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Background: Globally, gastric cancer (GC) stands as the fifth most prevalent form 
of malignant neoplasm and represents a significant contributor to mortality 
associated with oncological conditions. Despite advancements in therapeutic 
strategies for GC, the outcomes for patients with advanced stages of the 
disease continue to be unfavorable, largely due to tumor heterogeneity and the 
challenges posed by resistance to therapeutic agents. Metabolic reprogramming is 
pivotal in driving the advancement of GC, contributing to the development of 
resistance to pharmacological treatments and facilitating the cancer’s ability to 
evade immune surveillance. Developing multi-target comprehensive treatment 
strategies by integrating tumor microenvironment (TME) modulation holds 
promise for significantly improving therapeutic efficacy. 

Methods: The study analyzed GC and identified key cell subtypes by integrating 
data derived from single-cell RNA-sequencing (scRNA-seq) alongside spatial 
transcriptomics information. Cell type identification was accomplished using the 
tool of Seurat, and the spatial distribution of cell types was revealed through the 
Robust Cell Type Decomposition technique. CellChat was used to analyze the 
interactions between key cell subtypes and other cells, and the “StLearn” package 
was employed to investigate spatial cell communication in depth. Additionally, 
the functional role of the key molecule ELK4 was validated through in 
vitro experiments. 

Results: This research utilized scRNA-seq combined with spatial transcriptomics 
to comprehensively analyze GC, identifying the C1 NDUFAB1+ subtype, which 
exhibited high proliferative activity, metabolic reprogramming capabilities, and 
immune evasion properties. It was found that the C1 NDUFAB1+ subtype closely 
interacted with fibroblasts and  pericytes via  the PARs signaling  pathway.
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Additionally, in vitro experiments confirmed that knockdown of ELK4 
substantially curbed tumor cell proliferation, migration, and invasion. 

Conclusion: This study revealed the main significance of the C1 NDUFAB1+ 
subtype in GC, elucidating its core mechanisms in tumor progression, metabolic 
reprogramming, and immune evasion. ELK4 was identified as a key regulatory 
factor that markedly enhanced the proliferation, migratory capacity, and invasive 
potential of tumor cells, while changes in the TME were a driving force behind 
immune suppression and drug resistance. The findings underscored the 
importance of developing specific therapeutic targets, targeting metabolic 
reprogramming,  and  overcoming  immune  evasion,  providing  new  
theoretical foundations. 
KEYWORDS 

gastric cancer, scRNA-seq, spatial transcriptomics, tumor microenvironment, metabolic 
reprogramming, immune evasion 
Introduction 

Gastric cancer (GC) is positioned as the fifth leading frequent 
type of cancer globally and holds a significant position among 
cancer-related causes of death, representing a significant risk to 
public health (1, 2). Referring to the global cancer data from 2022, 
the incidence of GC surpassed 968,000, with nearly 660,000 deaths, 
representing roughly 6.8% of total cancer mortality (3). The 
incidence of GC exhibits notable regional variations, with East 
Asia being a high-incidence region, while the African continent 
reports relatively lower rates (1, 3). Based on histological 
characteristics, clinical behavior, and molecular features, GC can 
be classified into several distinct types, with intestinal type and 
diffuse type being the two primary histological categories (4, 5). The 
intestinal type is frequently linked to intestinal metaplasia and 
Helicobacter pylori infection, showing higher prevalence in 
regions with elevated GC rates. On the other hand, the diffuse 
type is associated with worse clinical results and occurs frequently 
found in younger individuals and female patients (6, 7). 

