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Integrative multi-omics analysis
of IFNg-induced macrophages
and atherosclerotic plaques
reveals macrophage-
dependent STAT1-driven
transcription in atherosclerosis
Mahdi Eskandarian Boroujeni1†, Natalia Lopacinska1,
Aleksandra Antonczyk1, Katarzyna Kluzek1, Joanna Wesoly2

and Hans A. R. Bluyssen1*

1Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty
of Biology, Adam Mickiewicz University, Poznań, Poland, 2Laboratory of High-Throughput
Technologies, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
Atherosclerosis is a chronic inflammatory disease of blood vessels, characterized

by atherosclerotic lesions in large- and medium-sized arteries. IFNg is a crucial

mediator of atherosclerosis through activation of signal transducer and activator

of transcription (STAT)1. Macrophages (MØ), in different subtypes, play a central

role in atherosclerosis, from early foam cell formation to advanced plaque

development and potential rupture. Recent evidence in MØ supports a

collaborative role of STAT1 with PU.1, in association with histone acetylation

and methylation marks, in MØ-specific IFNg-activated transcriptional responses.

This study investigated the role of MØ STAT1-mediated signaling in

atherosclerosis progression through multi-omics integration of IFNg-induced
MØ and expression analysis in human andmouse atherosclerotic lesions. First, by

integrating ATAC-seq, ChIP-seq, and RNA-seq data from IFNg-treated and

untreated bone marrow-derived MØ, we identified 1139 STAT1-dependent

integrative genes. Active transcription of these genes was characterized by

prominent promoter STAT1-PU.1 co-binding, increased histone methylation

and acetylation and chromatin accessibility. Moreover, KEGG-analysis

unraveled a strong connection to lipid metabolism and atherosclerosis-related

pathways, whereas STARNET analysis identified high association with LDL

cholesterol and diseased vessel traits. Using scRNA-seq data analysis of human

carotid and coronary atherosclerotic lesions revealed dynamic changes of

STAT1-dependent integrated genes in MØ subtypes, including foamy MØ,

monocytes, inflammatory MØ, tissue resident MØ and conventional dendritic

cells. Comparative MØ-dependent expression analysis in aortic lesions from

LDLr-/- and ApoE-/- high fat diet mouse models substantiated overlap between

human and mouse atherosclerosis and identified 24 MØ-specific commonly

expressed STAT1-dependent integrated genes. Collectively, we provide detailed

insights into MØ-specific IFNg-activated transcriptional changes, mediated by

STAT1-PU.1 co-binding and associated epigenetic changes, and offer the
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identification of new biomarkers and therapeutic targets in atherosclerosis.

Moreover, we present a novel STAT1-dependent gene signature that could

potentially serve to monitor MØ-dependent plaque progression during human

atherosclerotic disease.
KEYWORDS

atherosclerosis, IFNg signaling, STAT1, multi-omics integration, macrophages, single
cell RNA-seq, diagnostic markers, gene signature
Introduction

Atherosclerosis is a chronic inflammatory disease of blood

vessels, characterized by atherosclerotic lesions in large- and

medium-sized arteries, including aorta, and coronary and carotid

arteries. Previous studies have shown that atherosclerosis is a lipid-

driven chronic inflammatory disease, which involves complex

interactions between various immune and vascular cell types and

signaling pathways. Among these, the role of macrophages (MØ)

and interferon-gamma (IFNg) signaling has emerged as a critical

factor in atherosclerotic lesion formation and progression (1–4).

Recent advances in multi-omics technologies have provided

unprecedented opportunities to investigate the molecular

mechanisms underlying atherosclerosis at various levels of

biological organization. By integrating data from chromatin

accessibility assays, epigenetic modifications, transcription factor

binding patterns, and gene expression profiles, researchers can now

gain a more comprehensive understanding of the regulatory

networks driving disease progression (5–8).

One key player in the IFNg signaling pathway is the transcription
factor Signal Transducer and Activator of Transcription 1 (STAT1).

STAT1 homodimers, known as g-activated factor (GAF), directly

activate transcription of target genes containing the IFNg-activated
sequence (GAS; consensus TTTCNNNGAAA). STAT1-STAT2

heterodimers together with interferon regulatory factor (IRF)9

(known as ISGF3) expands the range of regulatory elements that

can be targeted by STAT1 to the IFN-stimulated response element

(ISRE; consensus AGT TTC N2TTTCN). Also, IRF1, as a STAT1-

target gene, has been shown to regulate transcription of genes in

response to IFNg. Thus, IRF1 participates in secondary IFNg
responses by activating transcription of ISRE-containing genes.

Together, these different STAT1-dependent complexes mediate

transcriptional regulation of genes involved in inflammation, lipid

metabolism, and immune responses (4, 9, 10). However, the precise

mechanisms by which STAT1-mediated IFNg signaling contributes

to atherosclerosis progression remain incompletely understood.

IFNg is present in atherosclerotic lesions, primarily produced by

T cells, natural killer cells and MØ, and has emerged as an important

factor in atherogenesis. For example, in the atherosclerotic plaque

local environment, IFNg activates multiple cells of the innate and

adaptive immune response, which triggers production of a cascade of
02
pro-inflammatory molecules, including multiple interleukins,

chemokines and adhesion molecules. This facilitates recruitment of

monocytes to the endothelial wall where they can breach the activated

EC monolayer and differentiate into MØ. IFNg subsequently

promotes MØ polarization to the classically activated M1 pro-

inflammatory phenotype, which predominates in atherosclerotic

lesions, and is considered to be a significant contributor to lesion

progression. At the same time, IFNg also stimulates expression of

scavenger receptors and suppression of reverse cholesterol transport

proteins in MØ, thereby promoting abnormal accumulation of

modified LDL (mLDL) and suppression of cholesterol efflux to

HDL, which leads to foam cell formation. Subsequent IFNg-driven
foam cell apoptosis, causing lipid overload of the intima, contributes

to the lipid-rich necrotic core and fostering ECM degradation (11)

and references therein). Finally, IFNg-driven transition of SMCs from

a contractile to a proliferative and migratory state is another

important mark of atherosclerotic plaque progression (22).

Multiple murine studies support the atheroma-promoting

properties of IFNg. LDL receptor (LDLr) and IFNg double

knockout (KO) showed much less atherosclerosis in the aortic arch

and descending aorta than LDLr single KO mice after 8 weeks on a

high fat diet (HFD) (12). Similarly, mice with double KO of ApoE

and the IFN-g receptor showed reduced aortic atherosclerotic lesion

size compared to ApoE single KO mice after 3 months on a Western

type diet (13). Myocardial rejection occurred in both wild-type and

IFNg-KO mice given heart transplants, but the IFNg-KO mice were

protected from developing coronary arteriosclerosis (14, 15). Wild-

type mice treated with anti-IFNg antibodies were also protected from
atherosclerosis upon heart transplantation. Other murine studies

have found that exogenous IFNg administration greatly increases

atherosclerotic lesion size while promoting MØ and T cell

recruitment to the lesions (16).

MØ play a central role in atherosclerosis, from early foam cell

formation to advanced plaque development and potential rupture.

Studies have shown that the effect of MØ on atherosclerotic plaques

is not only determined by the number of infiltrated macrophages

but also by their polarization state and the relative proportion of

different phenotypes. These cells exhibit remarkable plasticity,

adopting various phenotypes in response to environmental cues

within the atherosclerotic lesion. The heterogeneity of MØ

populations in atherosclerotic plaques has been increasingly
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recognized, with distinct subsets showing pro-inflammatory, anti-

inflammatory, or lipid-handling properties (17, 18). Recently,

Mosquera et al. performed an integrative meta-analysis using

single-cell RNAseq datasets from atherosclerotic lesions and non-

lesion coronary arteries (7). This revealed disease-relevant MØ

subtypes, including foamy MØ, monocytes, inflammatory MØ

and tissue resident MØ in human atherosclerosis.

The interplay between MØ and IFNg signaling is particularly

relevant in the context of atherosclerosis. IFNg can profoundly

influence MØ function, promoting a pro-inflammatory phenotype

and enhancing lipid uptake. Moreover, STAT1 activation in

macrophages has been shown to exacerbate atherosclerosis in

animal models, suggesting a critical role for this signaling axis

in disease progression (4, 19–23). Indeed, Agrawal et al. identified

STAT1 as an important regulator of foam cell formation and

atherosclerotic lesion development in an intraperitoneal

inflammation model and an atherosclerosis-susceptible bone

marrow transplantation mouse model (22). Thus STAT1 was

recognized to play a role in MØ apoptosis, a critical process for

the formation of the necrotic core in atherosclerotic plaques (24).

Mice transplanted with STAT1 deficient bone marrow revealed

reduced MØ apoptosis and plaque necrosis (24). Silencing ARL11,

ADP ribosylation factor like GTPase 11, was recently shown to

relieve atherosclerotic inflammation in ApoEKO mice and lipid

deposition in MØ via retraining JAK2/STAT1 pathway (25).

Increased activity of STAT1 was also associated with decreased

expression of contractile genes and as a consequence SMC de-

differentiation (26), VSMCs proliferation and neointimal

hyperplasia (15). Moreover, phosphorylated STAT1 in VSMCs

and ECs of human atherosclerotic plaques correlated with

elevated expression of the chemokines CXCL9 and CXCL10 (10).

In MØ, recent evidence supports a collaborative role of STAT1

with the Lineage Determining Transcription Factors (LDTF) PU.1

in MØ-specific transcriptional responses. PU.1 can bind cognate

sequences in the context of closed chromatin and subsequently

facilitate recruitment of Stimulus Dependent Transcription Factors

(SDTF), like IFNg-activated STAT1. Thus, PU.1 directs IFNg-
induced STAT1 to their genome-wide cognate binding sites in a

cell type-specific manner to activate gene expression (9, 27, 28).

