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Background: Triple-negative breast cancer (TNBC) is an aggressive form of

cancer that lacks specific targeted therapies. Although ligand–receptor (LR)

interactions play a crucial role in intercellular communication and contribute

to tumor heterogeneity, their molecular details and potential as prognostic or

predictive markers in TNBC have not been thoroughly investigated.

Methods:We analyzed single-cell RNA sequencing data to categorize TNBC into

12 subgroups and 10 distinct cell types. From this dataset, we identified LR pairs

that exhibited significant intercellular crosstalk and evaluated their prognostic

relevance in a METABRIC TNBC cohort (n = 298). Through consensus clustering

of these LR pairs, two molecular subtypes were defined. Key LR genes were then

selected using Lasso regression and stepwise multivariate analysis to build an LR-

based prognostic scoring system (LR.score), which was validated using both the

METABRIC and GSE58812 datasets (n = 107). Additionally, we performed siRNA-

mediated knockdown of the CXCL9/CXCR3 axis in MDA-MB-231 cells,

confirming the knockdown via RT-qPCR and Western blot. The functional

impact was assessed through proliferation, colony formation, and wound

healing assays.

Results: One subtype (Clust1) demonstrated strong immune cell infiltration, higher

immune scores, and enrichment in pathways such as epithelial–mesenchymal

transition, angiogenesis, and KRAS signaling—indicative of a basal-like, immune-

active phenotype. Among the LR pairs, the CXCL9–CXCR3 axis was identified as a

key factor in immune cell recruitment and anti-tumor responses. Functionally,

silencing the CXCL9/CXCR3 axis significantly diminished the proliferation, colony

formation, and migratory capabilities of MDA-MB-231 cells. Moreover, a higher

LR.score was correlated with poorer overall survival (HR = 1.69, 95% CI = 1.12–2.56,

P < 0.05) and reduced response to immune checkpoint inhibitors (ICIs), while

patients with lower LR.score showed increased sensitivity to ICIs, particularly in

anti–PD-L1 cohorts.
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Conclusion: The LR.score serves as an independent prognostic factor and a

reliable predictor of immunotherapy response in TNBC. Targeting crucial LR

interac t ions , espec ia l l y the CXCL9–CXCR3 ax is , may enhance

immunotherapeutic efficacy and refine prognostic evaluations, paving the way

for improved treatment strategies in TNBC.
KEYWORDS
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1 Introduction

Triple-negative breast cancer (TNBC) remains one of the most

challenging and aggressive breast cancer subtypes, primarily due to the

absence of estrogen, progesterone, and HER2 receptors. This inherent

lack of recognized therapeutic targets severely limits treatment options

and highlights the urgency of identifying novel biomarkers and

therapeutic strategies. Central to understanding TNBC progression

and drug resistance is the tumor microenvironment (TME), a

complex ecosystem composed of malignant cells, immune cells, and

non-immune stromal components. These heterogeneous cell

populations communicate through ligand-receptor (LR) interactions

—molecular events that govern key processes such as tumor initiation,

progression, and immune evasion (1, 2).

While traditional bulk RNA sequencing (bulk RNA-seq) has

been invaluable in providing global gene expression profiles, it

obscures the considerable heterogeneity inherent to tumors by

averaging signals across millions of cells. In contrast, single-cell

RNA sequencing (scRNA-seq) enables high-resolution analyses of

individual cells, capturing their distinct transcriptional states and

shedding light on heterogeneous cell populations within the TME.

This refined approach is especially relevant for TNBC, where

diverse subclones and tumor-associated immune or stromal cells

engage in dynamic crosstalk, influencing tumor behavior and

therapy outcomes (3, 4).

Recent studies underscore that immune heterogeneity within

the TME is crucial for predicting therapy response. Ligand-receptor

(LR) crosstalk, in particular, has emerged as a key regulator of

TNBC subtypes and a potential target for intervention (5). Single-

cell approaches offer comprehensive insights into immune cell

distributions and functions, elucidating immune evasion

mechanisms that TNBC tumors employ (6). Notably, immune

checkpoint regulators—such as PD-L1—and their interactions

with T cells within the TME play a pivotal role in immune

suppression and therapy resistance (7).

Building upon these findings, we leveraged scRNA-seq data to

dissect the TME in TNBC, focusing on LR interactions that may drive

clinical heterogeneity. By integrating single-cell transcriptomic data

with large-scale genomic and clinical datasets, including METABRIC
02
and GEO, we aimed to identify clinically relevant LR pairs, define

molecular subtypes according to LR expression profiles, and assess

their prognostic impact and relationship to immunotherapy

response. This comprehensive analysis provides novel perspectives

on TNBC pathobiology and unveils potential strategies for more

precise prognostic assessment and targeted therapeutic interventions.
2 Material and methods

2.1 Data source and pre-processing

We obtained single-cell RNA sequencing (scRNA-seq) data for

this study from the NCBI GEO repository under the accession

number GSE176078. This dataset comprises nine individual

samples. To ensure data integrity, we applied rigorous quality

control measures: cells with a high mitochondrial gene fraction

(≥25% for tumor libraries) or a low count of detected genes (<300)

were deemed low-quality and excluded. After filtering, 38,007 high-

quality cells were retained (Supplementary Table S1). Additionally,

we retrieved the METABRIC dataset (8, 9) accessed through the

cBioPortal (http://cbioportal.org/). Within this dataset, we

identified 318 triple-negative breast cancer (TNBC) samples, of

which 298 provided both gene expression profiles and genomic

variation data. Additionally, we retrieved microarray data

(GSE58812) from GEO. Following probe annotation and

conversion to gene symbols, we removed normal tissue samples,

excluded those lacking clinical follow-up or overall survival (OS)

data, and obtained a final cohort of 107 tumor samples, each with

expression data for 16,416 genes. For METABRIC and GSE58812

we performed robust-multi-array average (RMA) normalization

and then log2-transformed, gene-wise Z-scaled expression values

within each cohort. Because all downstream modeling (screening,

LASSO training and external validation) was carried out separately

inside each dataset, no additional cross-platform batch-correction

step was required. These datasets, encompassing single-cell and

bulk-level transcriptomic information, served as the foundation for

subsequent molecular and clinical analyses. The study outline is

illustrated in Figure 1.
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2.2 Patients stratification and survival
analysis

For each ligand–receptor (LR) pair, we classified patients as

“high” if the sum of the two genes expression reached or exceeded

the median of all samples combined LR expression. Otherwise,

patients were classified as “low.” The combined LR expression was

defined as the sum of the expression levels of both genes in a pair.

