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Department of Nephrology, West China Hospital, Sichuan University, Chengdu, China 
Acute kidney injury (AKI) is a clinical syndrome characterized by a sudden 
dysfunction of the kidney, which is common worldwide, with a relatively high 
incidence and mortality rate. Damage to the proximal renal tubule is a 
pathological hallmark of AKI, and inflammation triggered by the overactivation of 
the immune system is a common cause of proximal renal tubular injury, which is an 
important contributing factor in AKI exacerbation. Damage-associated molecular 
patterns (DAMPs) are endogenous molecules released by cells in response to 
external stimuli that can trigger an inflammatory response by binding to specific 
pattern recognition receptors (PRRs). Numerous studies have indicated that when 
the kidney is exposed to external stress or chemical stimuli, injured cells actively 
secrete or passively release various DAMPs, which can exacerbate or attenuate 
kidney injury by stimulating or inhibiting the inflammatory response through binding 
to  the appropriate receptor.  Currently,  there is a lack  of  early diagnostic biomarkers  
and specific therapeutic strategies for AKI in the clinic have been established, and 
given the important role of the release of DAMPs in the regulation of inflammatory 
response, they will highly likely become favorable candidate biomarkers and clinical 
therapeutic targets for AKI. Therefore, a deeper understanding of the types of DAMPs 
and the specific mechanisms of their actions will provide more possibilities for the 
specific AKI diagnosis and treatment. 
KEYWORDS 
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1 Introduction 

Acute kidney injury (AKI) is a clinical syndrome of rapid decline in renal function caused 
by various etiologies (1, 2). The decrease in the estimated glomerular filtration rate (eGFR) 
causes fluid retention and acid–base imbalance, leading to injuries of multiple systems such as 
the heart, brain, lung, and gastrointestinal (3–6). Severe AKI may cause chronic kidney disease 
(CKD) and even permanent loss of kidney function. Given its high incidence, mortality and risk 
for CKD, AKI has remained a global health problem (7–10). The incidence of AKI in patients 
during hospitalization was reported approximately 10%-15% (11). However, among patients in 
the intensive care unit (ICU), the incidence became as high as 50% (12). A Canadian study that 
included approximately 200,000 patients hospitalized for AKI revealed that the 1-year mortality 
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rate for patients with AKI was approximately 28%. Among those who 
survived, approximately 14% were rehospitalized due to recurrence, 
with approximately 45% dying within 1 year of hospitalization (13). In 
China, the all-cause hospital mortality rate of patients with AKI 
reached 12.4%, and most of them died of multiple organ dysfunction 
and sepsis (14). Furthermore, some cases of AKI progress to CKD, even 
end-stage renal disease, with an unfavorable prognosis (5, 15). Apart 
from the above characteristics, the high hospitalization rate of patients 
with AKI and the large proportion of medical costs should not be 
ignored. According to a nationwide cross-sectional study conducted in 
China, approximately 1.4 million people with AKI were hospitalized in 
2013, with hospitalization costs amounting to approximately $13 
billion, accounting for 10% of China’s total healthcare expenditure 
(14). Despite the high proportion of AKI-related mortality and medical 
costs, no specific drugs have been approved for the treatment of 
patients with AKI. Current clinical management includes addressing 
the underlying causes, controlling blood glucose and blood pressure, 
avoiding nephrotoxic drugs, volume management, hemodynamic 
monitoring, and renal replacement therapy. Though these 
approaches partially improve the prognosis of patients with AKI, the 
CKD risk and death in patients with AKI remains dismal, and new 
therapeutic strategies need to be explored (4, 16–18). 

Factors commonly associated with AKI development include 
ischemia–reperfusion injury (IRI), sepsis, hemodynamic alterations, 
systemic inflammation, and use of nephrotoxic drugs, which are often 
associated with sterile inflammation (3, 6, 10). In the early stage of AKI, 
various immune cells are recruited to the kidney, releasing 
proinflammatory mediators and exacerbating renal impairment. In 
the later AKI stage, the dynamic interaction of pro-inflammatory and 
anti-inflammatory mediators released by immune cells mediates AKI 
development, ultimately causing the inflammation to subside and renal 
tissue damage to be repaired or progressing to CKD (19–21). 
Therefore, an in-depth study of the mechanisms that regulate sterile 
renal inflammation will help in AKI prevention and treatment. 