This chromatin accessibility was also shown to be associated with

enrichment of different histone acetylation and methylation marks,

including H3K27Ac, H3K4me1 and H3K27me3, in gene promoters

and enhancers (29, 30). Recent studies have also demonstrated that

the alterations in histone acetylation and methylation patterns can

significantly impact macrophage activation states and their

contribution to plaque development (31, 32). Understanding how

IFNg and STAT1 signaling intersect with PU.1 and these epigenetic

processes in MØ and MØ subtypes in atherosclerotic plaques could

provide new insights into the molecular basis of MØ-specific

STAT1-dependent transcription and its potential contribution

to atherosclerosis.

Based on a comprehensive multi-omics approach, integrating

ATACseq, ChIP-seq, and RNA-seq data from IFNg-treated bone

marrow-derived MØ, we identified a set of STAT1-dependent

integrative genes that exhibit PU.1 co-binding combined with
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single-cell and bulk RNA sequencing data from human and

mouse atherosclerotic lesions we were able to monitor the

dynamic changes of these STAT1-dependent integrative genes in

macrophage subtypes within atherosclerotic plaques.

Accordingly, we provide detailed insights into MØ-specific IFNg-
activated transcriptional changes, mediated by STAT1-PU.1 co-binding

and associated epigenetic changes, and offer the identification of new

biomarkers and therapeutic targets in atherosclerosis. Moreover,

identification of a subset of 24 MØ-specific STAT1-dependent genes,

commonly expressed in human and mouse atherosclerotic lesions,

could represent a novel gene signature to monitor plaque progression

during human atherosclerotic disease.
Results

Multi-omics based integration of MØ
IFNg-stimulated transcriptional changes in
human and mouse atherosclerosis

In our quest to identify IFNg-responsive STAT1-dependent

integrated genes in MØ and understand their pathogenic and

diagnostic behavior in atherosclerotic plaque formation, we

performed a multi-omics strategy of different steps (Figure 1).

First, we collected publicly available multi-omics data sets of

short-term IFNg treated mouse bone marrow-derived MØ,

examining correlates of transcription activation, including

chromatin accessibility (ATAC-seq) (33) and histone acetylation

(H3K27ac) (28) and methylation (ChIP-seq: H3K4me1 and

H3K4me3) (29) along with the chromatin interaction of key

transcription factors (ChIP-seq) STAT1 (28, 34) and PU.1 (27)

(Supplementary Table S1). To minimize batch effects, we prioritized

selecting datasets that contained multiple correlates and were,

whenever feasible, conducted by a single laboratory, followed by

normalizing all the samples as described in materials and methods.

We also included our in-house gene expression profiling dataset

(RNA-seq) of mouse bone marrow-derived MØ treated with IFNg
for different time points (0, 0.5, 2, 4, 8, 24h) (Supplementary Table

S2). Subsequently, integration of these different data sets was

performed to select a list of IFNg-responsive STAT1-dependent

integrative genes based on the following criteria: IFNg-induced 1)

differential transcriptional activity, 2) chromatin accessibility, 3)

epigenetic changes, 4) STAT1-PU.1 co-binding. Next, by using

publicly available single-cell RNA-seq data sets of atherosclerotic

lesions from human patients and of a LDLr-/- high fat diet (HFD)

mouse model (Supplementary Table S1), we aimed at monitoring

the dynamic changes of these STAT1-dependent integrative genes

in MØ subtypes within atherosclerotic plaques and identify novel

diagnostic markers and therapeutic targets. Finally, comparative

analysis between these scRNAseq data sets and with our in-house

HFD ApoE-/- atherosclerosis mouse model bulk RNA-seq data set

(Supplementary Table S1) was used to identify a novel MØ-specific

STAT1-dependent integrated gene signature to monitor human

atherosclerotic plaque formation (Figure 1).
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Identification of IFNg-responsive STAT1-
dependent integrated genes

In the first step of our multi-omics analysis strategy, we

integrated ATAC-seq and different ChIP-seq (STAT1, PU.1,

H3K27ac, H3K4me1 and H3K4me3) datasets, based on peak

calling and merging all the peaks. Next, we assessed global peak

correlations across various datasets (Figure 2A). For this, we

examined the pairwise correlation of the peaks derived from all

genomic regions and peaks that were restricted to the promoter

regions (–3000, 3000). As shown in Figure 2A, the correlation

pattern looks similar regardless of the location of the peaks (all

genomic regions vs promoter-exclusive regions). Moreover, we

observed that increased STAT1 binding upon IFNg exposure

strongly correlated with enhanced H3K27ac and H3K4me1

marks. STAT1 binding also correlated with the presence of

H3K4me3 marks and PU.1 chromatin interactions, but in a

rather IFNg-independent manner.

To identify IFNg-responsive STAT1-dependent integrative

genes, we performed differential peak analysis on the above

normalized ATAC-seq and ChIP-seq datasets between control

and IFNg-treated conditions. Since PU.1 binding was only

marginally affected by IFNg treatment, we could hardly detect
Frontiers in Immunology 04
any differential peaks in comparison with STAT1 and different

epigenetic marks. As such varying gene numbers for different data

sets were identified, with the highest number for H3K4me1 (6164)

and the lowest for H3K4me1 (2839). Then we integrated the

differentially enriched regions from each data set with the list

of 1736 IFNg-induced genes derived from the RNAseq dataset

of mouse MØ treated with IFNg for different time points (0, 0.5,

2, 4, 8, 24h). This multi-omics integration resulted in the

identification of 1139 IFNg-responsive STAT1-dependent

integrative genes (Figure 2B; Supplementary Table S3), of

which cluster analysis identified two major gene expression

patterns (Figure 2C). KEGG analysis of differential peaks in

each dataset (except PU.1) highlighted relevant overlapping

terms including JAK-STAT, MAPK and TNF signaling

pathways and lipid and atherosclerosis (Figure 2D). Likewise,

KEGG analysis for the IFNg-responsive STAT1-dependent

integrative genes recognized similar terms, especially connected

to lipid and atherosclerosis (Figure 2E). Moreover, when we

queried the Stockholm-Tartu Atherosclerosis Reverse Network

Engineering Task (STARNET) gene regulatory networks across

seven cardiometabolic tissues (35), the integrative genes highly

associated with phenotypic traits such as LDL cholesterol and

diseased vessels (Figure 2F).
FIGURE 1

Schematic overview of the study. We performed a multi-omics strategy of different steps. First, we collected publicly available multi-omics data
sets of short-term IFNg treated mouse bone marrow-derived MØ, examining chromatin accessibility (ATAC-seq) and histone acetylation
(H3K27ac) and methylation (ChIP-seq: H3K4me1 and H3K4me3) along with the chromatin interaction of key transcription factors (ChIP-seq)
STAT1 and PU.1. We also included our in-house gene expression profiling dataset (RNA-seq) of mouse bone marrow-derived MØ treated with
IFNg for different time points. Subsequently, integration of these different data sets was performed to select a list of IFNg-responsive STAT1-
dependent integrative genes. Next, by using publicly available single-cell RNA-seq (scRNAseq) data sets of atherosclerotic lesions from human
patients and of a LDLr-/- high fat diet (HFD) mouse model, we aimed at monitoring the dynamic changes of these STAT1-dependent integrative
genes in macrophage subtypes within atherosclerotic plaques and identify novel diagnostic markers and therapeutic targets. Finally, a
comparative analysis of these datasets enabled the identification of a novel MF-specific STAT1-dependent integrated gene signature for tracking
human atherosclerotic plaque development.
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FIGURE 2

Identification and characterization of IFNg-responsive STAT1-dependent integrated genes. (A) the pairwise correlation of the peaks derived from all
genomic regions (left) and the peaks that are restricted to the promoter region (–3000, 3000). The color scale represents Pearson correlation
coefficients, with red indicating high correlation and blue indicating low correlation across datasets. (B) The horizontal bar plot showing the number of
differential peaks and their related genes (entrez gene id) in each dataset. For ATAC-seq, H3K4me1 & H3K4me3, a fold change cut-off of 2 was selected,
whereas for PU.1, STAT1 and H3K27ac, a cut-off of 4 was set. The bars are sorted based on the number of genes in each dataset. (C) The expression
pattern of STAT1-dependent integrative genes from our RNA-seq experiment performed on IFNg-treated mouse MØ at different time points. X-axis
denotes time points post-treatment; Y-axis shows normalized gene expression. Lines represent expression trends across key genes. (D) Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differential peaks for each dataset. The numbers in the parentheses indicate the total
number of annotated genes in each dataset. The color scale represents the statistical significance of each enriched pathway with respect to its
corresponding dataset. (E) KEGG pathway analysis of STAT1-dependent integrative genes. (F) The clinically phenotypic enrichment of integrative gene
module using Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) gene regulatory networks (26), indicating disease or trait
associations. The color intensity represents the statistical significance of observed traits with red color indicating higher significance. fp-LDL-Chol,
Fasting Plasma Low-Density Lipoprotein Cholesterol; fp-TG, Fasting Plasma Triglycerides; fp-HDL-Chol, Fasting Plasma High-Density Lipoprotein
Cholesterol; BMI, Body Mass Index; CRP, C-Reactive Protein; P-Chol, Plasma Cholesterol; CAD DEG, Coronary Artery Disease Differentially Expressed
Genes; SYNTAX, Synergy Between Percutaneous Coronary Intervention with Taxus and Cardiac Surgery; HbA1c, Hemoglobin A1c.
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IFNg-responsive integrated genes are
characterized by STAT1-PU.1 co-binding in
combination with increased histone
methylation and acetylation and chromatin
accessibility

