL-10, TGF-b),
suppressing CD8+ T cells and promoting glioblastoma survival (20).

Loss of T cell anti-tumor function exacerbates immune evasion,

aiding tumor progression.
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2.3 Natural killer cells

NK cells, a lymphocyte subset in the innate immune system,

exhibit cytotoxic capabilities crucial for tumor surveillance, with

reduced activity linked to increased cancer risk. They target

neoplastic cells via death receptor-mediated apoptosis and

perforin/granzyme-mediated cytotoxicity, limiting primary tumor

growth. However, glioblastomas show minimal NK cell infiltration.

CRISPR-Cas9-mediated TIM3 knockout in NK cells enhances their

cytotoxicity against glioblastoma cells (21). Additionally, NK cell-

related genetic signatures predict glioblastoma malignancy and

patient survival (22).
2.4 Dendritic cells

DCs are highly efficient antigen-presenting cells that play a

central role in the immune system, linking innate and adaptive

immune responses by activating other immune cells and

promoting tumor-specific immunity (23). Upon exposure to

pathogens, nucleic acids, or type I interferons, DCs undergo

activation and maturation, acquiring the ability to effectively

stimulate T cells (24). While the exact role of DCs in glioblastomas

is still under investigation, current research highlights their

interactions with tumor cells and the TME. Single cell RNA

sequencing studies have identified conventional DC1 (cDC1),

cDC2, and plasmacytoid DC subsets within glioblastoma

specimens, each endowed with distinct transcriptional programs

and functional potentials (25). Mature DCs up regulate co

stimulatory molecules and secrete IL 12, fostering Th1 polarized

anti-tumor responses (26). Conversely, glioblastoma-derived factors,

like TGF b, IL-10, prostaglandin E2, can lock DCs in a tolerogenic

state characterized by PD-L1 expression and diminished IL-12

production, thereby dampening T cell activation (27). A study by

Friedrich et al. (28) indicated that DCs might contribute to the

enhancement of anti-tumor immunity in glioblastomas, with their

function potentially modulated by isocitrate dehydrogenase (IDH)

mutations. These mutations may influence glioblastoma immune

responses by altering the function of DCs.
2.5 Tumor-associated neutrophils

Neutrophils are actively involved in various stages of

tumorigenesis, tumor progression, and metastasis, exhibiting a more

intricate function than previously thought. These cells display both

tumor-suppressive and tumor-promoting characteristics within the

TME (29). They can directly kill tumor cells via reactive oxygen

species (ROS) (30) or cell-cell contact (31), yet also support tumor

growth by secreting immunosuppressive molecules like TGF-b, IL-6,
and IL-8 (32). Neutrophil infiltration correlates with glioblastoma

pathological grading (33, 34), and neutrophil extracellular traps

(NETs) facilitate tumor cell migration and immune evasion (35). In

glioblastomas, NET formation is driven by HMGB1 and the RAGE/

ERK/NF-kB axis, which induces IL-8 release, promoting NETs (36).
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2.6 Myeloid-derived suppressor cells