We evaluated overall survival using the “Survival” package in R

(version 4.2.3), determining statistical significance via log-rank tests

and deriving hazard ratios (HR) from Cox regression models.

Survival analyses were performed independently for each cohort,

their p-values were then combined with the Edgington method

using the “sump” function in the “metap” package (version 1.4).

Finally, Storey’s method (10) from the “qvalue” package (version

2.18.0) was applied for multiple testing corrections. Prognosis-

related LR pairs were defined by two criteria across all cohorts:

(1) Storey’s q-value < 0.1, and (2) a consistent HR either > 1 or < 1.
2.3 scRNA-seq data analysis

We conducted all single-cell analyses in R (version 4.2.3) using

the Seurat package (version 4.3.0). As part of our quality control

(QC), we excluded cells with either (i) an elevated fraction of

mitochondrial genes (≥25% for tumor libraries), which often

indicates stressed or dying cells, or (ii) a low gene count (<300),

which may reflect poor capture efficiency. We also examined and

visualized the correlation between the percentage of mitochondrial

genes and the total mRNA reads, including how the number of

detected genes relates to overall sequencing depth.
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After normalizing the data, we identified highly variable genes

(HVGs) by controlling for their average expression and dispersion.

Next, principal component analysis (PCA) was performed using

these HVGs as input, and the jackStraw function guided the

selection of significant principal components (PCs). When

merging data from different samples, we re-identified HVGs and

applied canonical correlation analysis (CCA) to remove batch

effects. The cells were then embedded into a two-dimensional

space via t-distributed stochastic neighbor embedding (t-SNE),

enabling clear visualization of their transcriptional landscapes.

Using a resolution of 0.2, we employed FindClusters to group

cells into 12 distinct clusters (labeled 0–11). To further

characterize the transcriptional profiles of each cluster, we used

FindAllMarkers to detect differentially expressed genes (DEGs)

between each cluster and all other cells. This workflow yielded a

comprehensive view of cellular diversity and underlying gene

expression patterns in our single-cell dataset. For cell annotation,

We obtained classic markers for defining cell subsets from previous

studies (11) and performed manual annotation of the cell clusters

based on the expression of these markers.
2.4 Cell–cell communication and ligand–
receptor pair analysis

We investigated intercellular communication using

CellPhoneDB (12),a curated database of known ligands, receptors,

and their interactions. As part of this analysis, we annotated

membrane-bound, secreted, and peripheral proteins across

different cell clusters. We then performed a permutation test to

assess the significance of each putative interaction, drawing on the
FIGURE 1

Graphic abstract.
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normalized cell expression matrix to calculate mean interaction

values. For each pair of cell clusters, we identified all ligand–

receptor interactions with a nominal p-value below 0.05. To focus

on biologically relevant associations, we only retained interactions

where at least one partner was a receptor (according to the

CellPhoneDB annotations), thereby excluding receptor–receptor

or other ambiguous pairs lacking a clear receptor component.

This approach enabled us to construct a detailed communication

network that reveals how distinct cell populations within the tumor

microenvironment potentially coordinate key processes such as

proliferation, immune response, and disease progression.
2.5 Samples clustering through consensus
clustering

We employed the “ConsensusClusterPlus” package in R (13) to

construct a consensus (consistency) matrix and cluster our samples,

thereby identifying molecular subtypes. First, we focused on

significantly correlated ligand-receptor pairs, selecting those with

a Pearson correlation coefficient above 0.4 (P < 0.01). These high-

correlation pairs were then subjected to consensus clustering to

determine molecular subtypes. For the clustering itself, we used the

Pearson metric and the “pam” algorithm, running 500 bootstrap

replications. In each bootstrap iteration, we randomly sampled 80%

of the patients from the training set. We explored solutions ranging

from 2 to 10 clusters. The most stable clustering outcome was

chosen based on inspection of the consensus matrix and the

consensus cumulative distribution function (CDF), ensuring that

the final partitioning was both reproducible and robust.
2.6 Development of the LR.score
prognostic model

We developed a personalized prognostic model by selecting

ligand-receptor (LR) pairs that displayed a significant impact on

patient outcomes and incorporating them into a penalized Cox

regression. Specifically, we employed L1-penalized Least Absolute

Shrinkage and Selection Operator (LASSO) regression via the

“glmnet” package in R. The optimal l value—governing the

penalty intensity—was identified through ten-fold cross-

validation, whereby the dataset was split into ten subsets and each

one used as a validation set in turn. The criterion for choosing l was

minimizing the partial likelihood deviance, thus retaining the most

predictive variables and shrinking the coefficients of less relevant

ones to zero, thereby striking a balance between performance and

overfitting avoidance.

Following variable selection through LASSO, we refined our

model using a stepwise multivariate regression approach based on

the Akaike Information Criterion (AIC) via the “stepAIC” function

in the “MASS” package. By iteratively removing variables to reduce

the AIC, we achieved an optimal compromise between model

complexity and fit. Ultimately, 6 LR pairs remained stable across

multiple models and consistently contributed to survival prediction,
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forming the basis of the LR.score. The patient-specific risk score was

computed using the following formula:

LR : score  =   =  LR : score 

=   − 0:431 * WNT1 _ROR2  −  0:081 * CXCR3 _CXCL9 

−  0:296 * FGFR2 _CD83  +  0:467 * TIMP1 _ FGFR2 

+  0:426 * NGFR _ IL2  −  0:051 * HLA − A _KIR3DL1:
2.7 Functional annotations and immune
infiltration analysis

To investigate the distinct gene expression profiles across

various molecular subtypes, we conducted Gene Set Enrichment

Analysis (GSEA v4.0) (14) using the Hallmark database (15). We

considered results statistically significant if the normalized p-value

was below 0.01 and the False Discovery Rate (FDR) was under 0.05.

For further insight into differentially expressed genes in each

subtype, we employed the “clusterProfiler” package [30] to

perform Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analyses, thereby identifying key biological pathways

affected. Functional annotation was also carried out using the

clusterProfiler package.