GC treatment primarily includes surgical resection, radiotherapy, 
chemotherapy, immunotherapy, and targeted treatment (8). Surgical 
resection remains the primary treatment for early-stage GC, but is 
associated with high postoperative recurrence rates and significant risk 
of distant metastasis (9). For advanced-stage patients, while 
chemotherapy can prolong survival (10), it often leads to severe 
adverse effects including myelosuppression and neurotoxicity (11). In 
recent years, immune checkpoint blockers (like PD-1/PD-L1 blockers) 
have exhibited certain efficacy in some GC patients (8, 12), but the 
response rate remains low, and some patients develop resistance after 
treatment. Clinical data showed that the objective response rate of 
single-agent PD-1/PD-L1 inhibitors in advanced GC patients was 
approximately 9%-14% (13, 14). More importantly, some advanced 
GC patients developed resistance following immune checkpoint 
02 
inhibitor treatment (15). Drug resistance may arise from various 
molecular mechanisms, such as abnormal activation of the epidermal 
growth factor receptor (EGFR) signaling cascade (16–18), dysregulation 
of the PI3K/AKT/mTOR pathway (19–21), and the role of 
immunosuppressive cells in the tumor microenvironment (TME) 
(22). Additionally, research has demonstrated that alterations in 
cellular metabolism greatly aid in tumor advancement and resistance 
to therapeutic agents, and immune evasion of GC (23). GC cells 
undergo metabolic reprogramming, such as enhanced glycolysis, 
glutamine metabolism, and fatty acid synthesis, to fulfill the necessary 
energy for rapid cell division and maintain survival advantages (24, 25). 
Therefore, combining research on metabolic reprogramming with TME 
modulation strategies to develop multi-target, multi-level 
comprehensive treatment approaches hold promise for significantly 
boosting the efficacy of GC therapy and providing new breakthroughs to 
overcome drug resistance and tumor heterogeneity. 

The recent innovations of single-cell RNA-sequencing (scRNA
seq) platform has offered superior precision in the study of GC (26– 
29). This technology helps identify cell subtypes and metabolic 
features associated with drug resistance (30–32), thereby guiding 
the combination of targeted drugs and immune checkpoint 
inhibitors. It can also be used to monitor dynamic changes in 
tumor cells and the TME during treatment, providing real-time 
evidence for adjusting treatment plans. Furthermore, the 
introduction of spatial transcriptomics (ST) has further expanded 
the depth of research, with its advantage lying in the ability to 
resolve the spatial distribution and interactions of different cell 
types within the TME, offering a more comprehensive perspective 
on tumor heterogeneity and TME complexity. 

In this study, we incorporated ST following the implementation 
of scRNA-seq to thoroughly investigate tumor heterogeneity and 
spatial distribution characteristics within the GC TME. Through 
scRNA-seq, we identified four tumor cell subtypes, among which 
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the C1 NDUFAB1+ subtype exhibited significant metabolic activity 
and stem cell-like properties. Its metabolic features were closely 
associated with metabolic reprogramming, suggesting that this 
subtype may play a key driving role in tumor progression. 
Additionally, we discovered strong interactions between C1 
NDUFAB1+ subtype and fibroblasts as well as pericytes

throughout the TME, primarily mediated through the PARs 
signaling pathway, particularly via the PRSS3-F2R ligand-receptor 
pair. ST further confirmed the spatial enrichment of C1 NDUFAB1 
+ subtype in specific regions of GC tissues, underlining their major 
contribution to tumor development. To elucidate further the 
molecular regulatory mechanisms of C1 NDUFAB1+ subtype, we 
identified ELK4, a key transcription factor (TF) highly expressed in 
this subtype. ELK4 has been recognized as a promising target for 
treating multiple malignancies (33, 34), as inhibiting its expression 
or activity can constrain the proliferation, migration, and immune 
evasion of tumor cells, while enhancing sensitivity to chemotherapy 
and immunotherapy. To validate the regulatory capacity of ELK4 in 
GC, we executed in vitro tests with two GC cell lines (NCI-N87 and 
AGS). The findings indicated that silencing ELK4 significantly 
impaired the proliferation, migration, and invasion capabilities of 
GC cells. Furthermore, based on genes associated with C1 
NDUFAB1+ subtype, we developed and verified a predictive risk 
scoring model, revealing that individuals in the high-risk group 
exhibited poorer clinical outcomes, and their TME exhibited 
significant immunosuppressive characteristics, further supporting 
the significant impact of C1 NDUFAB1+ subtype in tumor 
progression and immune evasion. 