MDSCs, comprising granulocytic (G/PMN-MDSCs),

monocytic (M-MDSCs), and early-stage (e-MDSCs) subsets, are

immunosuppressive cells originating in the bone marrow (37). They

mediate immune suppression through nitric oxide and cytokines,

inhibiting cytotoxic T cells, NK cells, macrophages, and dendritic

cells, thereby facilitating immune evasion (38). MDSCs also recruit

Tregs, B cells, and M2 macrophages, potentially promoting

glioblastoma progression (38). Elevated MDSC levels in

glioblastoma patients’ peripheral blood correlate with tumor

progression and survival, suggesting a disrupted immune

environment and their potential as diagnostic and prognostic

biomarkers (39).
2.7 B cells and microglia in glioblastoma

B cells constitute a minor proportion of immune cells within

glioblastoma, yet they are pivotal in tumor progression and

response to treatment (40). Within glioblastoma, the B cell

population is predominantly composed of regulatory B cells,

which exert immune-suppressive effects, and antigen-presenting B

cells that facilitate T cell expansion (41, 42). These cells promote

immune suppression and angiogenesis by secreting IL-10 and TGF-

b, which inhibit T cell and NK cell activity, while also supporting

brain development and tumor invasion (43). Furthermore, B cells

release angiogenic factors, including VEGF, CXCL12, and CXCL13,

which enhance neovascularization, ensuring the tumor’s access to

essential nutrients and oxygen (44). Microglia is the principal

immune cells in the CNS that maintains a quiescent state and

exhibit a distinctive branched morphology under normal

physiological conditions (45). When exposed to pathological

stimuli, these cells become rapidly activated and undergo

significant morphological changes to perform immune

surveillance and defensive functions (46). In the context of the

TME, microglia are attracted to the tumor site, guided by

chemotactic factors like CCL2. They secrete a range of cytokines

and growth factors, such as IL-6, TGF-b, and VEGF, which

contribute to tumor progression by promoting metastasis and

invasion (47).
2.8 Cross-talk between immune cells
within the glioblastoma TME

The aforementioned immune subsets do not operate in isolation

but engage in a highly coordinated network that ultimately dictates

glioblastoma progression or regression. For example, TAMs release

TGF-b and IL-10, inhibiting effector T cells and promoting Treg

expansion, fostering immunosuppression (48). TAMs also suppress

T cell function via PD-L1, exacerbating exhaustion and impairing

anti-tumor immunity (49). The programmed cell death protein 1

(PD-1) and its ligand PD-L1 constitute a critical immune
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checkpoint mechanism that facilitates tumor immune escape.

Malignant cells frequently overexpress PD-L1, which binds to

PD-1 receptors on T lymphocytes, leading to T cell exhaustion

and functional impairment (18). This immunosuppressive pathway

is further amplified by multiple components of the tumor

microenvironment, including: Immunosuppressive cytokines,

TAMs, and Tregs. Besides, emerging studies demonstrate that

crosstalk between gliomas and immune cells (including

macrophages, neutrophils, dendritic cells, MDSCs, and NK cells

facilitate oncogenic progression (50).
3 Cytokines in the immune
microenvironment of glioblastoma

3.1 IL-10

IL-10, a key anti-inflammatory cytokine, modulates immune

responses and prevents excessive inflammation (51). It is secreted

by tumor cells, microglia, and astrocytes, not T or B cells (52). IL-10

deficiency releases pro-inflammatory cytokines, suppressing anti-

tumor immunity and promoting growth (53), while high IL-10

levels may enhance tumor-specific immunity (54). Blocking IL-10

boosts anti-tumor immunity (55), and IL-10 may upregulate

KPNA2, promoting tumor growth; KPNA2 knockout impairs

these processes (56). In vitro, IL-10 enhances proliferation and

invasion, while its blockade activates T cells (57). In glioblastoma,

IL-10 promotes tumor proliferation and migration, with elevated

levels correlating with malignancy (50–52), however, recent

evidence indicates that IL 10 can paradoxically augment anti-

tumor immunity by activating CD8+ T cells through the JAK1/

STAT3 pathway, leading to enhanced granzyme B release and

tumor lysis (58). Targeting TAMs to regulate IL-10 may enhance

anti-tumor immunity, highlighting its therapeutic potential

in glioblastoma.
3.2 IL-6

Research indicates IL-6 plays a critical role in tumorigenesis by

promoting tumor cell proliferation, immune evasion, survival,

angiogenesis, and metastasis (59). In glioblastoma, IL-6 is pivotal

for immunosuppression, with elevated expression in tumor tissues

correlating with disease progression and higher malignancy grades

(60). Post-surgical reductions in IL-6 levels in serum and

cerebrospinal fluid suggest its prognostic value for survival

outcomes (61). Autocrine IL-6 secretion is linked to poor

prognosis, driving tumor growth and invasion through: (1) direct

stimulation of glioblastoma cell proliferation and survival; (2)

STAT3 activation, which promotes tumor cell proliferation,

inhibits apoptosis, and suppresses immune cell function; and (3)

a cytokine feedback loop involving IL-6 and IL-10, sustaining tumor

growth and impairing anti-tumor immunity (62), indicating IL-6 is

a promising therapeutic target.
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3.3 SDF-1

Chemokines regulate inflammation, immune responses,

infection control, tissue damage, apoptosis, and cell migration.

The SDF-1/CXCR4 axis, involving CXC chemokine ligand 12

(SDF-1) and receptor CXCR4, is critical for organ development

(63). In glioblastomas, SDF-1 attracts stem cells to endothelial cells,

where TGF-b induces pericyte differentiation, enhancing vascular

activity and tumor growth (63, 64). Disrupting pericyte formation

(e.g., ganciclovir) or inhibiting CXCR4 impairs tumor progression

by limiting pericyte-endothelial integration (64). Elevated SDF-1

increases pericyte coverage, protecting vasculature and fostering

resistance to anti-angiogenic therapies, contributing to

recurrence (65).
3.4 TGF-b

TGF-b, a multifunctional regulatory polypeptide, is pivotal in

cellular processes such as proliferation, apoptosis, differentiation,

and immune surveillance (66). USP15 activates the TGF-b pathway,

while its inhibition reduces TGF-b activity, suppressing

Glioblastoma cell proliferation. TGF-b2 promotes autophagy via

Smad-dependent and independent pathways, enhancing

Glioblastoma invasion (67). pSMAD2, a key TGF-b signaling

mediator, is found in the cytoplasm and nucleus, serving as a

biomarker for pathway activation. Elevated pSMAD2 in

glioblastoma correlates with increased invasiveness, therapy

resistance, and poorer survival (68, 69). TGF-b2 overexpression is

linked to higher tumor grades (70). Trabedersen, a TGF-b2
inhibitor, improved survival in a Phase II trial (71).