Further characterization of IFNg-responsive STAT1-dependent

integrative genes included analysis of the correlation between STAT1

and PU.1 chromatin interactions and H3K27ac, H3K4me1 and

H3K4me3 histone modifications upon IFNg treatment as compared

to control. For this, we performed promoter analysis of the 1139

IFNg-responsive STAT1-dependent integrative genes for the

presence of PU.1 and STAT1 binding sites (Figure 3A). We

detected single or combined PU.1, GAS and/or ISRE motifs in the

promoters of most of these genes, with GAS favoring ISRE for STAT1

binding. As observed in Figure 3A, GAS, ISRE and PU.1 motifs were

highly enriched in the promoters of these genes. Moreover, the

localized distribution of STAT1 and PU.1 motifs correlated with

STAT1-PU.1 co-binding near the transcription start site (TSS) of

IFNg-responsive STAT1-dependent integrative genes. In general,

under these conditions GAS motifs correspond to potential binding

of GAF and ISRE motifs to ISGF3. In this context, the histone

methylation (H3K4me1, H3K4me3) and acetylation (H3K27ac) of

integrative gene promoters displayed a bimodal pattern, flanking

STAT1 and PU.1 binding sites at TSS, and increased in response to

IFNg treatment as compared to control (Figure 3B). As already

mentioned above, PU.1 binds DNA already in untreated conditions

and does not change significantly in response to IFNg stimulation

(Figure 3B). To obtain a multi-omics perspective of the IFNg-
dependent distribution of STAT1, PU.1, H3K27ac, H3K4me1 and

H3K4me3 binding in relation to chromatin accessibility and

transcriptional activity of integrative genes, we prepared an

Integrative Genomics Viewer (IGV) snapshot of 10 pre-selected

IFNg-responsive STAT1-dependent integrative genes (Figure 3C).

These included Gbp8, Tgtp2, Ligp1, Igtp, Gbp4, Cxcl9, Il18bp, Socs1,

Ifi44 and Stat1. For transcriptional start site (TSS) location of these

genes (upper tracks), we used the mouse refTSS (36) annotated

reference dataset. Besides, we determined the genomic coordinates of

GAS and ISRE motifs present in their promoters, reflecting GAF and

ISGF3 binding respectively. Based on this multi-omics examination

of selected STAT1-dependent integrative genes, it was evident that

chromatin is physically accessible for the binding of PU.1 in

untreated conditions and STAT1 together with PU.1 upon

exposure to IFNg, particularly near the promoter regions

surrounding TSS. This differential PU.1-STAT1 co-binding clearly

correlated with histone H3K27ac marks around STAT1 binding sites,

already present in untreated cells and highly enriched upon IFNg
treatment, as well as with active transcription. A similar association

could be observed with dynamic changes of H3K4me1 and H3K4me3

marks (Figure 3C), with H3K4me3 concentrated near the TSS and

H3K4me1 flanking these regions (37, 38). Together, these

observations agree with a mechanism in which prior to IFNg
treatment, the chromatin/promoters of these integrative genes are

in a poised or already active (constitutive) state, characterized by

constitutive PU.1 binding (and to a lesser extent STAT1) in
Frontiers in Immunology 06
combination with histone methylation (both H3K4me1 and

H3K4me3) and acetylation (H3K27ac) marks. But upon IFNg
exposure, there is a surge in chromatin openness, mediated by

increased histone acetylation along with increased STAT1 co-

binding (in the form of GAF and ISGF3) to sites pre-bound by

PU.1 that accelerates transcriptional activation and marks these genes

as IFNg-responsive STAT1-dependent integrative genes.
STAT1-integrative genes display MØ
subtype-dependent expression in human
atherosclerotic plaques

To further understand the pathogenic and diagnostic behavior of

IFNg-responsive STAT1-dependent integrative genes in macrophage

subtypes in atherosclerotic plaque formation, we examined several

publicly available single-cell RNA-seq data sets of atherosclerotic

lesions from human patients and of a LDLr-/- HFD mouse model

(Supplementary Table S1). In the context of human atherosclerosis,

two human datasets from coronary and carotid atherosclerotic

lesions and one dataset from non-lesion coronary arteries were

used (see Supplementary Table S1 for the detailed sample

description). The latter data set included material obtained from 3

patients with end-stage heart failure undergoing cardiac

transplantation, without arterial anomaly (39). We integrated these

three single cell studies, followed by cell type annotation using a

combination of automated and manual approaches, consisting of

40689 cells (Figure 4A; Supplementary Table S4). The rapid advances

in single-cell technologies have facilitated the identification of diverse

MØ subtypes, based on expression of specific markers for pro-

inflammatory MØ (TNF, CXCL2), foamy anti-inflammatory MØ

(TREM2, CD9) and resident-like MØ (FOLR2, CBR2), detected in

atherosclerotic plaques in both human and mouse (40–42).

Consistent with Mosquera et al., 2023 (7), we identified foamy MØ,

monocytes, inflammatory MØ, tissue resident MØ and conventional

dendritic cells (cDC) in both non-lesion and lesion groups.

Comparing lesion vs non-lesion groups displayed dynamic changes

among various MØ subtypes. For instance, the number of foamyMØ,

monocyte and tissue resident MØ increased in lesion group

(Figures 4B, C), whereas inflammatory MØ numbers were higher

in non-lesion group vs lesion. Moreover, differential expression

analysis (selection criteria: FDR < 0.05 and log2FC >= 0.25 and

log2FC <= -0.25) identified 614 genes that were differentially

expressed in non-lesion vs lesion group in all MØ subtypes combined.

To obtain a holistic view of the expression pattern of these

differentially expressed genes, we prepared a heatmap showing the

expression pattern with respect to MØ subtype and arterial bed

(Figure 4D; Supplementary Table S5). We then performed

hierarchical cluster analysis using the Euclidean method,

generating three distinct clusters. Interestingly, clusters 1 and 2

unveiled arterial bed-specific gene expression patterns, with genes

in cluster 1 predominantly upregulated in coronary plaque tissue

and present in all MØ subtypes. In contrast, genes in cluster 2 were

associated with carotid lesion expression, again detected in all MØ

subtypes. Cluster 3 represented genes with MØ subtype-specific
frontiersin.org
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FIGURE 3 (Continued)
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FIGURE 3 (Continued)

Epigenetic and binding profiles of IFNg-responsive integrated genes. (A) The enrichment of PU.1 motif and GAS (Gamma-Activated Sequence) and
ISRE (Interferon-Stimulated Response Element) motifs as binding sites for PU.1 and STAT1, respectively, in PU.1(left), STAT1(middle) datasets and in
the integrative gene peaks (right). The PU.1 dataset (left) shows dominant enrichment of the PU.1 motif (blue), with minimal GAS or ISRE signals. The
STAT1 dataset (middle) highlights strong enrichment of GAS (red) motif. The integrative gene peaks (right) display a balanced enrichment of all three
motifs, indicating cooperative binding of PU.1 and STAT1 in IFNg-responsive genes. (B) The methylation (H3K4me1/3), acetylation (histone H3K27ac),
and transcription factor binding profiles (PU.1 and STAT1) of integrative genes within ±5 kb of promoter regions. (C) The transcriptional start sites
(TSS), GAS and ISRE motifs coordinate as well as epigenetic, transcription factor binding and expression profiles of 10 integrative genes were
visualized using Integrative Genomics Viewer (IGV). To ensure the consistency of STAT1 binding pattern in response to IFNg, we showed STAT1
peaks from two separate studies. TSS is marked as red vertical lines, while GAS and ISRE motifs were marked as gray vertical lines, showing STAT1
binding sites. All datasets are normalized to ensure comparability, with genomic coordinates aligned to the mouse genome (GRCm38/mm10).
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gene expression, depending on the condition and vascular bed. For

example, high expression of these genes in non-lesion coronary

arteries was mainly associated with inflammatory MØ, monocytes

and cDCs. On the other hand, expression in tissue resident MØ was

higher in carotid lesions as compared to coronary lesions, whereas

foamy MØ displayed barely detectable levels in both non-lesion and

lesion samples. KEGG enrichment analysis highlighted the unique

characteristics of cluster 1, 2 and 3 genes and their relation to

atherosclerosis (Figure 4E). Indeed, Cluster 1 genes were primarily

associated with phagocytosis, whereas genes in cluster 2 and 3 were

more connected to innate immunity, inflammatory response and

lipid metabolism.

Among the differentially expressed genes shown in Figure 4D,

136 STAT1-dependent integrative genes could be recognized,

especially in cluster 3 and 2 and to a lesser extent in cluster 1

(Figures 4D, E). This implied that subsets of STAT1-dependent

integrated genes behave as general MØ markers or are expressed in

a more MØ subtype-dependent manner associated with arterial bed.

Following their differential expression (lesion vs non lesion: FDR <

0.05 and log2FC >= 0.25 and log2FC <= -0.25) in specific MØ

subtypes identified multiple expression characteristics, which clearly

correlated with cluster 2 and 3 behavior (Figure 4F). For example,

high expression of subsets of STAT1-dependent integrated genes in

inflammatory MØ, monocytes and cDCs present in non-lesion

arteries correlated with predominant downregulation in lesions. On

the other hand, expression analysis in resident MØ and foamy MØ

identified both up and downregulated STAT1-dependent integrated

gene subsets, agreeing with high expression observed in arterial

lesions (Figure 4D).

Using DoRothEA collection, a curated dataset of Transcription

Factors and their transcriptional targets, further validated STAT1

activity in these different macrophage sub-types (43) (Figure 4H).