Our study comprehensively revealed the key role of C1 
NDUFAB1+ subtype in metabolic reprogramming, tumor 
progression, and immune microenvironment regulation in GC. 
We identified the C1 NDUFAB1+ subtype with distinct metabolic 
characteristics using scRNA-seq combined with ST, and 
investigated its unique spatial distribution patterns and 
interaction networks with stromal cells in the TME. Furthermore, 
we successfully established a risk scoring model based on the C1 
NDUFAB1+ subtype. These discoveries open new avenues for the 
development of combined therapies targeting immune evasion and 
metabolic regulation, while also offering new theoretical 
foundations and potential targets for the precision treatment of GC. 
Materials and methods 

Acquisition of GC data 

In this study aimed at scRNA-seq analysis of GC, we accessed the 
Gene Expression Omnibus (GEO) database (https://www.ncbi. 
nlm.nih.gov/geo/) using the accession number GSE183904. 
Subsequently, we selected 20 GC tissue samples for analysis. 
Additionally, we obtained bulk RNA-seq data from The Cancer 
Genome Atlas (TCGA) website (https://portal.gdc.cancer.gov/). As 
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the datasets utilized in this research were sourced from publicly 
available repositories, no ethical review was required. 
Single-cell sequencing data handling and 
interpretation 

During the data import phase, we used R software (v4.2.2) and 
the Seurat package (v4.3.0) to perform initial handling of the single-
cell sequencing data (35, 36). To ensure data reliability, we excluded 
low-quality cells by purifying, filtering, and removing doublets (37– 
39). The filtering criteria included (1): nFeature range (300–5,000) 
(2); nCount range (500–50,000) (3); mitochondrial gene expression 
proportion (≤25%) (4); red blood cell gene expression proportion 
(≤5%). After strict filtering, a total of 92,566 high-quality cells were 
preserved for subsequent study. 

Data normalization was a critical step in the analysis. We used the 
“NormalizeData” function (40–42) to normalize the samples. To 
capture  heterogeneity  among  cel ls ,  we  employed  the  
“FindVariableFeatures” function (43–45) to identify the top 2,000 
most variable genes (46–48). Subsequently, we standardized the gene 
expression data using the “ScaleData” function (49–51) and

performed Principal Component Analysis (PCA) (41, 52, 53). 
Batch effects were corrected using the Harmony R package (v0.1.1). 
Ultimately, dimensionality reduction and visualization were achieved 
by applying Uniform Manifold Approximation and Projection 
(UMAP) based on the top 30 principal components, further 
revealing differences in gene expression among cells (54–56). 
Identification and annotation of cell types 

We utilized the “FindClusters” and “FindNeighbors” functions 
(57) to perform clustering analysis on the cells, which initially 
determined the distribution of cell subtypes. To further dissect the 
heterogeneity of GC cells, we employed the “FindAllMarkers” 
function to detect genes with differential expression patterns 
within each subtype and annotated the cell subtypes by 
calculating the average expression of marker genes. The selection 
of marker genes integrated known information from the 
CellMarker database (http://xteam.xbio.top/CellMarker/) and

relevant data from the literature, with manual curation ensuring 
the accuracy of the annotations. 
Copy number variation assessment 

We employed the inferCNV R program (v1.6.0) (58) to analyze 
scRNA-seq data, distinguishing malignant tumor cells from normal 
cells by calculating CNV levels. Using endothelial cells (ECs) as a 
reference, we effectively identified chromosomal CNVs in tumor 
cells. By comparing gene expression intensities between tumor cells 
and normal cells, inferCNV inferred amplifications or deletions in 
chromosomal regions. 
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Analysis of spatial transcriptome 

We collected ST 1 and ST 2 slides from the ST dataset (GSE251950) 
and employed the Robust Cell Type Decomposition (RCTD) technique 
to map cell types identified in the scRNA-seq dataset to the spatial ST 
data, aiming to reveal the distribution of different cell types across 
spatial regions. First, we used the “FindAllMarkers” function to identify 
marker genes for each cell type, filtering for markers with a positive 
log2-transformed fold change. Subsequently, following the standard 
RCTD analysis pipeline, we analyzed the reference scRNA-seq data and 
Visium ST data in a complete doublet mode. To further determine the 
spatial distribution of cell types, we localized the cell types identified in 
the scRNA-seq data to spatial regions significantly enriched by 
Multimodal Intersection Analysis (MIA). Additionally, we utilized the  
“StLearn” package in Python to explore interactions in detail within 
spatial regions. 
 