To assess immune infiltration in triple-negative breast cancer,

we uti l ized the CIBERSORT (16) algorithm (https: //

cibersort.stanford.edu/) to estimate the relative abundance of 22

immune cell types. Additionally, we applied the ESTIMATE

software to determine the proportion of immune cells in the

tumor microenvironment, providing a deeper understanding of

the immune landscape associated with each subtype.
2.7.1 Cell culture and knockdown of CXCL9 and
CXCR3 genes

MDA-MB-231 cells were obtained from ATCC, USA and

cultured in Dulbecco’s Modified Eagle Medium (DMEM)

supplemented with 10% fetal bovine serum (FBS) and 1%

penicillin-streptomycin at 37°C in a humidified incubator with

5% CO2. The knockdown of CXCL9 and CXCR3 genes was

achieved using small interfering RNAs (siRNAs) specific to these

genes, purchased from Thermo Fisher Scientific with catalog

numbers s141037 and s64088. Cells were seeded in 6-well plates

at a density of 2 × 105 cells per well and incubated overnight until

they reached approximately 60–70% confluence. siRNAs were

diluted in Opti-MEM™ Reduced Serum Medium (Thermo Fisher

Scientific) to a final concentration of 50 nM and mixed with

Lipofectamine™ RNAiMAX Transfection Reagent (Thermo

Fisher Scientific) following the manufacturer’s instructions to

form siRNA-transfection reagent complexes. These complexes

were then added dropwise to the cells in serum-free DMEM.

After 6 hours of incubation, the medium was replaced with

complete DMEM containing 10% FBS.

To confirm knockdown efficiency, total RNA was extracted

from transfected cells 48 hours post-transfection using the TRIzol™
frontiersin.org
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Reagent (Thermo Fisher Scientific). cDNA was synthesized using

the High-Capacity cDNA Reverse Transcription Kit (Thermo

Fisher Scientific), and quantitative real-time PCR (RT-qPCR) was

performed using PowerUp™ SYBR™ Green Master Mix (Thermo

Fisher Scientific) with gene-specific primers for CXCL9 and

CXCR3, with GAPDH as an internal control for normalization

The DCt method was used to calculate the relative expression levels

of CXCL9 and CXCR3. The cycle threshold (Ct) values of the target

genes were normalized to the Ct value of GAPDH using the formula

DCt = Ct(target gene) - Ct(GAPDH). Following primer pairs were

used for amplification purpose:
Fron
GAPDH-F 5’-ACCCACTCCTCCACCTTTGAC-3’,

GAPDH-R 5’-CTGTTGCTGTAGCCAAATTCG-3’

CXCL9-F: 5’-CTGTTCCTGCATCAGCACCAAC-3’

CXCL9-R: 5’-TGAACTCCATTCTTCAGTGTAGCA-3’

CXCR3-F: 5’-ACGAGAGTGACTCGTGCTGTAC-3’

CXCR3-R: 5’-GCAGAAAGAGGAGGCTGTAGAG-3’
Additionally, Western blotting was performed to validate the

protein-level knockdown of CXCL9 and CXCR3. Briefly, total

protein was extracted from transfected cells 48 hours post-

transfection using RIPA buffer (Thermo Fisher Scientific)

supplemented with protease and phosphatase inhibitor cocktail

(Thermo Fisher Scientific). Protein concentrations were measured

using the Pierce™ BCA Protein Assay Kit (Thermo Fisher

Scientific). Equal amounts of protein (20–30 μg per lane) were

separated by SDS-PAGE on 10% polyacrylamide gels and

transferred onto PVDF membranes (Thermo Fisher Scientific).

The membranes were blocked with 5% non-fat dry milk in TBS-T

(Tris-buffered saline with 0.1% Tween-20) for 1 hour at room

temperature and incubated overnight at 4°C with primary

antibodies specific to CXCL9 (Cat # PA5-34743, Thermo Fisher

Scientific) and CXCR3 (Cat # PA5-88164, Thermo Fisher

Scientific), as well as GAPDH (loading control). The membranes

were washed three times with TBS-T and incubated with HRP-

conjugated secondary antibodies (Thermo Fisher Scientific) for 1

hour at room temperature. Protein bands were visualized using the

Pierce™ ECL Western Blotting Substrate (Thermo Fisher

Scientific) and imaged using a chemiluminescent imaging system.

Densitometric analysis of the bands was performed using ImageJ

software to quantify the knockdown efficiency of CXCL9 and

CXCR3 at the protein level.

2.7.2 Cell proliferation assay
Cell proliferation was assessed using the CellTiter 96® AQueous

One Solution Cell Proliferation Assay (MTS Assay) kit (Promega).

Transfected cells were seeded into 96-well plates at a density of 2 ×

10³ cells per well in triplicates and incubated in DMEM

supplemented with 10% FBS at 37°C in a humidified 5% CO2

incubator. At 24-, 48-, and 72-hours post-seeding, 20 μL of the MTS
tiers in Immunology 05
reagent was added to each well, and the plate was incubated for 2

hours at 37°C. Absorbance was measured at 490 nm using a

microplate reader to assess cell viability, which reflects

cell proliferation.
2.7.3 Colony formation assay
The colony formation assay was used to assess the clonogenic

ability of the cells. Transfected cells were seeded into 6-well plates at

a low density of 500 cells per well and incubated for 10–14 days in

DMEM containing 10% FBS until visible colonies formed. The

medium was replaced every 3–4 days. After the incubation period,

the cells were washed with phosphate-buffered saline (PBS), fixed

with 4% paraformaldehyde for 15 minutes, and stained with 0.1%

crystal violet for 30 minutes. Excess stain was washed off with

distilled water, and the plates were air-dried. Colonies consisting of

≥50 cells were counted manually under a microscope, and the data

were normalized to the control group.
2.7.4 Wound healing assay
The wound healing assay was performed to evaluate the

migration capability of transfected MDA-MB-231 cells. Cells were

seeded into 6-well plates and grown to 90–100% confluence in

DMEM supplemented with 10% FBS. A sterile 200 μL pipette tip

was used to create a straight scratch (wound) across the cell

monolayer. The wells were washed twice with PBS to remove

floating cells and debris, and the cells were then cultured in

serum-free DMEM. Images of the wound area were captured at 0

and 24 hours using an inverted microscope. The wound area was

measured using ImageJ software, and the percentage of wound

closure was calculated as follows:

Wound Closure ( % ) 

=  ½(Initial Wound Area 

−  Final Wound Area)=Initial Wound Area� �  100:
3 Results

3.1 Screening of LR pairs associated with
patient prognosis

We began by filtering the single-cell RNA-seq (scRNA-seq) data

to include only genes expressed in at least three cells and cells

expressing a minimum of 250 genes, yielding 38,582 cells initially.