Close examination of STAT1 activity on either 22385 genes or only

1009 STAT1-integrative genes revealed increased activity in both

foamy MØ and tissue resident MØ present in lesion arteries. In

inflammatory MØ, monocytes and cDCs, STAT1 activity appeared

higher in non-lesion arteries, which correlated with high expression

of subsets of STAT1-dependent integrated genes in these sub-types.

Interestingly, this MØ sub-type dependent STAT1 activity, was also

observed for STAT2, IRF4, IRF5, IRF8 and IRF9 (Figure 4H).

To provide more insight into the MØ subtype-dependent

behavior of STAT1-dependent integrated genes, we grouped

genes according to their expression behavior. As such, we

identified subsets of STAT1-dependent integrated genes that were
Frontiers in Immunology 08
specifically expressed in tissue resident MØ, monocytes, foamyMØ,

inflammatory MØ and cDCs. Also, a group of genes could be

recognized that were commonly expressed in all MØ subtypes and

included ATF3, C3, CDKN1A, FCGR3A, FOSB, HBEGF, ICAM1,

KLF6, MAP3K8, NFKBIA, TNFAIP3 and ZFP36 (Figure 4G, genes

in red), with known inflammation and atherosclerosis-related

functions. Therefore, MØ-dependent expression of STAT1-

dependent integrated genes can serve as general MØmarkers or

are expressed in a more MØ subtype-dependent manner in human

atherosclerotic plaques.

To further substantiate this MØ-dependent nature, we also

assessed the expression profile of STAT1-dependent integrated genes

among differentially expressed genes (non-lesion vs lesion) in the

vascular smooth muscle cell (VSMCs) population (Supplementary

Figure S1A). First, hierarchical clustering identified 511 differentially

expressed genes in VSMCs divided over three clusters and correlated

with arterial bed-specificity. Similar to MØ (Figure 4D), clusters 1 and

2 unveiled arterial bed-specific gene expression patterns, with genes in

cluster 1 predominantly upregulated in coronary plaque tissue as

compared to the non-lesion group. In contrast, genes in cluster 3

were associated with higher carotid lesion expression. Finally, cluster 2

represented genes already highly expressed in non-lesion material.

Interestingly, in each cluster different VSMC subpopulations seemed to

be present (Supplementary Figure S1A), implying that genes are

expressed in a VSMC subtype-dependent manner associated with

arterial bed. KEGG enrichment analysis highlighted the unique

characteristics of cluster 1, 2 and 3 genes and their relation to VSMC

function and atherosclerosis (Supplementary Figure S1B). Indeed,

Cluster 1 genes were primarily associated with immune response,

whereas genes in cluster 2 and 3 were more connected to cytoskeleton

changes and contraction (Supplementary Figure S1B). Among the

VSMC-dependent differentially expressed genes shown in

Supplementary Figure S1A, 117 STAT1-dependent integrative genes

could be recognized, especially in cluster 3 and 2 and to a lesser extent

in cluster 1 (Supplementary Figure S1B).
MØ sub-type dependent expression of
STAT1-integrative genes in mouse aortic
plaques identifies overlap with human
atherosclerosis

In order to compare MØ-dependent STAT1-integrative gene

expression between human and mouse atherosclerosis, we also
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FIGURE 4

MØ subtype-dependent expression of STAT1-target genes in human atherosclerotic plaques. (A) The Uniform Manifold Approximation and
Projection (UMAP) projection of the three single-cell RNA-seq studies with major cell annotations (See Supplementary Table S1 for sample details).
Each point represents a single cell, colored according to its annotated cell type. (B) Comparing lesion vs non-lesion groups showed dynamic
changes among various MØ subtypes. The number of cells in non-lesion and lesion group were 20666 and 20023, respectively. (C) The number of
foamy MØ, monocyte and tissue resident MØ increased in the lesion group. (D) The heatmap representing the expression profile of differentially
expressed genes (non-lesion vs lesion) in MØ population with respect to cell type and arterial bed. The hierarchical cluster analysis generated three
distinct clusters. The rows represent individual DEGs identified in the MØ population. STAT1-target genes are annotated on the left side of the
heatmap to highlight their relevance in the context of MØ function or lesion development. (E) KEGG pathway analysis of each cluster showed
cluster-specific signaling pathways. The intersection of each Venn diagram shows the number of integrative genes (STAT1-target genes) in each
cluster (Cluster 1, Cluster 2, and Cluster 3). (F) The expression pattern of differentially expressed genes (lesion vs non-lesion) in various macrophage
subtypes. The STAT1-target genes were labeled in each dot plot. |log2FoldChange| >= 0.25 was used as the cut-off; FDR < 0.05. Red and blue colors
represent up-regulated and down-regulated genes, respectively. (G) UpSet plot showing cell type-specific integrative gene sets. The sets on the left
(except for integrative genes) indicate the number of cell type-specific differentially expressed genes. The red-colored set shows the unique STAT1-
dependent genes present in all MØ subtypes. Bars on the right indicate the size of gene set intersections, with each bar corresponding to a specific
combination of macrophage subtypes (shown by filled circles below the bar). (H) The assessment of transcription factor (TF) activity of STAT and IRF
family in diverse macrophage subtypes based on all genes (left) providing a broad view of regulatory patterns, or integrative genes (right) highlighting
TFs critical to regulation of integrative genes. For comparison purposes, STAT1 is bolded. The hierarchical clustering on the left side shows TFs with
similar activities.
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analyzed a single-cell RNA-seq data set of aortic lesions from a

LDLr-/- HFD mouse model, comparing LFD (Control) vs HFD (12

weeks: Late Disease) (Figure 5A; Supplementary Table S1 (8).

Integrative analysis combined with cell type annotation selected

17071 cells, and revealed dynamic changes in various cell

populations, with a clear increase in MØ in Late Disease

(Figure 5B). We further focused on the MØ population and

annotated ISG-expressing immune cells and non-classical

monocytes based on the specific markers (IFIT1, IFIT2, IFIT3,

IFIT5, ISG15, CCL3, CCL4, CCL3L3, RSAD2, OASL, CXCL10,

IFI15, ISG20) and (CD14, CD16, CD11b, CD68, HLA-DR, CD33,

CD11c, CD123, CD15, CD3D, CD3E, CD3G, CD3Z, CD66b,

FCGR3A, CDKN1C, LST1, FCER1G, MS4A7, RHOC, S100A8,

S100A9, CST3, C1QC), respectively (44) (Figure 5C). ISG-

expressing immune cells generally display inflammatory

characteristics (45). However, non-classical monocytes often show

more anti-inflammatory properties (46). It should also be noted

that there is currently no consensus on the number of MØ subtypes

in mice and due to using different experimental protocols,

disparities exist in detection of multiple MØ subtypes (47). When

comparing Late disease vs control groups, both ISG-expressing

immune cells and non-classical monocytes displayed higher

numbers in the lesion group (Figure 5C), Moreover, differential

expression analysis (selection criteria: FDR < 0.05 and log2FC

>= 0.25 and log2FC <= -0.25) identified 400 genes that were

differentially expressed in non-lesion vs lesion group in both MØ

subtypes. Among these differentially expressed genes, 73 STAT1-

dependent integrative genes could be recognized, with their lesion-

dependent changes in ISG-expressing immune cells and non-

classical monocytes shown in Figure 5D. KEGG enrichment

analysis highlighted the relation of these 400 genes to immunity

and atherosclerosis and functional overlap with differentially

expressed genes in MØ sub-types of human atherosclerotic

lesions (Figure 5E).

Subsequent, comparative analysis between atherosclerotic lesions

from human patients and of a LDLr-/- HFD mouse model, identified

subsets of overlapping and unique MØ-dependent genes. For

example, human plaques showed 614 differentially expressed

macrophage-dependent genes, which included 136 STAT1-

integrative genes (Figure 6A). Likewise, 400 differentially expressed

MØ-dependent genes were present in mouse lesions, including 73

STAT1-integrative genes. Interestingly, comparative analysis

identified 118 genes commonly expressed in MØ sub-types across

human and mouse atherosclerotic lesions (LDLR-/-), amongst which

were 24 STAT1-integrative genes (Figure 6A). This highlights the

overlap between human atherosclerosis and mouse atherosclerosis

models and the potential involvement of STAT1-integrative genes in

a MØ-dependent manner.

We also included a second mouse atherosclerosis data set, in

which we performed bulk RNA-seq on aorta from high-fat diet

(HFD) fed ApoE knockout mice to identify 606 HFD-differentially

expressed genes (padj<0.05 and |log2FC| > 1) (Supplementary Table

S6) (48). Comparative analysis between atherosclerotic lesions from

the ApoE-/- and of a LDLr-/- HFDmouse models, identified a subset

of 100 common genes, amongst which 16 STAT1-integrative genes
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with a MØ-dependent character (Figure 6A). Likewise, comparing

atherosclerotic lesions of the ApoE-/- HFD mouse model and from

human patients, identified 93 overlapping genes with 20 being

STAT1-integrative and MØ-dependent (Figure 6A). Finally, 39

commonly expressed genes, including 8 STAT1-integrative genes,

were identified in atherosclerotic plaques from human patients and

ApoE-/- and LDLr-/- high fat diet mouse models.
Identification of a STAT1-dependent gene
signature in human atherosclerosis
progression

Based on the above-described comparative analysis, we aimed at

identifying a novel MØ-specific STAT1-dependent gene signature

that could serve to monitor human atherosclerotic plaque formation

(Figure 1). Accordingly, we selected 24 STAT1-integrative gene set,

specifically expressed in MØ sub-types across human and mouse

atherosclerotic lesions (LDLR-/- HFD) (Figure 6A). These genes

included Ccl5, Ccrl2, Ctsc, Ddit3, Htra1, Id3, Ifitm3, Jun, Ly6e,

Marcksl1, Nfkbia, Nupr1, Plaur, Prdx1, Serping1 and Txn1, shared

between atherosclerotic lesions from human patients and of the

LDLr-/- HFD mouse model. A remaining group of 8 genes, C1qb,

Ch25h, Ifitm1, Il1rn, Irf8, Socs3, Thbs1, Tnfaip2, were also expressed

in aorta from the ApoE-/- HFD mouse model (Figure 6A).