Sterile inflammation is an inflammatory response that occurs in 
the absence of pathogens and usually relies on the release of damage-

associated molecular patterns (DAMPs) (22, 23). DAMPs are 
endogenous molecules released by cells in response to unfavorable 
stimuli from the internal or external environment. These endogenous 
molecules are normally sequestered in their respective intracellular 
compartments under physiological conditions (24, 25). However, when 
cells are exposed to deleterious stimuli, they are released into the 
extracellular space, activating the immune system and triggering a 
sterile inflammatory response (26–28). DAMPs are mainly released 
passively by dying  cells, and  the former includes various forms of death 
such as necrosis, necroptosis, and pyroptosis, which lead to DAMPs 
leakage through the destruction of the plasma membrane or formation 
of channel pores into the extracellular space (28, 29). In addition to 
passive release, some DAMPs can be actively secreted from living cells 
through vesicular transport by docking and fusion with the plasma 
membrane through the exosomal and lysosomal exocytosis pathways 
(30, 31). These released DAMPs bind to specific pattern  recognition  
receptors (PRRs), such as toll-like receptors (TLRs) and receptor for 
advanced glycation end products (RAGE), inducing nuclear factor-
kappa B (NF-kB) transcription and the activation of the NOD-like 
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receptor family pyrin domain-containing protein 3 (NLRP3) 
inflammasome, which promotes the recruitment of various immune 
cells and the release of inflammatory factors, which subsequently 
trigger a sterile inflammatory response (22, 25, 28, 32). 

The death of proximal renal tubular epithelial cells is a key 
factor that leads to AKI, and oxidative stress, necrosis, apoptosis, 
and inflammation are crucial in AKI development (20, 33–35). 
Given that inflammation is an important AKI driver and DAMPs 
are crucial in regulating inflammation, this review focuses on the 
role of the inflammatory response participated by DAMPs in AKI. 
When the kidney suffers from adverse stimuli such as major surgical 
trauma or nephrotoxic drugs, inflammatory DAMPs released by 
damaged cells participate in AKI development by binding to the 
PRRs, stimulating and amplifying inflammatory response signals 
(36–38). Interestingly, not all DAMPs exacerbate AKI, and some 
DAMPs have anti-inflammatory effects that promote the repair of 
damaged tissues and protect the kidney (39–41). Therefore, an in-
depth understanding of certain roles played by different DAMPs 
during the immune response and damage–repair process involved 
in AKI may contribute to the early diagnosis and discovery of 
therapeutic targets for AKI. This review focuses on the types of 
DAMPs in AKI (Table 1) and describes the functions of DAMPs in 
AKI via binding to different PRRs (Figure 1). 
2 Functions and release mechanisms 
of DAMPs 

2.1 High mobility group box 1 

HMGB1 is a non-histone DNA-binding protein that is widely 
expressed in the cellular environment and plays a crucial role in 
regulating DNA replication, DNA repair, and nucleosome stability, 
TABLE 1 Overview of the types of DAMPs in AKI. 

DAMPs Receptor Inflammation response 

HMGB1 
(oxidized form) 

RAGE, 
TLR2, TLR4 

context-dependent proinflammation 

Histones 
TLR2, 
TLR4, TLR9 

proinflammation 

IL-1a IL-1R proinflammation 

IL-33 ST2 
context-dependent pro- or 
anti-inflammation 

Uric acid TLR4 proinflammation 

ATP P2X7R context-dependent proinflammation 

mtDNA TLR9 proinflammation 

Uromodulin TLR4 proinflammation 

Biglycan TLR2, TLR4 proinflammation 

LMW- HA TLR2, TLR4 proinflammation 

S100A8/A9 TLR4 proinflammation 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1590822
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li and Hu 10.3389/fimmu.2025.1590822 
which are essential for cell growth and differentiation (42, 43). In 
response to adverse external stimuli, HMGB1 can be released 
passively by necrotic cells because of plasma membrane destruction 
(44, 45). Cells undergoing necroptosis, a regulated form of necrotic 
cell death, involving specific signaling molecules such as receptor-
interacting protein kinase 1 and 3, and mixed-lineage kinase domain-