We then assessed mitochondrial and rRNA content, ensuring that

each cell had 100 to 6,000 genes expressed, <20% mitochondrial

content, and at least 100 UMIs, resulting in a final set of 38,007 cells.

Using the first 30 principal components and a resolution of 0.2, we

identified 12 subgroups. The t-SNE plot for the nine samples

(Figure 2A) demonstrates successful mixing of samples, indicating
frontiersin.org
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effective batch correction. We then manually annotated the cells

(Supplementary Figure S1, Supplementary Table S2), identifying 10

cell types in total. Figures 2B, C display the t-SNE plots before and

after annotation, respectively.

To characterize the subgroups further, we used the

“FindAllMarkers” function to identify differentially expressed

genes (DEGs) for each of the 12 clusters. We set the following

thresholds: log fold change > 0.5, a minimum proportion of

differentially expressed genes > 0.35, and adjusted p-value < 0.05.

The top five DEGs for each cluster are visualized in Figure 2D, and

the complete DEGs are listed in Supplementary Table S3. We also

examined the distribution of the 12 clusters across the nine samples

(Figure 2E) and performed KEGG pathway annotation for the

DEGs in each cluster. Notably, clusters 2 and 7 are enriched in

“Ribosome,” while cluster 5 is enriched in “Protein processing in the

endoplasmic reticulum” (Figure 2F).
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3.2 Complex cell communication networks
in the tumor microenvironment

We employed the CellPhoneDB framework to investigate potential

interactions among different cell types within the triple-negative breast

cancer tumor microenvironment. As shown in Figure 3A, multiple

interactions are evident, with macrophages exhibiting particularly

strong communication with endothelial cells and proliferating cells.

An overview of the interaction networks among the ten cell subgroups

is provided in Figure 3B, highlighting extensive interactions both

within and between these subgroups. In this network, thicker lines

signify a greater number of significant ligand–receptor pairs between

subgroups, while larger nodes indicate a higher abundance of these

pairs. Notably, endothelial cells, macrophages, and fibroblasts emerged

as hubs of communication, displaying robust interactions both among

themselves and with other subgroups (Figure 3C).
FIGURE 2

Single cell RNA seq analysis. (A) t-SNE distribution plot for 9 samples; (B) t-SNE distribution plot for 12 subgroups; (C) Annotated t-SNE plot showing
cell distribution; (D) Dot plot showing the expression of the top 5 marker genes for each of the 12 subgroups; (E) Distribution of the 12 subgroups
across the 9 samples; (F) Dot plot showing the results of KEGG enrichment analysis for the 12 subgroups.
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To further elucidate the significance of these interactions, we

focused on genes associated with tumor-related pathways such as

Hedgehog, Notch, TGFb, WNT, and EGFR signaling. This analysis

revealed numerous interactions involving MIF_TNFRSF14 in both

endothelial and proliferating cell subgroups, as well as notable

HLA-DPB1_TNFSF13B interactions between B cells and

fibroblasts, macrophages and fibroblasts, and even within

macrophages (Figure 3D). A detailed summary of these findings

is provided in Supplementary Table S4.
3.3 Molecular subtyping based on ligand-
receptor pairs

In our cell-to-cell communication analysis, we observed

significant differences in the expression of receptors and ligands,

receptor-ligand interaction strength, the number of receptor-ligand

pairs, and the types of receptor-ligand pairs across different cell

types. These differences may lead to the activation or inhibition of

various pathways, ultimately resulting in tumor development,
Frontiers in Immunology 07
progression, and drug resistance. Therefore, we extracted

significantly interacting ligand-receptor pairs across different cell

types and, based on the Pearson’s correlation coefficients of receptor

and ligand expression, identified significant ligand-receptor pairs in

triple-negative breast cancer in the cbioportal-METABRIC dataset.

In total, we identified 73 significantly correlated LR-pairs

(Supplementary Table S5).

Furthermore, we determined the expression strength of ligand-

receptor pairs by summing the gene expression values of receptors

and ligands and selected significant prognostic ligand-receptor pairs

(P < 0.05) for molecular subtyping. We included 57 LR-pairs with

substantial correlations and prognostic significance (Supplementary

Table S6). We analyzed 298 triple-negative breast cancer samples

from the cbioportal-METABRIC cohort and determined the

optimal cluster number based on the cumulative distribution

function (CDF) and Delta area curve (Figures 4A, B). Ultimately,

we chose k = 2, leading to two molecular subtypes (Figure 4C).

Further examination of these two subtypes ’ prognostic

characteristics revealed considerable differences in their prognosis,

as illustrated in Figure 4D. Overall, Clust1 exhibited a more
FIGURE 3

The ligands-receptors interactions in different cells. (A) Depiction of ligand-receptor interactions between different cell populations as determined
by CellphoneDB; (B) Network diagram from CellChat illustrating the number of significant interaction events between different cell populations, the
thickness of each line represents the connection strength between each cell; (C) Another networks representation showing the count of significant
interaction events between various cell populations, the thickness of each line represents the connection strength between each cell; (D) A broad
overview of selected statistically significant interactions between cell types, as identified by CellphoneDB.
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favorable prognosis, while Clust2 had a poorer prognosis.

Additionally, we validated the effectiveness and robustness on the

triple-negative breast cancer patient cohort from the GSE58812

dataset, observing significant differences in the prognosis of these

two molecular subtypes, consistent with the training set, as shown

in Figure 4E. These findings suggest that the two molecular subtypes

based on ligand-receptor pairs are transferable across different

study cohorts.
3.4 Genomics characteristics and clinical
phenotypes of different molecular
subtypes

The clinical phenotype characteristics of the two subtypes in the

METABRIC cohort were analyzed and found significant differences

in Grade, Pam50 classification, and CNV mutation types

(Supplementary Figures S2A–E). Additionally, we showcased the

top 10 gene mutations in the two subtypes (Supplementary Figure

S2F). Nevertheless, in terms of genomic alterations, there is minimal

difference between the two subtypes.