Characterization of these genes in the literature indeed revealed

close connections to inflammation and atherosclerosis.

To further evaluate the behavior of these genes in human

atherosclerosis, we prepared a heatmap showing the expression

pattern with respect to MØ subtype and arterial bed (Figure 6B).

After hierarchical cluster analysis, two different clusters could be

recognized, dividing genes according to their expression profile. The

expression of genes in cluster 1, including DDIT3, JUN, HTRA1,

C1QB, CTSC, SERPING1, NUPR1, IFITM3 and LY6E appeared

especially higher in carotid lesions as compared to coronary lesions,

and restricted to foamy MØ, tissue resident MØ, monocytes and

cDC. On the other hand, genes in cluster 2, TNFAIP2, PRDX1,

SOCS3, NFKBIA, PLAUR, CCRL2, CH25H, IRF8, MARCKSL1,

CCL5, IL1RN, THBS1, ID3, IFITM1, TXN, were characterized by

higher expression in non-lesion coronary arteries and mainly

associated with inflammatory MØ, monocytes and cDCs.

Using STRING database, a protein-protein interaction network

was constructed (49). The majority of these 24 genes unveiled

functional and physical associations with STAT1 acting as a hub

(Figure 6C). Besides, STARNET analysis indeed connected these

genes to phenotypic traits such as cardiovascular diseases,

cholesterol and lesions (Figure 6D). Also, active transcription of a

selection of these 24 signature genes coincided with prominent

promoter STAT1-PU.1 co-binding, with the presence of GAS and/

or ISRE sites representing potential GAF and ISGF3 binding.

Moreover, increased histone methylation and acetylation and

chromatin accessibility (Figure 6E), confirms characteristics of

macrophage-dependent STAT1-integrative genes (Figure 3C).

Together, this confirms the important role of macrophage-

dependent STAT1-driven transcription in atherosclerotic plaque
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formation and specifically identifies a STAT1-dependent gene

signature that could help monitor plaque progression in human

atherosclerotic disease. To determine a potential association of the

expression of these genes with IFNg produced in the plaque

environment, we prepared feature plots derived from scRNA-seq

datasets, illustrating the expression levels of IFNg in NK and T cell

(NK/T) populations for human (left panel) and mouse (right panel)

control and lesion samples (Supplementary Figure S2). Obviously,
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in both species the number of IFNg expressing NK/T cells (colored

in blue) was very low as compared to non-expressing cells (grey),

with the expression in human cells tending to be higher in non-

lesion vs lesion. In contrast, in the mouse, the number of IFNg-
positive NK/T cells was too low to draw further conclusions

(Supplementary Figure S2). Likewise, in the ApoE-/- HFD mouse

model RNAseq data set, the transcript for ifng was below the

detection level (not shown).
FIGURE 5

Expression profile of MØ-dependent STAT1-target genes in LDLR knockout mouse model. (A) UMAP projection of an integrated single-cell RNA-seq
study consisting of 17071 cells (See Supplementary Table S1 for sample details). Each point represents a single cell. colored by cell type.
(B) Comparing late disease vs control groups revealed changes in the relative abundance or proportion of cell populations, (C) particularly in MØ
subtypes namely ISG-expressing immune cells and non-classical monocytes, reflecting disease-driven immune cell remodeling. (D) The expression
pattern of differentially expressed genes (late disease vs control) in various MØ subtypes. The STAT1-target genes were labeled in each dot plot. |
log2FoldChange| >= 0.25 was used as the cut-off; FDR < 0.05. Red and blue colors represent up-regulated and down-regulated genes, respectively.
(E) KEGG pathway analysis for 400 differentially expressed genes in mouse single cell dataset (late disease vs. control). The x-axis represents the
statistical significance of enrichment. The y-axis lists the top enriched KEGG pathways.
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FIGURE 6

STAT1-dependent gene signature in Atherosclerosis progression. (A) UpSet plot demonstrates the number of integrative genes across mice and
human models. The sets on the right (except for integrative genes) indicate the number of dataset-specific differentially expressed genes. Vertical
bars represent the number of DEGs unique to each dataset (e.g., human-specific, mouse-specific) or shared across datasets, with numbers
indicating gene counts for each combination. Dots and connecting lines below the bars denote which datasets contribute to each intersection. The
red-colored set shows 24 STAT1-integrative gene set, specifically expressed in MØ sub-types across human and mouse atherosclerotic lesions
(LDLR-/- HFD). (B) The expression pattern of these 24 genes were traced in human atherosclerosis. (C) The protein-protein interaction network of
24 macrophage-dependent STAT1-target gene signature, prepared using STRING database. Lines connecting nodes indicate protein-protein
interactions, with thickness reflecting the confidence score (strength of data support) from STRING. (D) The clinical traits that were associated with
24 gene signatures based on STARNET database, as depicted in Figure 2F. Traits with strong associations (red color) are likely influenced by the
STAT1-driven gene signature. The color intensity represents the statistical significance of observed traits. (E) The epigenetic and transcriptomic
profiles of 10 select signature genes, as described in Figure 3C.
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Discussion

This study investigated the role of MØ STAT1-mediated

signaling in atherosclerosis progression through multi-omics

integration of IFNg-induced MØ and expression analysis in

human and mouse atherosclerotic lesions. First, by integrating

ATAC-seq, ChIP-seq, and RNA-seq data from IFNg-treated and

untreated bone marrow-derived MØ, we identified 1139 STAT1-

dependent integrative genes. Collectively, active transcription of

these IFNg-responsive STAT1-integrative genes was characterized

by prominent promoter STAT1-PU.1 co-binding, increased histone

methylation and acetylation and chromatin accessibility. Our

observations predict a mechanism in which prior to IFNg
treatment the chromatin/promoters of these STAT1-integrative

genes are in a poised or already active (constitutive) state,

characterized by constitutive PU.1 binding (and to a lesser extent

STAT1) in combination with histone methylation (both H3K4me1

and H3K4me3) and acetylation (H3K27ac) marks. But upon IFNg
exposure, there is a surge in chromatin openness, mediated by

increased histone acetylation along with augmented STAT1 co-

binding, reflecting binding of GAF and ISGF3, to sites pre-bound by

PU.1 that accelerates transcriptional activation and marks these

genes as IFNg-responsive STAT1-dependent integrative genes. This
is in agreement with current models, in which TFs activated by MØ

stimulation and polarization with a canonical inflammatory agent

(IFNg, lipopolysaccharide [LPS]), such as STAT1, NF-kB and IRF1,

have shown to land at regulatory elements pre-defined by PU.1 and

constitutively marked by H3K4me1 (27, 28, 50, 51). Under these

conditions, constitutive and poised states have been recognized,

based on the presence or absence of basal histone acetylation (29).

By investigating the genome-wide distribution of IRF1, IRF8,

STAT1, and PU.1 in chromatin from resting and from IFNg-
activated MØ, Langlais and colleagues proposed a mechanism of

constitutive chromatin co-binding of IRF8 together with PU.1, and

to a lesser extent STAT1, to maintain basal H3K27 acetylation and

target gene expression. But upon IFNg exposure, an increase in

histone acetylation along with increased STAT1 co-binding to sites

pre-bound by PU.1 and IRF8 accelerates transcriptional activation

of target genes (27). This coincided with increased IRF1 expression

and recruitment of IRF1 together with IRF8, STAT1, and PU.1. The

resulting transcriptional program is also marked as the IRF8/

IRF1 regulome.

The co-binding of STAT1 and PU.1 along with histone

methylation and acetylation at STAT1-integrative genes promoters

in IFNg-treated and untreated MØ, as observed in our multi-omics

analysis, aligns with these findings and other studies that emphasize

the importance of transcription factor interactions together with

epigenetic changes in regulating inflammatory gene expression in

MØ (52, 53). It also supports a role of PU.1 in cell-type specific IFNg-
induced STAT1-dependent gene expression in MØ. The nature of the

genome-wide PU.1-STAT1 collaboration and the involvement of cell

type-unique epigenetic marks in this respect is currently not known.