 

Biological function enrichment analysis 

Using the “ClusterProfiler” package, we executed functional 
profiling on differentially expressed genes (DEGs) in tumor cell 
subtypes through Gene Ontology (GO) (59–62) and  Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway enrichment 
(63–65). Besides, Gene Set Enrichment Analysis (GSEA) was 
employed to evaluate the overall expression patterns of gene sets, 
further revealing the functional characteristics of tumor cell subtypes. 
To more comprehensively analyze the variability in gene expression 
data, we applied Gene Set Variation Analysis (GSVA), computing the 
enrichment scores of specific gene sets across individual samples.  
Differentiation trajectory and stemness 
analysis 

Based on the Slingshot (v2.6.0) trajectory inference framework, 
we constructed a developmental trajectory map of tumor cell 
subtypes and revealed the temporal characteristics of their 
differentiation pathways through pseudotime analysis. Smooth 
trajectory curves were derived using the “getLineages” and 
“getCurves” tools, and changes in cell expression levels were 
visualized in reduced-dimensional space. The initial and final 
points of the differentiation trajectories were determined based on 
the biological characteristics of GC tumor cell subtypes and the 
expression patterns of their marker genes. Additionally, we 
employed CytoTRACE to evaluate the stemness levels of different 
tumor cell subtypes, with scores ranging from 0 to 1, where higher 
scores indicated stronger cell stemness. 
Cell communication 

We leveraged the “CellChat” (v1.6.1) (66) for cell type interaction 
analysis in the GC microenvironment, constructing a cell 
Frontiers in Immunology 04
communication network. The “netVisual_diffInteraction” function 
was used to visualize the changes in communication intensity 
between cells, while the “identifyCommunicationPatterns” function 
was employed to identify complex communication patterns. By 
integrating the CellChatDB database, we identified key signaling 
pathways and ligand-receptor pairs. A P-value cutoff of 0.05 was 
established in the analysis to assess the statistical significance of cell-
cell interactions. 
Transcriptional regulatory network analysis 

We used the pySCENIC package (v0.10.0) (67) to reconstruct 
the gene regulatory network of tumor cells in GC, identifying stable 
cell states and assessing transcriptional activity. AUCell (68) was 
employed to compute the activity of regulons, with a score 
threshold set at 0.2, and significance was evaluated through 100 
random permutations. Key TFs were selected based on their regulon 
specificity scores and AUCell activity. 
Construction and validation of a 
prognostic model for GC 

First, we extracted pertinent data from the TCGA database and 
identified eight genes with significant prognostic relevance through 
univariate Cox regression analysis (69–72). To mitigate 
multicollinearity among the genes, LASSO (73, 74) and

multivariate Cox regression analysis was subsequently employed, 
ultimately identifying seven key prognostic genes and calculating 
their coefficient values. A risk scoring model was developed using 

nthe following formula: Risk Score = oi Xi x  Yi, with X denoting 
the coefficient and Y denoting the gene expression. Using the 
optimal threshold identified by the “surv_cutpoint” algorithm, 
patients were separated into high- and low-risk groups. To 
validate the predictive ability of the model, we utilized Kaplan-
Meier and Receiver Operating Characteristic (ROC) curves to assess 
the model’s predictive accuracy (75–79). Additionally, we 
constructed a nomogram incorporating age, gender, race, stage, 
risk score, and TNM classification (80). The model was further 
validated through Area Under the Curve (AUC) values (81–83) 
based on both the C-index and true positive rate. 
Analysis of the immune landscape and 
therapeutic response 