Next, we investigated whether there were differentially activated

pathways in the different molecular subtypes. We performed gene
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set enrichment analysis (GSEA) using all candidate gene sets in the

Hallmark database (FDR < 0.05). In the METABRIC cohort, Clust1

subtype showed significant enrichment in 28 pathways, and in the

GSE58812 cohort, 24 pathways were significantly enriched

(Figures 5A, B). Overall, pathways such as INTERFERON_

GAMMA_RESPONSE, INTERFERON_GAMMA_RESPONSE

were activated in both datasets, while pathways such as

GLYCOLYSIS, EPITHELIAL_MESENCHYMAL_TRANSITION

were suppressed in both datasets (Figure 5C).

To further elucidate the distinctions in the immune

microenvironment of patients with ligand-receptor molecular

subtypes, we employed Cibersort software to evaluate the

infiltration levels of 22 immune cell types in our TNBC cohort.

As depicted in Figures 6A, C, differences in immune cells between

the distinct subtypes in the METABRIC and GSE58812 cohorts

were apparent. We observed notable disparities in specific immune

cells between the two molecular subtypes. For instance, T cells CD4

memory activated, T cells gamma delta, and Macrophages M1

exhibited higher scores in Clust1 than in Clust2, while

Macrophages M0 and Macrophages M2 demonstrated lower

scores in Clust1 compared to Clust2. In addition, we also used

the ESTIMATE approach to assess immune cell infiltration, as

observed, the “ImmuneScore” in clust1 subtype was higher than
FIGURE 4

Consensus clustering based on LR pairs on TNBC. (A) Cumulative Distribution Function (CDF) curve of the samples in the METABRIC cohort; (B)
Delta area curve of consensus clustering for the METABRIC cohort, indicating the relative change in the area under the CDF curve for each category
number k compared with k – 1. The horizontal axis represents the category number k and the vertical axis represents the relative change in the area
under the CDF curve; (C) Heatmap of METABRIC sample clustering when consensus k equals 2; (D) Overall survival (OS) curve based on LR-pairs
molecular subtypes in the METABRIC cohort (p = 0.0035); (E) Overall survival (OS) curve of molecular subtypes in the GSE58812 dataset (p = 0.021).
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that in clust2 subtype in both METABRIC and GSE58812 cohorts,

indicating that Clust1 subtype has relatively higher immune cell

infiltration (Figures 6B, D).
3.5 Construction of a ligand-receptor pairs
scoring model

We discovered that molecular subtypes, based on ligand-

receptor pairs, exhibit distinct pathway characteristics and varying

degrees of immune infiltration. Consequently, we selected 78

prognostically significant LR pairs (P < 0.001) in the METABRIC

cohort, employing Lasso regression to minimize the number of

genes in the risk model. Initially, we examined the trajectory of each

independent variable. As lambda progressively increases, the

number of independent variable coefficients approaching 0 also

rises (Figures 7A, B). We employed 10-fold cross-validation for

model construction and analyzed the confidence intervals for each

lambda and demonstrated that the model is optimal when lambda =

0.0543. Consequently, we selected the 9 LR pairs at lambda = 0.0543

as the target LR pairs for the subsequent step.

Furthermore, based on the 9 LR pairs obtained from the Lasso

analysis, we used stepwise multivariate regression analysis, with the

Akaike Information Criterion (AIC) for stepwise regression, leading to

a total of six key LR pairs: WNT1_ROR2, CXCR3_CXCL9,

FGFR2_CD83, TIMP1_FGFR2, NGFR_IL2, and HLA-A_KIR3DL.

We then constructed an LR-pairs scoring model based on these 6 LR

pairs to quantitatively analyze the LR-pairs patterns in breast cancer

patients. The calculation formula for these 6 LR pairs is as follows:

LR.score = -0.431 * WNT1_ROR2 - 0.081 * CXCR3_CXCL9 - 0.296 *
Frontiers in Immunology 09
FGFR2_CD83 + 0.467 * TIMP1_FGFR2 + 0.426 * NGFR_IL2 - 0.051

* HLA-A_KIR3DL1.

We calculated the risk scores for each tumor sample in the

METABRIC dataset based on their expression levels and performed

ROC analysis for the prognostic classification of LR.score, analyzing

the prognostic prediction efficiency for one (AUC = 0.7), three (AUC

= 0.67), and five years (AUC = 0.69) (Figure 8A). Additionally, we

performed a z-score transformation on the Riskscore. Samples with

an LR.score greater than zero after z-score transformation were

classified as high-risk, and those with a score less than zero as low-

risk. as shown in Figure 8A, high risk score group revealed a highly

significant difference in worse prognosis (P < 0.0001). The

effectiveness of the risk model can also be transplantable, which

reflected acceptable prognostic prediction in validation cohorts (1-, 3-

, and 5-year OS predictions were 0.75, 0.67, and 0.70, respectively, in

GSE13507; 1-, 3-, and 5-year OS predictions were 0.86, 0.69, and 0.61,

respectively, in GSE32894) (Figures 8B, C). Across the three datasets,

the risk model constructed based on the 6 LR pairs was found to be

significantly correlated with prognosis, with high-risk patients having

worse outcomes and low-risk patients having better outcomes. Taken

together, the results suggests that the ligand-receptor pairs may

contribute to the tumor microenvironment and modulate immune

cell infiltration, ultimately affecting patient prognosis.
3.6 Correlation between LR.score and
clinical variables

Next, we compared the LR.score among various clinical features

and clusters. The results showed that in the METABRIC dataset,
FIGURE 5

Results of Gene Set Enrichment Analysis (GSEA) for two datasets. (A) Bubble plot of GSEA results for the Cluster 1 vs Cluster 2 subtypes in the
METABRIC cohort; (B) Bubble plot of GSEA results for the Cluster 1 vs Cluster 2 subtypes in the GSE58812 dataset; (C) Bubble plots of GSEA results
across both datasets.
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there were significant differences in the LR.score constructed based

on LR pairs for molecular subtypes, patient survival status, and

recurrence status (Figures 9A–D, Supplementary Table S7).

Specifically, within the Pam50 subtypes, significant differences were

observed in the LR.score between Basal and Claudin-low, as well as

between Claudin-low and HER2 (Figure 9E). In the validation cohort

(GSE58812), significant differences were found in the LR.score for

patient survival status and molecular subtypes constructed based on

LR pairs (Figures 9F, G, Supplementary Table S8).