Thus in the context of MØ activation and M1 polarization,

STAT1-containing complexes ISGF3 and GAF have shown to

collaborate with PU.1, NF-kB and multiple IRFs to enhance
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transcriptional regulation of many pro-atherogenic genes,

connected to stress, immune and inflammatory response, response

to cytokine, regulation of cell proliferation and migration, regulation

of cell adhesion and chemotaxis, cell death and apoptotic process,

response to lipid, and reactive oxygen species (ROS) (9, 22). This is in

line with the KEGG-analysis of our IFNg-responsive STAT1-

dependent integrative genes, which predominantly linked these

genes to lipid metabolism and atherosclerosis-related pathways,

whereas STARNET analysis identified high association with LDL

cholesterol and diseased vessel traits. To further understand the

pathogenic and diagnostic behavior of IFNg-responsive STAT1-

dependent integrative genes in MØ subtypes in human

atherosclerotic plaque formation, two human single cell RNAseq

datasets from coronary and carotid atherosclerotic lesions and one

dataset from non-lesion coronary arteries were used. In agreement

with Mosquera and colleagues (7), we were able to distinguish foamy

MØ, monocytes, inflammatory MØ, tissue resident MØ and

conventional dendritic cells (cDC) in both non-lesion and lesion

groups (54). Also, the number of foamy MØ, monocyte and tissue

resident MØ increased in lesion group, whereas inflammatory MØ

numbers were higher in non-lesion group vs lesion (7). Moreover,

614 genes were differentially expressed in non-lesion vs lesion group

in any of the MØ subtypes, among which 136 could be recognized as

STAT1-dependent integrated genes. Hierarchical clustering analysis

unveiled arterial bed-specific and MØ-subtype dependent expression

patterns of these genes, whereas KEGG enrichment analysis

highlighted their unique characteristics and their relation to

inflammation and atherosclerosis. More in depth analysis revealed

dynamic changes of STAT1-dependent integrated genes in MØ

subtypes. For example, high expression of subsets of STAT1-

dependent integrated genes in inflammatory MØ, monocytes and

cDCs present in non-lesion arteries correlated with predominant

downregulation in lesions. On the other hand, expression analysis in

resident MØ and foamy MØ identified both up and downregulated

STAT1-dependent integrated gene subsets, agreeing with high

expression observed in arterial lesions. Interestingly, this correlated

with MØ sub-type dependent STAT1 activity, as well as for STAT2,

IRF4, IRF5, IRF8 and IRF9, and agrees with a known role of these TFs

in atherosclerosis (55–59), suggesting the transcriptional

collaboration of STAT1 with STAT2 and IRF family members, in

the form of GAF, ISGF3 (STAT1,STAT2 and IRF9) and multiple

IRFs, in these MØ subtypes.

Among subsets of STAT1-dependent integrated genes we

identified MØ subtype common and specific genes, implying that

STAT1-dependent integrated genes can serve as general MØmarkers

or are expressed in a moreMØ subtype-dependent manner in human

atherosclerotic plaques. In this respect, a group of STAT1-dependent

integrated genes commonly expressed in all MØ subtypes included

ATF3, C3, CDKN1A, FCGR3A, FOSB, HBEGF, ICAM1, KLF6,

MAP3K8, NFKBIA, TNFAIP3 and ZFP36. ATF3 is a key

transcription factor involved in regulation of inflammation and

lipid metabolism in macrophages (60). Buono and colleagues

reported that disrupted C3 (Complement C3) affects atherosclerosis

progression (61). Cyclin-dependent kinase inhibitor CDKN1A is

involved in inducing cellular senescence in MØ, contributing to
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1590953
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Eskandarian Boroujeni et al. 10.3389/fimmu.2025.1590953
atherosclerosis progression by releasing pro-inflammatory factors

(62). NFKBIA is shown to be linked with coronary artery disease

in the Chinese population (63). ICAM1, MAP3K8 and TNFAIP3 are

highly associated with the development of atherosclerosis (64–66).

FOSB and HBEGF are reported to be upregulated in atherosclerotic

plaques (67, 68). KLF6 appears to be a key regulator of MØ

inflammatory responses in the context of atherosclerosis. It mainly

promotes pro-inflammatory activation and gene expression while

suppressing anti-inflammatory pathways (69) while ZFP36 is

engaged in inhibiting pro-inflammatory gene expression (70). With

their known inflammation and atherosclerosis-related functions,

collectively these STAT1-dependent integrated genes could serve as

new biomarkers and therapeutic targets in human atherosclerosis.

In their meta-analysis study, Mosquera et al. also uncovered a

critical role for modulated SMC phenotypes, including contractile

SMC, transitional SMC, foam-like SMC and fibromyocytes, in

CAD, myocardial infarction, and coronary calcification. They also

identified fibromyocyte/fibrochondrogenic SMC markers (LTBP1

and CRTAC1) as proxies of atherosclerosis progression and

validated these through omics and spatial imaging analyses (7). In

our study, we identified a subset of 511 differentially expressed

genes and 117 STAT1-dependent integrated genes, specific for the

VSMC population and connected to VSMC function and

atherosclerosis. These genes displayed arterial bed-specific and

VSMC-subtype dependent expression profiles, being consistent

with the description of multiple VSMC phenotypes during

atherosclerosis (71). Together, this implies that MØ-dependent

and VSMC expressing STAT1-integrative genes consist of

different subsets with their unique expression profiles in human

atherosclerotic and non-atherosclerotic arteries. Moreover, these

different gene subsets reflect cell-type specific functions, connected

to inflammation and atherosclerosis on the one hand and more

VSMC-related functions on the other.

In order to compare MØ-dependent STAT1-integrative gene

expression between human and mouse atherosclerosis, we also

analyzed a single-cell RNA-seq data set of aortic lesions from a

LDLr-/- HFDmouse models, comparing LFD (Control) vsHFD (12

weeks: Late disease). Integrative analysis of the LDLr-/- derived sc-

RNAseq data set, revealed dynamic changes in various cell

populations, including the MØ sub-types: ISG-expressing

immune cells and non-classical monocytes. When comparing late

disease vs control groups, both ISG-expressing immune cells and

non-classical monocytes displayed higher numbers in the lesion

group. Moreover, our differential expression analysis identified 400

genes that were differentially expressed in non-lesion vs lesion

group in both MØ subtypes. KEGG enrichment analysis

highlighted the relation of these genes to immunity and

atherosclerosis and functional overlap with differentially

expressed genes in MØ sub-types of human atherosclerotic

lesions. Among these differentially expressed genes, 73 STAT1-

dependent integrative genes could be recognized, with lesion-

dependent changes in ISG-expressing immune cells and non-

classical monocytes. This was in line with observations presented

by Örd and colleagues (8). Using similar data sets, they identified 12

disease-associated cell states that were further characterized by gene
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set functional profiling, ligand-receptor prediction, and

transcription factor inference. Accordingly, three MØ-derived cell

states were identified, called Spp1þ MPs, Ccl4þ MPs, and Stmn1þ

MPs, which were increased in late disease conditions. In addition,

Vcam1þ SMC state genes were identified, which contributed most

to SNP-based heritability of CAD (8).

To further substantiate the overlap between human

atherosclerosis and mouse atherosclerosis models and the

potential involvement of MØ-dependent STAT1-integrative genes

we additionally included a bulk RNA-seq data set from HFD fed

ApoE knockout mice aorta (48). Based on comparative analysis

between atherosclerotic plaques from human patients and ApoE-/-

and LDLr-/- high fat diet mouse models, we were able to select 24

STAT1-integrative gene set, specifically expressed in MØ sub-types

across human and mouse atherosclerotic lesions (LDLR-/- HFD).

Characterization in human atherosclerotic plaques confirmed MØ

subtype and arterial bed specific expression of this subset of STAT1-

integrative genes. Moreover, protein-protein interaction network

analysis predicted functional and physical associations with STAT1

acting as a hub. Also, IFNg-mediated active transcription of these 24

genes in MØ coincided with prominent promoter STAT1-PU.1 co-

binding to GAS and ISRE sites, increased histone methylation and

acetylation and chromatin accessibility, a characteristic of MØ-

dependent STAT1-integrative genes. Finally, these genes were

found to be strongly connected to phenotypic traits such as

cardiovascular diseases, cholesterol and lesions, which correlated

with a previous proven role in atherosclerosis, including

involvement in inflammatory response and chemotaxis, lipid

metabolism and homeostasis, apoptosis and cellular stress,

extracellular matrix and plaque stability and immune regulation.

For example, the CCL2-CCR2 and CCL5-CCR1/CCR5 chemokine

axes are critical for monocyte recruitment and early atherogenesis.

Blocking these pathways could be a potential therapeutic strategy

for atherosclerosis (72, 73). IFITM1 and IFITM3 are two interferon-

induced transmembrane proteins that might play significant roles

in the pathophysiology of atherosclerosis, particularly through their

involvement in inflammation, endothelial function, and vascular

health (74). The activation of c-Jun is also linked to the

inflammatory processes in atherosclerosis (75). Animal model

studies have shown that many cathepsin family genes, including

CTSC (Cathepsin C), are highly expressed in atherosclerotic

plaques (76). DDIT3 (DNA damage-inducible transcript 3)

expression is positively correlated with arterial calcium content

and intima-media thickness (IMT) in children with chronic kidney

disease (CKD), suggesting it contributes to accelerated arterial

calcification and remodeling (77). High temperature requirement

A1 (HTRA1) is primarily known for its proteolytic activity, which

involves the cleavage of various extracellular matrix components.

This activity is crucial for maintaining vascular homeostasis and

regulating processes such as angiogenesis and vascular remodeling

(78, 79). Id3 plays a protective role against atherosclerosis. Indeed,

Id3-/-ApoE-/- mice develop significantly more atherosclerosis

compared to Id3+/+ApoE-/- mice, demonstrating a direct

relationship between loss of Id3 and increased atherosclerosis

(80). Ly6e appears to be a marker of certain MØ subsets that are
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enriched in progressing atherosclerotic plaques, suggesting it may

play a role in disease progression (47). In cardiovascular disease,

endothelial polarity proteins like MARCKSL1 help establish

endothelial identity and have atheroprotective effects. Endothelial

cells secrete extracellular vesicles containing MARCKSL1 in a

polarized manner, which can alter monocyte and smooth muscle

cell behavior in a compartment-specific way (81). NUPR1 is a

critical player in the cellular response to stress and oxidative

damage. NUPR1’s activation has been linked to increased

cardiovascular risk (82, 83). Likewise, Txn1, or Thioredoxin-1

helps mitigate oxidative stress within the vascular system (84).

Recent studies have identified PLAUR (Plasminogen activator,

urokinase receptor) as an effective diagnostic marker for

atherosclerosis lesion progression. Elevated expression levels of

PLAUR have been correlated with the severity of atherosclerosis

in both human and mouse models (85). Prdx1 (peroxiredoxin 1)

deficiency in MØ leads to increased susceptibility to oxidative stress

and impaired clearance of modified LDL due to defective lipophagic

flux, thereby promoting atherosclerosis in apoE-deficient mice (86).