Macromolecular TGF-b antagonists show greater selectivity and

therapeutic potential than small molecules (72).
3.5 Colony-stimulating factors

CSFs are essential for macrophage development. High M-CSF

in glioblastoma correlates with poor survival (73), promoting M2

polarization linked to higher tumor grade and worse prognosis (74).

Inhibiting GM-CSFR slows tumor progression without reducing

macrophages (75); without GM-CSFR, cytokines sustain

macrophage survival but reduce immune suppression (76). CSF

receptor inhibitors may modulate TAM phenotypes, improving

prognosis, but resistance limits their efficacy (77, 78), requiring

combination therapies.
3.6 Vascular endothelial growth factor

In g l iob las toma progress ion , a cr i t i ca l aspec t i s

neovascularization. VEGF plays a central role in this process,

mediating paracrine and autocrine signals that activate receptor

binding and subsequent signaling pathways, which foster the

development of a new blood vessel network around the tumor.
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This promotes tumor growth and metastasis (79). Bevacizumab, a

monoclonal antibody targeting VEGF-A, binds to circulating

VEGF-A, thereby altering its interaction kinetics with endothelial

cells and inhibiting angiogenesis (80). Clinical evidence indicates

that bevacizumab therapy for glioblastoma can reduce tumor size,

prolong progression-free survival, and diminish the reliance on

corticosteroids to manage tumor-induced edema (81) (Figure 1).
4 Immunotherapy of glioblastoma

4.1 Immune checkpoint inhibitor therapy

Immune checkpoints regulate immune responses, preventing

autoimmunity, but tumors exploit these mechanisms by expressing

ligands, leading to T cell exhaustion and immune evasion (82–84).

Immunotherapy utilizing immune checkpoint inhibitors (ICIs) has

transformed solid tumor management by augmenting T cell-

mediated antitumor responses. Among these, programmed death-

1/programmed death-ligand 1 (PD-1/PD-L1) blockade has

demonstrated clinical benefits across various malignancies,

including gastrointestinal cancers (85, 86). In neuro-oncology, six

active clinical trials are currently evaluating PD-1/PD-L1 targeting

agents for glioblastoma treatment. Preliminary results from a Phase

II investigation (NCT02968940) revealed improved outcomes when

combining PD-L1 blockade with radiation therapy in recurrent

cases, while pembrolizumab single-agent therapy extended median

survival duration (87, 88). Nevertheless, subsequent Phase III

evaluations, such as those conducted by Filley et al. (89) and trial

NCT02617589, failed to demonstrate statistically significant

survival advantages with nivolumab treatment, potentially

attributable to the profoundly immunosuppressive characteristics

of glioblastoma. Emerging combination approaches, particularly

dual PD-1 and CTLA-4 inhibition (NCT03233152), represent

promising therapeutic avenues (90). Indoleamine 2,3-dioxygenase

(IDO), upregulated in glioblastomas, suppresses T cell function and

correlates with poor prognosis (91–94). Preclinical studies support

IDO inhibition (95). TIM-3, highly expressed in glioblastoma,

enhances CD8+ T cell activity but correlates with aggressive

tumors and worse prognoses (96, 97). These findings underscore

the po ten t i a l o f t a rge t ing immune checkpo in t s in

glioblastoma treatment.
4.2 CAR-T

Chimeric antigen receptors (CARs) are synthetic receptors

designed to direct immune cells against tumor-associated

antigens, enhancing anti-tumor responses (98). While CAR-T

therapy has achieved FDA approval for CD19+ B-cell

malignancies (99), its success in glioblastoma remains limited.

Recent studies, however, indicate progress. Ahmed et al. (100)

reported that HER2-targeted CAR-T cells were safe and feasible

in GBM, though tumor suppression was modest. O’Rourke et al.