To evaluate whether the LR.score can serve as an independent

prognostic factor, we performed univariate Cox regression analysis

and multivariate Cox regression analysis with clinical features

(including Age, Stage, and Grade). The findings demonstrated

that in the METABRIC dataset, univariate Cox regression analysis

identified a significant association between RiskType and survival

(Figure 10A). Likewise, multivariate Cox regression analysis showed

that RiskType (HR = 1.69, 95% CI = 1.12-2.56, p <0.05) maintained

a significant relationship with survival (Figure 10B).

We used the METABRIC dataset to build a nomogram for the

combination of Stage and LR.Score (Figures 11A, B). The

nomogram indicated that the LR.Score has the most significant
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impact on survival prediction, suggesting that the 6-LR pair-based

risk model can effectively predict prognosis. We plotted the

Decision Curve Analysis (DCA) for Stage, Cluster, LR.Score, and

Nomogram, and the results show that the Nomogram has a better

performance, as shown in Figure 11C.
3.7 Correlation between LR.score and
immune-related features

Furthermore, we analyzed the distribution differences of 22

immune cell scores in the LR.score groups in the training cohort

(Supplementary Figures S3A, B). We compared the immune

infiltration status in the LR.score groups and found that the

StromalScore, ImmuneScore, and ESTIMATEScore in the high

LR.score group were significantly lower than those in the low

LR.score group (Supplementary Figure S3C). Moreover, we

examined the relationship between LR.score and 22 immune cell

scores in the METABRIC cohort and calculated the correlation

between immune feature indices and immune cells using Pearson’s

correlation coefficients. The results are shown in Supplementary
FIGURE 6

Immune infiltration levels in TNBC between Cluster 1 and Cluster 2. (A) Differential analysis of scores for 22 types of immune cells in the METABRIC
cohort; (B) Differential analysis of immune infiltration levels in the METABRIC cohort; (C) Differential analysis of scores for 22 types of immune cells
in the GSE58812 dataset; (D) Differential analysis of immune infiltration levels in the GSE58812 dataset. ns, P > 0.05; * P < 0.05; ** P < 0.01; *** P <
0.001; **** P < 0.0001. Wilcoxon rank-sum test.
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Figure S3D, indicating that LR.score is significantly positively

correlated with resting NK cells, M0 macrophages, and activated

mast cells, while it is significantly negatively correlated with

activated NK cells and M1 macrophages.
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To explore the relationship between LR.score and

immunotherapy, we examined the ability of LR.score to predict

patients’ responses to immune checkpoint blockade (ICB)

treatment. we found that in the anti-PD1 cohort (GSE78220),
FIGURE 7

LASSO regression analysis for feature selection. (A) Trajectories of each predictor variable, where the x-axis represents the log value of the predictor
variable lambda and the y-axis represents the coefficient of the predictor variable; (B) Confidence intervals for each lambda.
FIGURE 8

Prognostic performance of TNBC between high and low LR.scores. (A) ROC curves for 1, 3, and 5 years and KM curves for high and low LR.score
groups in the METABRIC dataset; (B) ROC curves for 2, 3, and 5 years, and KM curves for high and low LR.score groups in the GSE58812 dataset; (C)
ROC curves for 1, 3, and 5 years, and KM curves for high and low LR.score groups in the TCGA dataset.
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CR/PR patients had better prognosis than SD/PD patients

(Figure 12A, log-rank test, p<0.001), and SD/PD patients had

lower LR.score than CR/PR response patients (Figure 12B). The

percentage statistics performed between the low LR.score group and
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the high LR.score group also showed that patients in the low

LR.score group had significantly better treatment outcomes

(Figures 12C, D). These findings suggest that the LR.score may

serve as a potential prognostic biomarker and predictor of
FIGURE 10

Univariate (A) and multivariate (B) analysis of age, grade, stage, and risk type in the METABRIC dataset.
FIGURE 9

Comparison of LR score across various clinical and molecular features. (A) Comparison of LR scores between molecular subtypes in the METABRIC
cohort; (B) Comparison of LR scores between different survival status in the METABRIC cohort; (C) Comparison of LR scores between different
recurrence status in the METABRIC cohort; (D) Comparison of LR scores between age groups in the METABRIC cohort; (E) Comparison of LR scores
among PAM50 molecular subtypes (Basal, Claudin-low, Her2, LumA and Normal) in the METABRIC cohort; (F) Comparison of LR scores between
molecular subtypes in the GSE58812 dataset; (G) Comparison of LR scores between different survival status in the GSE58812 dataset. ns, P > 0.05;
** P < 0.01; *** P < 0.001; **** P < 0.0001. Wilcoxon rank-sum test.
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immunotherapy response in TNBC patients. We used the median of

LRpairs receptor gene expression as the cutoff value, and samples

larger than the median were divided into the high gene expression

group and samples smaller than the median were divided into the

low gene expression group. Kaplan Meier curves were plotted, from

which it can be seen that in the METABRIC dataset, CD83 and

CXCL9-CXCR3 have significant differences in overall survival (OS)

(Figure 12E), P<0.05.
3.8 CXCL9/CXCR3 axis silencing impairs
proliferation, colony formation, and
migration in MDA-MB-231 TNBC cells

In the final part of our study, we investigated the functional

roles of CXCL9/CXCR3 axis in MDA-MB-231 cells by performing
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gene silencing experiments using siRNA (si-CXCL9 and si-

CXCR3). To assess the impact of these knockdowns, we

conducted several assays, including RT-qPCR, Western blot

analysis, cell proliferation, colony formation, and wound healing

assays. The effective knockdown of CXCL9 and CXCR3 at the

mRNA level in MDA-MB-231 cells, as measured by RT-qPCR. The

expression of both CXCL9 and CXCR3 was significantly reduced in

cells transfected with the respective siRNAs compared to control

cells (Figure 13A). A marked reduction in protein expression was

observed in si-CXCL9-treated and si-CXCR3 cells compared to

control cells, consistent with the RT-qPCR results (Figure 13B,

Supplementary Figure S4). The knockdown of CXCL9 and CXCR3

led to a significant reduction in cell proliferation rates of si-CXCL9

and si-CXCR3-treated cells compared to the control MDA-MB-231

cells (Figure 13C). The number of colonies formed by si-CXCL9

and si-CXCR3-treated cells was significantly lower than that of the
FIGURE 11

The nomogram of the LR.score and its clinical implications. (A) A nomogram predicting the survival probability at 1-, 3-, and 5-year intervals for
TNBC patients in the METABRIC dataset. Each patient’s total score of clinical characteristics and risk score are located on the “Total points” axis,
which corresponds to the survival probabilities plotted on the three axes below. (B) Calibration curves for the nomogram at 1-year, 3-year, and 5-
year intervals. (C) Decision curve for the Nomogram, stage, LR.score, and all clinical factors. * P < 0.05; *** P < 0.001.
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control cells, indicating that CXCL9 and CXCR3 are critical for the

clonogenic potential of MDA-MB-231 cells (Figures 13D, E).