Elevated levels of Serping1, also known as C1-inhibitor (C1INH)

may indicate a negative prognosis for coronary collateral

development, which is important for maintaining blood flow in

ischemic conditions (87).

The dual role of C1qB in atherosclerosis—both promoting

inflammation and providing protective effects—highlights its

complexity in disease progression. It has been suggested that the

balance between these opposing effects could influence the

development and stability of atherosclerotic plaques (88–90). IRF8

appears to play a complex, cell type-specific role in atherosclerosis

development, with myeloid IRF8 promoting plaque formation (91,

92). The enzyme cholesterol 25-hydroxylase (CH25H) converts

cholesterol into 25-hydroxycholesterol (25-HC), an oxysterol that

accumulates in human atherosclerotic lesions, promoting

inflammation and plaque instability (93). The interleukin-1

receptor antagonist (IL-1Ra), encoded by the IL1RN gene, acts as

an important anti-inflammatory brake on IL-1 signaling in the

vasculature (94). SOCS3 (Suppressor of Cytokine Signaling 3)

affects macrophage behavior within atherosclerotic plaques. It has

been observed that loss of SOCS3 can induce an anti-inflammatory

MØ phenotype, which is beneficial in limiting vascular inflammation

and atherosclerosis progression (95, 96). Thrombospondin-1 (TSP-1)

is known to modulate inflammatory responses within atherosclerotic

plaques. Studies indicate that TSP-1 deficiency leads to increased

macrophage infiltration and higher levels of inflammatory cytokines

in plaque environments. Specifically, in Thbs1-/- mice, a significant

increase inMØ-induced inflammation was observed, correlating with

accelerated plaque necrosis and degradation of elastic lamina due to

matrix metalloproteinases (97, 98). Tnfaip2 (Tumor Necrosis Factor

Alpha-Inducible Protein 2) enhances inflammatory responses in

atherosclerotic lesions. In particular, Tnfaip2 deficiency has been

shown to reduce inflammatory cytokine levels and plaque lesions in

mouse models of atherosclerosis, indicating its pro-inflammatory role

in disease progression (99). Together, this confirms the important

role of MØ-dependent STAT1-driven transcription in atherosclerotic

plaque formation and specifically identifies a STAT1-dependent gene
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signature that could help monitor plaque progression in human

atherosclerotic disease. With the low levels of IFNg detected in the

human and mouse artery tissue scRNAseq data sets we cannot rule

out that IFNgmay not be the, or not the only, cytokine that induces a

STAT1 pattern of gene expression in atherosclerosis lesions in as

much that other cytokines can also induce GAF and/or ISGF3 activity

in myeloid cells including type I interferons in some settings, IL-6,

and IL-27.

The advent of single-cell sequencing technologies has

enabled study of gene expression and regulation in disease and

development at the single-cell level. For instance, scRNA-seq

studies have resolved the cellular diversity and gene signatures in

human and murine atherosclerotic lesions (42, 100–103) as well as

non-lesion arteries (8, 39). Using data mining of human plaque

transcriptomes, we previously unraveled increased expression of

STAT1-dependent proatherogenic genes in human atherosclerosis.

As such, by comparing publicly available carotid (n = 124) and

coronary (n = 40) artery plaque transcriptomes, we identified a 72

gene “plaque signature” that predominantly consisted of

STAT1-target genes (21). In addition, we recently identified the

novel multi-IRF inhibitor, ALEKSIN, which exhibited genome-wide

inhibition potential toward IRF-, STAT-, and NF-kB-mediated

transcription, similar to the known multi-STAT inhibitor

STATTIC. Furthermore, we discovered a signature of 46

ALEKSIN and STATTIC commonly inhibited pro-atherogenic

target genes, predominantly linked to MØ subtypes present in

aortic plaques in HFD fed LDLR-KO mice (48). Based on our

recent and current findings and in analogy to biomarker assays

connected to cancer and transplant rejection (4, 21), a predefined

STAT1-target gene signature could be developed as a novel

diagnostic tool to monitor and diagnose plaque phenotype in

human atherosclerosis. The incorporation of MØ-specific STAT1-

target genes in this gene signature would be highly valuable as it

potentially allows monitoring plaque-specific inflammatory

responses in a cell-type dependent manner. Together with our

recently developed STAT and IRF inhibition strategies during

vascular inflammation (4, 48, 104), this may open a promising

avenue towards development of targeting and monitoring therapies

in the treatment of atherosclerosis.

We acknowledge some limitations in our study my arise

from the sourced datasets included in this meta-analysis. First,

while the integration of multi-omics data in bone marrow-derived

MØ provides a comprehensive view of the transcriptional

landscape, it may not fully capture the temporal dynamics of TF

binding and epigenetic modifications over the course of

atherosclerosis progression. The use of only short-term time

points in the analysis may overlook critical changes that occur at

other stages of disease development. Second, in the human

atherosclerosis sc-RNAseq analysis part, non-lesion samples were

derived from patients with non-ischemic dilated cardiomyopathies,

and inflammatory cell populations could be consequences of

myocardial inflammation or secondary subclinical diffuse intimal

thickening. Third, in the human as well as the mouse

atherosclerosis sc-RNAseq analysis part, while the majority of the

cell types were balanced across samples, it is difficult to separate
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biologically meaningful processes or technical factors. Fourth, we

acknowledge the need for systematic protein-level and experimental

validation of our preselected 24 STAT1-integrative gene set to

confirm their precise functions in atherosclerosis. Fifth, the study

primarily focuses on the role of STAT1 in MØ, potentially

underestimating the contributions of other transcription factors,

cell types and signaling pathways involved in atherosclerosis. Sixth,

with the low levels of IFNg detected in the human and mouse artery

tissue scRNAseq data sets we cannot rule out that IFNg may not be

the, or not the only, cytokine that induces a STAT1 pattern of gene

expression in atherosclerosis lesions. Future studies should aim to

address these limitations by incorporating longitudinal analyses and

exploring the interactions between various cell types within the

atherosclerotic microenvironment.
Materials and methods

MØ isolation and differentiation

Bone marrow-derived MØ (BMDM) samples from C57BL/6

mice of either sex were isolated from femur and tibia by flushing the

bones followed by red blood cell lysis with ACK buffer and

centrifugation at 1500 RPM. Cells were differentiated for 9–10

days in Dulbecco’s modified Eagle’s medium (DMEM) (PAS

Wrocław) supplemented with 15% fetal bovine serum (FBS,

Thermo Fisher Scientific), 100 units/ml Penicillin and 100 units/

ml Streptomycin (Pen/Strep) (Sigma-Aldrich) and M-CSF

(PeproTech) on 6-well culture-dishes. Cells were cultured at 37°C

and 5% CO2. BMDMs were stimulated with IFNg (10 ng/ml, TFS)

at specified time points (0, 0.5, 2, 4, 8, 24h).
RNA isolation and RNA-seq library
preparation

Total RNA was isolated using TRI-REAGENT (MRC) followed

by a column-based Total RNA Zol-Out™ D kit (A&A

Biotechnology) based on manufacturer’s protocol. RNA was

quantified using Qubit RNA HS (High Sense) assay kit (TFS) and

quality was assessed using Agilent RNA 6000 Nano Reagents kit

(Agilent Technologies) according to the manufacturer’s protocol.

Only RNA with RNA Integrity Number (RIN) > 9 was considered

for library preparation. RNA-seq libraries were prepared in three

biological replicates from 1ug of total RNA using NEBNext®

Ultra™ II RNA Library Prep Kit for Illumina® (NEB) together

with NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB)

and NEBNext® Multiplex Oligos for Illumina® (NEB) according to

manufacturer’s protocol. Libraries were quantified using Qubit

dsDNA HS assay kit (TFS) and quality and fragment distribution

were examined with Agilent High Sensitivity DNA kit (Agilent

Technologies). Sequencing was performed on the HiSeq X (150PE)

by Macrogen Europe B.V.
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ApoE KO-based atherosclerosis mouse
model

The ApoE KO HFD model was essentially performed as

described previously (65). The experiment was conducted on 16

ten-week-old house mice (Mus musculus) B6.129P2-ApoEtm1Unc/

J (purchased from Jacksons Laboratory). Breeding and animal

experiments were performed in the animal facility of the

Wielkopolskie Centrum Zaawansowanych Technologii (WCZT)

in Poznań. All mice work was performed in accordance with the

agreement of the Poznan Local Ethical Committee under approval

number 16/2019 and 42/2021. Animals were divided into two

groups (2x n=8) with mixed sexes. The first group was fed a

standard low-fat chow diet (LFD) and the second group of mice

was fed a high-fat diet (HFD; High Fat, +7.5 g/kg Cholesterol,

Experimental diet, 10.7% fat, Ssniff S GmbH). After a week of

acclimatization and handling, 8-week-old ApoE KO mice were

subjected to LFD or HFD for 12 weeks, during which HFD fed

mice developed atherosclerotic deposits (48).