like protein, also release HMGB1, which ultimately leads to 
membrane depolarization and cell rupture (46–49). In addition, 
HMGB1 can be actively secreted by immune cells, which involves 
multiple post-translational modifications (PTMs) of HMGB1, 
including oxidation, acetylation, lactation, and phosphorylation. 
Various PTMs promote interactions between HMGB1 and the 
nuclear transport receptors that mediate the translocation of 
HMGB1 from the nucleus to the cytoplasm and its subsequent 
release into the extracellular space through the exosomal and 
lysosomal exocytosis pathways (43, 50–52). Notably, the 
proinflammatory function of HMGB1 is determined by its redox 
status, and the oxidized form of HMGB1, but not its reduced form, 
determines the proinflammatory activity of HMGB1 once it is 
released (53). The oxidized form of extracellular HMGB1 interacts 
with TLR2, TLR4, and RAGE, expressed on various immune cells, 
including monocytes, macrophages, and dendritic cells, activating 
NF-kB  transcription  and  inducing  the  expression  of  
proinflammatory cytokines, such as interleukin-6 (IL-6), tumor 
Frontiers in Immunology 03 
necrosis factor a (TNF-a), and monocyte chemoattractant protein 
1 (MCP1), leading to inflammation and worsening injury of the 
kidney (54–57). Several clinical studies have shown the high serum 
level of HMGB1 in patients suffering from AKI (58, 59). Studies have 
reported that HMGB1 inhibitors (60–62) and HMGB1-neutralizing 
antibodies (63, 64) are effective in improving kidney function and 
attenuating kidney damage in various AKI mouse models. 
2.2 Histones 

Histones are basic proteins with highly conserved sequences 
found in the nucleus and influence the stabilization chromatin 
structure and regulate gene expression under normal physiological 
conditions (65, 66). Histones can be released passively during 
apoptosis and necrosis, triggering an inflammatory response by 
binding to the corresponding PRRs (67–70). Recently, neutrophil 
extracellular traps (NETs) are a widely reported form of histone 
release, an extracellular DNA mesh-like structure composed of 
histones and anti-microbial protein, which are generally released 
by dying neutrophils (71). Adverse stimuli induce peptidylarginine 
deiminase 4 (PAD4) and neutrophil elastase (NE) to initiate 
chromatin decondensation in the nucleus and the breakdown of 
the nuclear membrane. Finally, with the breakdown of the plasma 
FIGURE 1
 

Overview of the specific functions of DAMPs in AKI through binding to different PRRs (a) HMGB1 activates RAGE, leading to downstream NF-kB
 
signaling and inflammatory factor release. (b) Most DAMPs such as HMGB1, histones, uric acid, mtDNA, uromodulin, biglycan, LMW-HA, and S100A8/
 
A9 activate TLR2/4/9, exacerbating the inflammatory signaling cascade. Only the downstream canonical MyD88/NF-kB signaling pathway is shown.
 
(c) ATP regulates NLRP3 inflammasome signaling through the activation of P2X7R and subsequently promotes inflammatory responses. (d) IL-1a 
activates IL-1R, promoting NF-kB translocation to the nucleus and activating inflammatory signaling. (e) IL-33 activates ST2, which promotes 
polarization of M2 macrophages and induces the expansion of ILC2s and Tregs to fight inflammation. Meanwhile, IL-33 binds to ST2 on the surface 
of iNKT cells, amplifying inflammatory injury. IL-33 exhibits dual functions, which may depend on the specific immune microenvironment. Footnote: 
Figure 1 only shows the function of IL-1a and IL-33 as DAMPs rather their function as secreted cytokines. 
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membrane, histones are released into the extracellular space (72, 
73). As a proinflammatory DAMP, histones activate the 
downstream MyD88 and NF-kB signaling pathway by interacting 
with TLR2, TLR4, and TLR9, and produce inflammatory cytokines 
such as IL-6, TNF-a, and MCP1, exacerbating the renal 
inflammatory response (64, 74). NETs can also be actively 
secreted from living neutrophils through vesicular transport 
(71, 75). 
 