(101) conducted the first clinical trial (NCT02209376) targeting
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EGFRvIII in recurrent GBM, showing CAR-T infiltration, reduced

EGFRvIII expression, and TME modulation, despite no significant

regression. Earlier data suggested persistent EGFRvIII in recurrent

GBM (102), but subsequent trials (NCT02208362, NCT03389230)

(103) confirmed that EGFRvIII-targeted CAR-T suppresses tumor

ac t iv i ty . Key cha l l enges inc lude ant igen loss , TME

immunosuppression, and toxicity (104). A novel TanCAR

strategy, combining IL-13 and EphA2scFv, improves GBM

targeting while minimizing off-tumor effects, presenting a

potential solution (105).
4.3 NK cell therapy

NK cells, crucial components of the innate immune system,

directly target and eliminate tumor cells by secreting interferons,

perforins, and granzymes, and upregulating death receptors like Fas

ligand and TRAIL. They induce apoptosis via the caspase cascade and

mediate antibody-dependent cellular cytotoxicity through FcgRIIIA/
CD16A. NK cells also enhance T-cell-mediated tumor immunity by

sustaining DC populations and promoting tumor antigen presentation

(106). Besides, NK cells infiltrate glioblastomasmore than T-cells (107).

Clinical trials, such as Lim et al. (108), demonstrated NK cell therapy’s
Frontiers in Immunology 05
safety and efficacy in glioblastoma patients, with median OS of 22.5

months and PFS of 10months. Shaim et al. (109) andWang et al. (110)

highlighted enhanced tumor suppression when NK cells were

combined with integrin/TGF-b inhibitors or other therapies.

However, challenges like in vivo NK cell persistence, limited cytokine

support, and immunotherapy efficacy barriers must be addressed for

broader clinical application (111).
4.4 Oncolytic virus

OVs, a promising immunotherapy, selectively target and replicate

within tumor cells, destroying them while sparing healthy cells.

Research includes adenovirus-based therapies and herpes simplex

virus (HSV) variants, with notable preclinical success. In Japan, the

modified HSV G47D is approved for glioblastoma treatment (112).

Treatment with OV DNX-2401 in glioblastoma patients, tumor

reduction, partial remission, and disease stabilization, with a median

survival of 17.8 months were observed (113). Bernstock et al. (114)

reported improved 2-year and 3-year survival rates with viral therapy.

While preclinical studies confirm OV safety and efficacy, further

clinical trials are needed to establish OVs as a standard

glioblastoma treatment.
FIGURE 1

Immunosuppressive microenvironment of glioblastoma.
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4.5 Tumor vaccine

Dendritic Cells (DCs) are pivotal in antitumor immunity,

activating CD8+ and CD4+ T cells via MHC I/II presentation,

driving lymphocyte proliferation and tumor antigen targeting

(115). DC vaccines (DCVs) like Sipuleucel-T (116) demonstrate

clinical potential. In glioblastoma, DCVax-L (NCT00045968)

enhanced median survival without toxicity (117), while ICT-107

showed comparable efficacy (118). Limitations include suboptimal

DC maturation, migration, complex manufacturing, antigen

selection hurdles, and cost (119). Heat shock proteins (HSPs),

ubiquitous molecular chaperones, augment antigen presentation

and T-cell activation (120). Preclinical data reveal HSP vaccines

with radiotherapy suppress glioblastoma growth (121). Clinical

studies report improved survival post-surgery with autologous

HSP vaccines (122), and HSPPC-96 (NCT02122822) extended

survival in newly diagnosed patients (123). However, some trials

associate HSP vaccines with worsened outcomes when combined

with chemo/radiotherapy (124). IDH1 mutations define a

glioblastoma subset. Murine studies demonstrate IDH1 R132H

vaccines elicit IFN-g-dependent T-cell responses, suppressing

tumors (125). A study in glioma patients with IDH1 mutations

found 93.3% developed immune responses, with 26/30 showing T-

cell and 28/30 B-cell responses, confirming efficacy over 46.9

months median follow-up (126, 127). The NCT02454634 trial

detected immune responses in IDH1 R132H+ gliomas but no

survival benefit with adjuvant therapy (128).
5 Conclusion

Glioblastoma’s immunosuppressive TME, characterized by

immune cell infiltration and cytokine-mediated immune evasion,

plays a pivotal role in tumor progression and resistance to therapy.

While traditional treatments have shown limited efficacy, emerging

immunotherapies, such as immune checkpoint inhibitors, CAR-T

cells, and oncolytic viruses, offer new hope. However, challenges like

antigen escape, TME complexity, and treatment-related toxicity

persist. Future research should focus on interdisciplinary
Frontiers in Immunology 06
collaboration and technological integration to elucidate

glioblastoma regulatory networks, identify new targets, and refine

personalized therapies. Combining cellular immunotherapy and

molecular targeted therapy is a promising trend, offering hope for

glioblastoma patients and insights for treating other solid tumors.
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