For RNA isolation, frozen tissues were transferred into Trizol

(A&A Biotechnology) and homogenized using a manual Omni

tissue homogenizer and dedicated hard tips. All the following steps

of RNA isolation were carried out according to Total RNA Zol-Out

(A&A Biotechnology) protocol for the rapid purification of ultra-

pure total RNA. RNA-seq library preparation followed the same

procedure as for macrophages (see above).
RNA-seq data analysis

The quality of sequencing reads, and potential adapter

contaminations were evaluated by FastQC (0.12.1) (http://

www.bioinformatics.babraham.ac.uk/projects/fastqc/). Low-quality

sequences with a Phred score of < 20 were removed by Trim_Galore

(0.6.10) (105). Afterward, the filtered reads were aligned to the

mouse genome (GRCm38/mm10) with a fast and efficient spliced

aligner tool STAR (2.7.10) (106). FeatureCounts (1.6.2) was

employed for the summarization of mapped reads into genomic

attributes (107). Genes with counts lower than 10 at any time points

were filtered out. To determine differentially expressed genes

(DEG), DESeq2 (1.40.2) package (108) in R (4.3.3) was used. The

likelihood ratio test (LRT) was implemented to identify genes that

respond to IFN treatment over time. False discovery rate (FDR)-

adjusted q-values (5% threshold) were calculated by Benjamini–

Hochberg procedure. The log2(fold change) FC also was calculated

for each gene. Genes with adjusted p-values (padj) less than 0.05

and |log2FC| > 1 were considered as DEGs.
ATAC-seq data processing

To identify open chromatin regions, the raw sequencing ATAC-

seq data was analyzed using nfcore/atacseq pipeline (2.1.2) (109).

This pipeline is a robust and reproducible method for the processing
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of ATAC-seq data, which is based on Nextflow (23.04.1). The nfcore/

atacseq pipeline includes several stages. Generally, reads were aligned

to the mouse genome (GRCm38/mm10) using bwa aligner (0.7.17-

r1188) (110), followed by peak calling by MACS2 (111).
ChIP-seq data analysis

The raw sequencing ChIP-seq data was analyzed using

ENCODE Transcription Factor and Histone ChIP-Seq processing

pipeline (https://github.com/ENCODE-DCC/chip-seq-pipeline2)

with default parameters as recommended by ENCODE

Consortium (112). Briefly, the sequencing reads were aligned to

the mouse genome (GRCm38/mm10) using bowtie2 (2.3.4.3) (113).

Then, duplicates were marked using Picard Tools (2.20.7)(https://

github.com/broadinstitute/picard). Peak calling for transcription

factors and histones was performed using SPP and MACS2,

respectively with FDR threshold set to 0.01. Afterwards,

Irreproducible Discovery Rate (IDR) was implemented to identify

an optimal number of reproducible peaks between biological

replicates, with an IDR score threshold of 0.05.
Correlation analysis

The normalized peak files related to ATAC-seq and ChIP-seq

data were merged using merge function in bedtools package (114),

followed by counting peaks in each datasets using featureCounts

(107) and combining all the count tables into single table for the

assessment of correlation using Pearson method.
Identification of differential peaks and
integration of datasets

To standardize all sequence alignments from different datasets

(ATAC-seq, STAT1, PU.1, H3K27ac, H3K4me1 and H3K4me3), “Tag

Directory” was created using the Homer function makeTagDirectory

(50). Then, to find peaks that are differentially enriched between two

conditions, the Homer function getDifferentialPeaks was implemented.

These normalized differental peaks located in the promoter region

region (-3000, 3000 bp from TSS) were further selected by ChIPseeker

(1.36.0) (115), followed by preparing a list of mutual peaks associated

with above-mentioned datasets. Next, those peaks were integrated with

up-regulated, adjusted p-value (padj < 0.05) genes from our in-house

RNA-seq data using BETA tool (1.0.7) (116). The upregulated direct

target list was selected as integrative genes for downstream analysis.
Identification of TF binding motifs and
distribution of epigenetic marks near the
promoter regions

To quantify TF binding of GAS, ISRE & PU.1 motifs in the

promoter regions, the Homer function annotatePeaks.pl was
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implemented on PU.1 and STAT1 peaks in the IFNg-treated
group using GAS & ISRE motifs from our previous motif analysis

(117) and PU.1 motifs from Homer Motif Library (http://

homer.ucsd.edu/homer/custom.motifs). To measure the

distibution pattern of acetylation and methylation marks and also

PU.1 and STAT1 binding sites, Homer function annotatePeaks.pl

was employed on the peaks related to integrative genes.
Single-cell RNA-seq data analysis

Raw count matrices from each library across the four different

studies (mouse and human) were downloaded from GEO and Zenodo

(Supplementary Table S1). The library processing was performed based

on the workflow suggested by Mosquera et al. (7). Briefly, 17 libraries

were processed using Seurat (4.3.0) (118) running in R version 4.3.3. To

remove the doublets and ambient RNA, scDblFinder(1.16.0) (119) and

Celda::DecontX(1.18.1) (120) R packages were employed, respectively.

Then, the decontaminated raw count matrices were further filtered to

keep the cells that follow 1) >=200 and <=4000 uniquely expressed

genes 2) >=200 and <= 20000 UMIs 3) <=10% of reads mapped to the

mitochondrial genome 4) <= 5% of reads mapped to hemoglobin

genes. Filtered count matrices were normalized using SCTransform

(121). During SCTransform normalization, parameters vst.flavor =

“v2” and vars.to.regress = c(“S.Score”,”G2M.Score”) were implemented

to take into account for sequencing depth variability and cell cycle

variance, respectively. Then, dimensionality reduction of the

normalized counts matrix was implemented using Principal

Component Analysis (PCA), follwed by applying Uniform Manifold

Approximation and Projection (UMAP) non-linear dimensionality

reduction using the first 30 PCs.

To intergrate scRNA libraries and remove batch effects, a list of

species-specific processed Seurat objects was created, followed by the

extraction of 3000 highly variable genes across datasets using

SelectIntegrationFeatures. Next, PCA was run across each library

using the 3000 variable genes, followed by identification of

integration anchors using dimensional reduction method “Reciprocal

PCA (rPCA)”, which is an efficient method with respect to the running

time and conservation of biological signal. Due to smaller number of

mouse datasets, canonical correlation analysis (CCA) were employed

instead of rPCA method. The batch-corrected count matrix was then

used for PCA dimensionality reduction, creation of the shared-nearest-

neighbors (SNN) graph using 30 PCs, and Louvain clustering followed

by visualization with UMAP embeddings.

To annotate cell types in a robust manner, we used a blend of

automated and manual approaches. For human datasets, we first

annotated the integrated data using human cell atlas “Tabula

Sapiens (TS)” with a specific focus of Immune and vasculature

subset of this atlas (122). To be consistent with our SCTransformed-

integrated datasets, immune and vasculature TS subsets were re-

normalized using SCTransform prior to Seurat’s label transfer. We

also took advantage of the curated lists of gene markers related to

immune and mural cell types in human (7) and in mouse (8) to

assess the enrichment score of these genes in our integrated datasets

using UCell R pacakge (2.6.2) (123). Additionally, we also obtained
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gene markers for each of the SNN-derived clusters using the

PrepSCTMarkers and FindAllMarkers functions from Seurat

(v4.3.0). Moreover, ScType was implemented for fully-automated

cell-type identification based on their comprehensive cell marker

database as background information (44). Altogether, the cell-

annotations of our integrated datasets were finalized using TS

atlas, UCell enrichment scores, gene-specific markers for each

cluster, ScType predictions and manual confirmation.
Pseudo-bulk single-cell RNA-seq analysis

For differential expression analyses, we initially identified the

3000 most variable genes, followed by retaining these variable genes

to accelarate weights computation. We then implemented Zero-

Inflated-based Negative Binomial Wanted Variation Extraction

(ZINB-WaVE) approach (124) using R zinbwave package (1.24.0)

to identify excess zero counts and generate gene- and cell-specific

weights. The weights were computed taking into account sex,

arterial bed and condition as covariates, where applicable. Next,

DESeq2 method (108) was applied on ZINB-adjusted expression

data using single-cell data suitable likelihood ratio test.
Transcription factor activity inference

To infer TF activity, we focused on a specifc list of curated TFs

including STAT and IRF familes in DoRothEA R package (1.12.0)

(125). TFs with high confidience scores were selected and TF

activities were then estimated with the R package VIPER (1.36.0)

(126) using the filtered list of regulons and processed Seurat objects

which were constructed based on either all the genes or integrative

genes. We calculated mean TF activities accros different human

macrophage subtypes for either of these seurat objects.
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SUPPLEMENTARY FIGURE 1

Vascular smooth muscle cell population in human atherosclerotic plaques.
(A) The expression profile of differentially expressed genes (lesion vs non-

lesion) in vascular smooth muscle cell population. The hierarchical cluster

analysis generated three distinct clusters. The STAT1-target genes were
shown on the left side. (B) KEGG pathway analysis of each cluster revealed

cluster-specific signaling pathways related to muscle activity. The
intersection of each Venn diagram shows the number of integrative

genes (STAT1-target genes) in each cluster (Cluster 1, Cluster 2, and
Cluster 3).

SUPPLEMENTARY FIGURE 2

The feature plots derived from single-cell RNA sequencing (scRNA-seq)

datasets, illustrating the expression levels of interferon-gamma (IFNg) in
natural killer (NK) and T cell (NK/T) populations for human (left panel) and
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mouse (right panel) samples. Cells with no detectable IFNg expression appear

as grey.

SUPPLEMENTARY TABLE S1

Public datasets used in this study and sample metadata.

SUPPLEMENTARY TABLE S2

Differentially expressed genes (DEGs) in IFNg-treated Macrophages at
specified time points (0, 0.5, 2, 4, 8, 24 hours).

SUPPLEMENTARY TABLE S3

STAT1-dependent integrative gene list.

SUPPLEMENTARY TABLE S4

Cell type markers were used for the cell annotation of human

atherosclerotic plaques.

SUPPLEMENTARY TABLE S5

The differentially expressed genes in each human macrophage subtype.

SUPPLEMENTARY TABLE S6

The differentially expressed genes from high-fat diet (HFD) fed ApoE

knockout mice.
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