2.3 Interleukin-1 

Interleukin-1a (IL-1a) and interleukin-33 (IL-33) are members 
of the interleukin-1 (IL-1) family that are both cytokines and can act 
as DAMPs, which are passively released by necrotic cells into the 
extracellular space due to plasma membrane destruction (76–78). 
IL-1a can also be actively released by macrophages through 
gasdermin D (GSDMD) pore formation during pyroptosis, a form 
of regulated cell death (77, 79). IL-1a is present and biologically 
active in epithelial cells under physiological conditions (80). Upon 
external stimuli, IL-1a is released from damaged cells and binds to 
the IL-1 receptor (IL-1R) on nearby cells, activating the NF-kB 
signaling pathway, inducing TNF-a production, and mediating the 
recruitment of immune cells, which promotes kidney injury (34, 
81–83). IL-33 is constitutively expressed in the nucleus of 
endothelial, epithelial, and other structural cells in the 
physiological state (84–86). IL-33 is a pleiotropic cytokine that 
mediates tissue inflammation and repair by binding to the specific 
receptor tumorigenicity 2 (ST2). ST2 is expressed on the surface of 
multiple immune cells, including nature killer (NK) cells, regulatory 
T cells (Tregs), neutrophils, macrophages, B cells, and natural killer 
T (NKT) cells (87). In mice model of IRI-induced AKI, IL-33 was 
passively released by dying endothelial cells and bound to ST2 as a 
ligand, which induced the conversion of proinflammatory M1 
macrophages into anti-inflammatory M2 macrophages, reducing 
the release of proinflammatory factors, whereas IL-33 promotes the 
expansion of type II innate lymphoid cells (ILC2s) and Tregs, 
improving the immune microenvironment and reducing renal 
inflammation (88, 89). Interestingly, IL-33 released into the 
extracellular space can also act as a proinflammatory DAMP 
targeting invariant NKT (iNKT) cells, recruiting neutrophils to 
infiltrate the kidney and amplifying inflammatory injury in a mouse 
model of IRI-induced AKI (90–92). IL-33 exhibits dual functions in 
AKI, which may depend on the type of immune cells activated by 
IL-33 and the specific immune microenvironment,  which  will
require more in-depth studies to elucidate the complex regulatory 
mechanisms of the IL-33/ST2 signaling pathway in AKI. 
2.4 Uric acid 

Uric acid is generated through the metabolic degradation of 
purines, approximately 70% of it is excreted via the kidney, and it 
has long been recognized as a significant risk factor for kidney-
related diseases (93, 94). Uric acid is released passively from the 
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damaged cells. Uric acid, particularly in its crystalline form, can act 
as a proinflammatory DAMP. Uric acid crystals bind to TLRs (e.g., 
TLR2 and TLR4), providing priming signals, and activate the 
NLRP3 inflammasome to induce the production of IL-1b, TNF-a, 
and MCP1, and induce the recruitment of immune cells, 
exacerbating renal inflammatory responses (28, 95–97). Many 
clinical approaches for the treatment of kidney-associated 
disorders, such as allopurinol and febuxostat administration, can 
effectively attenuate renal function partly by reducing circulating 
uric acid concentrations (98). This conclusion was validated in 
animal experiments, where allopurinol improved renal function by 
lowering the serum uric acid concentration in animal models of 
heat stress, rhabdomyolysis, and exercise-induced AKI (99, 100). 
Febuxostat can ameliorate contrast and IRI-induced AKI by the 
same mechanism (101–103). In-hospital mortality in patients with 
AKI appears to be associated with high serum uric acid levels, which 
is expected to be a prognostic marker for AKI (104). 
2.5 Adenosine triphosphate 

ATP serves as a vital energy source for cells, and mitochondrial 
oxidative phosphorylation regulates intracellular ATP levels (105, 
106). ATP can be released into the extracellular space either passively 
or in a regulated manner. Passive release occurs from damaged or 
necrotic cells through plasma membrane rupture (22, 107). In 
contrast, regulated ATP release from living cells occurs via specific 
pathways such as pannexin or connexin hemichannels, as well as 
vesicular transport mechanisms (108, 109). Extracellular ATP is 
recognized as a proinflammatory DAMP that binds to the P2X7 
purinergic receptor (P2X7R), causing potassium efflux, which 
activates NLRP3 inflammasome (110). In IRI and sepsis-induced 
AKI, ATP can activate NLRP3 inflammasome by binding to P2X7R, 
promoting the production of proinflammatory factors including IL
1b, IL-6, and MCP1 and impairing the kidney (111, 112). P2X7R 
knockdown ameliorated IRI and cisplatin-induced AKI and AKI 
progression to renal fibrosis by inhibiting the activation of NLRP3 
inflammasome (112, 113). Similarly, studies have indicated that the 
use of P2X7R antagonists mediates the inactivation of NLRP3 
inflammasome and treats IRI and sepsis-induced AKI (114, 115). 
This predicts an optimistic therapeutic prospect for P2X7R 
antagonists in AKI of multiple etiologies. 
2.6 Mitochondrial DNA 