The CIBERSORT and ESTIMATE (84, 85) were used to assess 
immune infiltration. Subsequently, we utilized the Tumor Immune 
Dysfunction and Exclusion (TIDE) program to evaluate the 
response to immunotherapy in the high- and low-risk groups. 
Afterward, we employed the “pRRophetic” package (v0.5) to 
estimate the half-maximal inhibitory concentration (IC50) values 
for drug. 
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Cell culture 

The NCI-N87 GC cell line was cultured in 1640 basal medium 
enriched with 10% fetal bovine serum (FBS), 1% penicillin-
streptomycin (P/S), 1% GlutaMAX-1 glutamine, and 1% sodium 
pyruvate, while the AGS GC cell line was cultured in F12K medium 
supplemented with 10% premium FBS and 1% penicillin-
streptomycin (P/S). Both GC cell lines were maintained under 
standard conditions (37°C, 5% CO2, 95% humidity). 
Cell transfection 

In the cell transfection experiment, we utilized small interfering 
RNAs (siRNAs) provided by GenePharma (Suzhou, China) to 
inhibit ELK4 expression. Cells were grown in 6-well plates until 
achieving 50% confluency, followed by transfection using 
Lipofectamine 3000 RNAiMAX (Invitrogen, USA). Two specific 
siRNA sequences, siELK4-1 (CAUUCAACAUGAUUGCAUU) 
and siELK4-2 (CUCAGAUACUAUUAUGUAA), were designed 
for the experiment, along with a negative control siRNA (si-NC) 
as a control. 
Cell viability assay 

We employed the CCK-8 method to evaluate the viability of 
transfected NCI-N87 and AGS cells. Cells were plated in 96-well 
plates at a concentration of 5×10³ cells per well and incubated for 24 
h to allow proper adherence. Subsequently, 10 mL of CCK-8 reagent 
(A311-01, Vazyme) was added to each well, gently mixed, and 
incubated at 37°C in the dark for 2 h. Following incubation, 
absorbance readings were taken at 450 nm using a microplate 
spectrophotometer (A33978, Thermo). The experiment was 
conducted daily from day 1 to day 4 post-transfection, and the 
absorbance values were recorded and averaged. A curve depicting 
changes in cell viability over time was plotted to visually reflect the 
dynamic changes in cell viability levels. 
Quantitative real-time polymerase chain 
reaction 

We first extracted RNA from the cells using TRIzol reagent, 
followed by reverse transcription. Then, the amplification process was 
monitored in real-time using fluorescent dyes. The primer sequences 
used in the experiment were: F: GGATTCGCAAGAACAAGCCT, R: 
TCAATCCTGCCCACTGTCAT. 
5-ethynyl-2’-deoxyuridine proliferation 
assay 

We seeded the transfected NCI-N87 and AGS cells in 6-well 
plates at a density of 5×10³ cells per well and cultured them for 24 h 
Frontiers in Immunology 05 
to allow proper adherence. Subsequently, 2× EDU working solution 
was added to the medium, and the cells were incubated at 37°C for 2 
h. Post-incubation, the supernatant was aspirated, and the adherent 
cells were subjected to dual PBS washes for the removal of non-
incorporated reagent. Following this step, the cellular specimens 
underwent fixation in 4% paraformaldehyde for a duration of 0.5 h. 
Afterward, a permeabilization procedure was performed with a 
mixture of 2 mg/mL glycine and 0.5% Triton X-100 to optimize 
staining performance. 