Images from Figure 13F demonstrate delayed wound closure in

si-CXCL9 and si-CXCR3-treated cells compared to the control cells

over a 24-hour period. Quantitative analysis in Figure 13G shows a

significant reduction in wound closure percentage in si-CXCL9 and

si-CXCR3-treated cells, further confirming the roles of these genes

in promoting cell migration. Overall, these results provide strong

evidence that CXCL9/CXCR3 axis play crucial roles in regulating

cell proliferation, colony formation, and migration in MDA-MB-

231 cells.
4 Discussion

The tumor microenvironment (TME) has long been

acknowledged as a key determinant of cancer progression,

treatment resistance, and immune escape. Prior research

highlights the intricate interplay between stromal and immune

cells, emphasizing the critical function of ligand–receptor (LR)

interactions in shaping tumor phenotypes and driving cancer

heterogeneity (17). In this study, we performed single-cell RNA

sequencing (scRNA-seq) to cluster 12 subgroups and identify 10

distinct cell types, then extracted LR pairs that showed statistically

significant intercellular communications. By applying these

interactions to the METABRIC cohort of TNBC patients, we
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identified 73 LR pairs with significant correlations, among which

57 were prognostically relevant. Further analyses revealed two

molecular subtypes based on LR pairs, each displaying notable

differences in clinicopathological features, somatic mutation

profiles, pathway activations, and immune landscapes. We

evaluated the stability of the identified molecular subtypes by

testing variations in key parameters such as the number of

principal components and resolution parameters during

preliminary analyses. The resulting subtype assignments remained

largely consistent under reasonable parameter adjustments,

indicating robust subtype definitions. Although a formal

sensitivity analysis was not performed, these observations support

the reliability of our clustering-based subtype classification.

Through Lasso regression, 9 key LR genes were highlighted;

subsequently, a 6-LR-pair scoring model (LR.score) was

constructed via stepwise regression and multivariate analysis,

underscoring the importance of these LR pairs in prognostication

and therapeutic response.

Among the two molecular subtypes identified in our study,

Clust1 exhibited both heightened immune infiltration and an

elevated immune score, alongside prominent activation of

immune-related pathways such as interferon responses.

Additionally, Clust1 demonstrated a more enriched tumor

microenvironment overall, as evidenced by its significantly higher

ESTIMATEScore, while maintaining comparable stromal content

relative to Clust2. These findings suggest that Clust1 is
FIGURE 12

Immunotherapy performance predications based on the LR.score (A) Differences in the LR.score among immune therapy responses in the
IMvigor210 cohort; (B) Distribution of immune therapy responses among different LR.score groups in the IMvigor210 cohort; (C) Prognostic
differences between LR.score groups in the IMvigor210 cohort; (D) Prognostic differences between LR.score groups among early-stage patients in
the IMvigor210 cohort; (E) Kaplan–Meier analysis of the LR genes in the METABRIC dataset, Log rank test. * P < 0.05; **** P < 0.0001.
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characterized by a more immune-active phenotype, potentially

indicative of enhanced immunogenicity and immune system

engagement (18). Pathway enrichment analyses further revealed

that Cluster 1 exhibited prominent signatures of epithelial–

mesenchymal transition (EMT), angiogenesis, and interferon

response pathways (including both alpha and gamma responses),

which are commonly associated with heightened immune activity,

tumor invasiveness, and metastasis. Additionally, Cluster 1 showed

significant activation of metabolic pathways such as fatty acid

metabolism and cholesterol homeostasis, indicating distinct

metabolic reprogramming. In contrast, Cluster 2 displayed

relatively lower activation of these pathways, suggesting a less

invasive and metabolically stable phenotype (19). Notably, there

was a pronounced infiltration of activated T cells—particularly CD4

memory T cells and gd T cells—as well as M1 macrophages,

underscoring an enhanced anti-tumor immune response within

this subtype (20, 21). Meanwhile, diminished levels of M0 and M2

macrophages may mitigate immunosuppressive influences, thus

bolstering immune-mediated tumor control (22, 23). Taken

together, these findings imply that Clust1 represents a more
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immunologically active phenotype, offering potentially important

clues for refined patient stratification and more targeted

therapeutic approaches.

A key highlight of our analysis is the involvement of the CXCL9–

CXCR3 axis in shaping the immune landscape of TNBC.

Chemokines such as CXCL9 are recognized for their potent

capacity to recruit T lymphocytes, thereby activating and sustaining

robust anti-tumor immune responses (24, 25). The receptor CXCR3

is widely expressed on activated T cells, natural killer (NK) cells, and

other immune subsets, facilitating the chemotaxis of these effector

cells into the tumor microenvironment (TME) (26). In multiple

cancer types, elevated CXCL9/CXCR3 signaling has been associated

with improved prognosis, primarily due to effective tumor-immune

cell interactions that curb tumor progression (27). Within TNBC

specifically, harnessing or enhancing the CXCL9–CXCR3 interaction

could potentially strengthen immune infiltration and cytotoxicity,

laying the groundwork for novel immunotherapeutic strategies that

boost anti-tumor immunity (28). Mechanistically, CXCL9–CXCR3

signaling orchestrates multiple layers of anti−tumor immunity in

TNBC. CXCL9, produced chiefly by IFN−g–stimulated endothelial
FIGURE 13

Silencing of CXCL9/CXCR3 axis reduces proliferation, colony formation, and migration in MDA-MB-231 cells. (A) RT-qPCR showing reduced CXCR3
and CXCL9 mRNA expression after siRNA knockdown; (B) Western blot confirming protein knockdown; (C) Proliferation assay showing decreased
cell growth in siRNA-treated cells; (D) Colony formation assay images with fewer colonies in si-CXCR3 and si-CXCL9 cells; (E) Quantification of
colonies showing reduced clonogenic potential; (F) Wound healing assay images at 0 and 24 hours showing slower wound closure in siRNA-treated
cells; (G) Quantitative wound closure analysis showing impaired migration. p** < 0.01.
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cells and M1−polarised macrophages, binds CXCR3 on activated