mtDNA, a double-stranded circular DNA molecule, is involved 
in encoding the composition of the core subunits of the respiratory 
chain, which is important for the maintenance of mitochondrial 
function and cellular metabolism (116, 117). In recent years, 
mtDNA has also been recognized as a proinflammatory DAMP 
that plays a role in various diseases (118, 119). Depletion of mtDNA 
has been observed during AKI, which is closely related to the degree 
of renal damage (120). During cellular stress, mitochondrial 
homeostasis is disrupted, prompting the opening of the 
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mitochondrial permeability transition pore, followed by the release 
of mtDNA into the cytoplasm, The leaking mtDNA acts as an 
endogenous ligand for the cyclic GMP–AMP synthase (cGAS), 
which triggers type I interferon responses via the stimulator of 
interferon gene (STING) signaling pathway, and also activates the 
classical NF-kB inflammatory response, which produces 
inflammatory cytokines such as TNF-a and IL-6 (118, 121). By 
binding to TLR9, mtDNA can also activate NF-kB transcription, 
leading to the release of proinflammatory factors and immune cell 
infiltration, amplifying the inflammatory response (122–124). In 
addition, mtDNA can directly activate NLRP3 inflammasome and 
enhances the release of the inflammatory cytokines IL-1b and IL-18 
(125–127). Some studies have shown significant correlations among 
urinary mtDNA level and serum creatinine, eGFR, and the AKI 
marker neutrophil gelatinase-associated lipocalin (NGAL), 
suggesting the promising potential of urinary mtDNA as a 
biomarker for predicting AKI severity, which needs to be further 
validated by larger, multicenter-like cohort studies in the future to 
establish the role of urinary mtDNA in predicting AKI severity 
(128–130). 
2.7 Uromodulin 

Uromodulin, also known as Tamm-Horsfall protein (THP), is a 
kidney-specific glycoprotein produced mainly by the epithelial cells of 
the ascending limb of the Henle loop, which is excreted into the urine 
mainly by apical secretion, and is one of the most abundant urinary 
proteins (131). Physiologically, uromodulin is not immunologically 
active in the tubular lumen of the renal tubule but serves multiple 
protective functions, such as resisting urinary tract infections and 
preventing urinary stone formation (132–134). However, when renal 
tubular cells are damaged, uromodulin may be partially leaked into 
the renal interstitial compartment, and mislocalized uromodulin is 
thought to be a proinflammatory DAMP, which induces renal 
inflammation  by  binding  to  TLR4,  activating  NLRP3  
inflammasome, and inducing the activated aggregation of immune 
cells and secretion of the proinflammatory factor IL-1b (135–137). 
The specific receptors and molecules involved in immune cells 
modulation by uromodulin leaking from the renal interstitial 
compartment require more in-depth studies. 
2.8 Biglycan 

Biglycan, a small leucine-rich proteoglycan expressed mainly in 
the renal mesenchyme and present in the extracellular matrix 
(ECM) in the physiological state, is a key ECM component that 
plays an important role in angiogenesis, inflammation, and 
autophagy (136, 138). Dying cells can release biglycan through 
protein hydrolysis. The released biglycan exists in its soluble form 
and is seen as a DAMP, which exerts proinflammatory function by 
binding to the corresponding receptors (19). Biglycan can activate 
the downstream MyD88 and NF-kB inflammatory signaling 
pathway by binding to TLR2 and TLR4, inducing the infiltration 
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of various immune cells such as T-cells and neutrophils, 
polarization of M1 macrophages, and production of TNF-a, IL
1b, C-C motif chemokine ligand 2 (CCL2) and CCL5, thereby 
exacerbating the inflammatory injury in IRI-induced AKI 
(139–141). 
2.9 Hyaluronic acid 

HA is another important ECM component. It is primarily 
composed of repeating disaccharide chains of D-glucuronic acid 
and D-N-acetylglucosamine, which play important roles in 
maintaining tissue integrity and regulating cellular functions 
(142–144). The biological function of HA depends on its 
molecular weight, and in the physiological state, it exists mainly 
as high-molecular-weight HA (HMW-HA) (145, 146). HMW-HA 
binds to CD44, a main receptor of HA, to promote the polarization 
of M1 to M2 macrophages and inhibit NF-kB activation, reducing 
the expression of inflammatory factors including IL-6 and IL-8 and 
thus reducing systemic inflammation and maintaining immune 
balance (147–149). During cell injury, HMW-HA in the ECM is 
degraded by hyaluronidases to low-molecular-weight HA (LMW