CD+ T cells, Th1 cells and NK cells, triggering PI3K–AKT

−dependent chemotaxis and intertumoral retention of effector

lymphocytes (29). Functionally, our siRNA knockdown

experiments show that disrupting this axis impairs proliferation,

colony formation, and migration of MDA-MB-231 cells, indicating

both autocrine and paracrine effects on tumor and immune

dynamics. The LR.score model developed in this study offers a

quantitative measure that integrates multiple critical ligand–

receptor (LR) interactions, including CXCL9–CXCR3. In both the

METABRIC and GSE58812 cohorts, patients with higher LR.score

values demonstrated significantly poorer survival, highlighting the

score’s robust prognostic utility (30). Moreover, univariate and

multivariate Cox regression models in the METABRIC dataset

confirmed that LR.score serves as an independent predictor of

patient outcomes. These results imply that the cumulative effect of

key LR interactions captured by the LR.score is capable of reflecting

the overall degree of immune crosstalk and tumor aggressiveness,

thereby providing clinicians with an additional tool for risk

stratification. Furthermore, the individual components of the

LR.score reflect meaningful biological processes in TNBC. For

instance, CXCL9–CXCR3 and FGFR2–CD83, both with negative

coefficients, are associated with enhanced immune activation and T

cell recruitment, supporting their protective roles in tumor control. In

contrast, TIMP1–FGFR2 and NGFR–IL2 have positive coefficients

and may reflect pathways involved in tumor progression or immune

suppression. These coefficients provide insight into how the balance

of immune-promoting versus tumor-supporting interactions

contributes to the LR.score’s prognostic relevance.

Additionally, the LR.score shows a clear association with the

immune landscape of TNBC. Although we did not directly assess PD-

L1 levels or predefined immune gene expression signatures, tumors

with low LR.score values exhibited higher infiltration of CD+ T cells

and M1macrophages, as estimated by CIBERSORT and ESTIMATE.

This inverse relationship suggests that LR.score may reflect the

immunological activity of the tumor microenvironment and could

serve as a surrogate biomarker for identifying immunologically “hot”

tumors. Such a tool may be particularly valuable in clinical contexts

where direct immune profiling is not feasible.

Immune checkpoint molecules—including PD-1, PD-L1, and

CTLA-4—are pivotal to tumor immune evasion mechanisms, and

monoclonal antibodies targeting these pathways have revolutionized

cancer therapy (31–33). In our anti–PD1 cohort, the LR.score reliably

distinguished between patients who are likely to derive clinical benefit

from ICB therapy and those who are less responsive. Patients in the

low LR.score group displayed enhanced responsiveness to checkpoint

inhibitors, coupled with improved clinical outcomes. In contrast,

elevated LR.score values correlated with suboptimal ICB responses

and shorter survival. This distinction supports the notion that LR.score

can serve as a biomarker for identifying TNBC patients who are prime

candidates for immunotherapy, potentially sparing non-responders

from the side effects and costs of ineffective treatments.

The implications of these findings are far-reaching. First, they

emphasize the functional importance of LR-mediated crosstalk in
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shaping both tumor behavior and therapy response, thereby

underscoring the value of systematically dissecting LR networks

in diverse cancer settings. Second, our work suggests that targeting

specific ligand–receptor axes—including CXCL9–CXCR3—may

amplify the efficacy of existing immunotherapies by further

promoting T-cell and NK-cell recruitment into the TME. Future

endeavors should examine whether combining LR-focused

interventions with checkpoint inhibitors can induce synergistic

anti-tumor effects. Additionally, in vitro and in vivo validation of

these LR interactions, along with expanded clinical trials

incorporating LR.score–based stratification, would help

consolidate our observations and guide the development of more

tailored treatments.

Taken together, our study lays a foundation for future

therapeutic approaches targeting LR interactions. The CXCL9–

CXCR3 axis, in particular, may serve not only as a biomarker of

immunologically active tumors but also as a therapeutic target to

enhance immune infiltration and improve response to checkpoint

inhibitors. Further exploration of drugs or biologics modulating this

axis, or combining LR modulation with ICB, could offer promising

directions for improving outcomes in TNBC and potentially other

immunologically cold cancers.
5 Conclusion

By integrating single-cell transcriptomic data with large-scale

clinical cohorts, our study demonstrates the pivotal role of ligand–

receptor (LR) interactions—particularly the CXCL9–CXCR3 axis—

in shaping TNBC progression and immune responsiveness. The

LR.score we constructed effectively stratifies patient risk and

predicts response to immunotherapy, underscoring its potential

as a robust prognostic biomarker. Clinically, the LR.score could be

instrumental in guiding personalized treatment strategies by

identifying patients who may benefit from specific therapies, such

as ICB or targeted treatments, based on their LR interaction profiles.

This approach not only enhances prognostic precision but also

supports the development of tailored therapeutic interventions,

paving the way for more effective and individualized management

of TNBC.
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SUPPLEMENTARY FIGURE 1

The t-SNE plot showing the expression of marker genes.

SUPPLEMENTARY FIGURE 2

(A) Comparison of the two subtypes across various stages; (B) Comparison of

the two subtypes in terms of Grade; (C) Comparison of the two subtypes

based on the Pam50 subtypes; (D) Age comparison of patients across the two
subtypes; (E) Comparison of CNV mutation types in the two subtypes; (F)
Heatmap of the top 10 gene mutations in the two subtypes.

SUPPLEMENTARY FIGURE 3

(A) Distribution of 22 types of immune cell components across different

LR.score groups within the METABRIC cohort. (B) Comparative analysis of the

22 types of immune cell components among different LR.score groups within
the METABRIC cohort. (C) Variation in immune cell infiltration among

different LR.score groups within the METABRIC cohort. (D) Correlation
analysis between LR.score and immune cell scores.

SUPPLEMENTARY FIGURE 4

Uncropped Western Blot bands of CXCL9, CXCR3, and GAPDH in MDA-MB-

231 cells.
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