HA), which is regarded as a DAMP. By binding to TLR2 and TLR4, 
LMW-HA activates dendritic cells and activates the NF-kB 
signaling pathway, increasing the release of the proinflammatory 
cytokines IL-1b, IL-6, TNF-a, and IL-12 (145, 150). LMW-HA also 
induces the expression of chemokines such as CCL3 and CCL4, 
recruiting immune cells and exacerbating inflammatory responses 
(150, 151). The inhibition of HMW-HA degradation alleviates renal 
inflammation and protects renal function in a mouse model of IRI-
induced AKI (152). 
2.10 S100A8/A9 

S100A8 and S100A9 are calcium-binding proteins that belong to 
the S100 protein family and are usually present as heterodimers in a 
high-calcium environment. The S100A8/A9 heterodimer is 
predominantly expressed in the cytoplasm of myeloid cells and is 
involved in regulating the polymerization of microtubules (153). 
S100A8/A9 released into the extracellular space is regarded as a 
DAMP and helps in regulating immune responses (154, 155). 
S100A8/A9 can be actively secreted or passively released into the 
extracellular space. Passive release occurs through dying cells or 
GSDMD pore, or by neutrophils through the formation of NETs, 
whereas active secretion occurs mainly by macrophages via the 
lysosomal exocytosis pathway (153, 156, 157). In a mouse model of 
IRI-induced AKI, S100A8/A9 activates the NF-kB signaling pathway 
by binding to TLR4 and promotes the infiltration of the 
proinflammatory cytokines IL-6, IL-1b, and  TNF-a and the 
aggregation of macrophages and neutrophils, thereby exacerbating 
renal inflammation (157–159). A study revealed that S100A8/A9 
inhibitor attenuates the binding of S100A8/A9 to TLR4, alleviates the 
inflammatory response to sepsis-induced AKI, and protects the 
kidney (160). 
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3 Conclusions 

Despite current advances in investigating the pathological 
mechanisms of AKI, the lack of diagnostic and prognostic 
biomarkers for AKI and specific AKI therapeutic strategies are 
major clinical challenges that need to be addressed. This review 
preliminarily explored the release mechanisms and functions of 
DAMPs in regulating immune responses, revealing that not all 
DAMPs are exacerbating factors for AKI; some DAMPs promote 
AKI repair and protect the kidney, which may depend in part on the 
specific immune microenvironment or molecular weight in which 
the DAMPs are located. In the mouse model of IRI-induced AKI, 
IL-33 binds to ST2 on the surface of macrophages, ILC2s, and 
Tregs, reducing renal inflammation; however, IL-33 also binds to 
ST2 on the surface of iNKT cells, recruiting neutrophils and 
amplifying inflammatory injury. The complex mechanisms by 
which the IL-33/ST2 signaling pathway expresses a dual function 
in AKI may be due to the binding of IL-33 to ST2 on the surface of 
different immune cells and the specific immune microenvironment 
in which it resides. The complex mechanisms through which the IL
33/ST2 signaling pathway expresses a dual function in AKI warrant 
more in-depth investigation. The dual function of HA depends on 
its molecular weight. In the physiological context, HA 
predominantly exists as HMW-HA, which can inhibit NF-kB 
activation, reduce the expression of inflammatory factors such as 
IL-6 and IL-8, and exhibit anti-inflammatory function. Conversely, 
during stress, HMW-HA is degraded by hyaluronidases to LMW

HA, which acts as a proinflammatory DAMP. Moreover, serum uric 
acid was highly correlated with in-hospital mortality in patients 
with AKI, and urinary mtDNA was significantly correlated with 
serum creatinine, eGFR, and NGAL, which all appear to indicate 
that some DAMPs have predictive value for AKI. In addition, 
antagonists or neutralizing antibodies targeting some of the 
DAMPs (HMGB1 and S100A8/A9) or PRR (P2X7R) could 
protect to a certain extent against multiple etiologically induced 
AKI, which in turn highlights the great potential of DAMPs in 
clinical therapy. However, further studies are needed, including the 
identification of more DAMPs and elucidation of the detailed 
pathway and relationship with clinical features, to help us identify 
AKI early and contribute to the development of drugs for the 
treatment of AKI. 
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