To conclude the procedure, the cells were treated with a 1:1 
mixture of 1ml 1X Apollo and Hoechst 33342 solution for 0.5 h to 
label proliferating cells and nuclei. After staining, images were 
observed and captured, and the frequency of EDU-incorporated 
cells was quantified and statistically evaluated. 
Wound healing assay 

Transfected cellular populations were initially seeded into 6
well tissue culture plates and allowed them to grow until they 
achieved nearly 95% confluency. Uniform linear wounds were 
generated using a sterile 200 mL pipette tip on the cell monolayer 
to simulate wounds. Post-scratching, the wells underwent 
additional washing steps, and serum-free medium was applied to 
prevent serum interference with cell migration. Following this, 
images of the wound areas were then acquired at the initial time 
point (0 h) and after 48 h to track the migratory behavior of the cells 
over time. After the experiment, the scratch widths were 
quantitatively analyzed using Image-J software to calculate the 
cell migration rate. 
Transwell assay 

After a 1-day serum starvation period, Matrigel (BD 
Biosciences, USA) was thoroughly mixed with the cell suspension 
and applied to the upper compartment of the transwell, with serum-

added medium being introduced into the lower chamber. Upon 
completion of a 2-day incubation in culture dishes, cellular 
specimens were fixed using 4% paraformaldehyde. Finally, crystal 
violet staining was applied to quantitatively assess migratory and 
invasive capabilities. 
Statistical analysis 

The research employed R and Python computational tools for 
statistical computations and data interpretation, with the Wilcoxon 
rank-sum test and Spearman correlation methodology being the 
principal approaches for evaluating intergroup statistical 
significance. For the significance determination criteria, a two-
tailed test was used to calculate P-values, with a statistical 
threshold set at 0.05. The statistical significance levels were 
denoted using asterisks, with * representing P-values below 0.05, 
** indicating P < 0.01, *** signifying P < 0.001, and **** marking P-
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values less than 0.0001. This hierarchical system enhanced the 
interpretability of the results by quantifying the strength 
of differences. 
Results 

Single-cell profiling uncovered 
heterogeneity and subtype-specific 
molecular signatures in GC 

Based on GC scRNA-seq data, we thoroughly analyzed the 
cellular composition and functional characteristics of its 
microenvironment. Our analysis workflow was shown in Figure 1. 
We first performed quality control and batch effect correction on 
the collected GC tissues. Then, after dimensionality reduction and 
clustering of the high-quality filtered cells, we identified 10 major 
cell types, including epithelial cells (EPCs), ECs, fibroblasts, myeloid 
cells, pericytes, mast cells (MCs), T cells and NK cells, B cells, 
plasma cells, and proliferating cells. The distribution profiles of 20 
individual samples were additionally presented in Figure 2A, 
stratified by cell cycle phases (G1, G2/M, S) and group types 
(intestinal, diffuse). The heterogeneity of EPCs in the TME is a 
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complex and significant phenomenon, profoundly influencing 
tumor development and treatment response. GC, a cancerous 
growth arising from the stomach mucosal epithelium, is closely 
associated with EPCs in its occurrence and progression (86). For the 
discrimination of cancerous cells from normal cellular populations 
and examination of tumor heterogeneity, we used ECs as a 
comparative baseline and identified tumor cells within EPCs 
through inferCNV analysis (Supplementary Figure 1). Following 
this, we performed a more detailed examination regarding the 
tumor cells and classified four tumor cell subtypes based on the 
expression levels of marker genes (C0 MUC5AC+ subtype, C1 
NDUFAB1+ subtype, C2 SRGN+ subtype, C3  HEPACAM2+ 
subtype). In Figure 2B, we demonstrated the clustering of these 
four tumor cell subtypes and the expression distribution of 
CNVscore, Cell-Stemness-AUC, nFeature-RNA, and nCount-
RNA across all tumor cells. Additionally, we displayed the 
expression of the top 10 marker genes, the distribution of named 
genes, as well as the significantly upregulated and downregulated 
genes in each subtype (Figures 2C–E). Interestingly, we observed 
that C1 NDUFAB1+ subtype exhibited higher expression levels of 
nCount-RNA, nFeature-RNA, G2/M.Score, and S.Score in 
Figure 2F. Therefore, we speculated that C1 NDUFAB1+ subtype 
might be in a more active cell cycle state and could potentially 
FIGURE 1 

GC scRNA-seq: analysis workflow. The analysis process of GC scRNA-seq data covered data normalization, identification of key cell subtypes, and 
functional interpretation. 
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FIGURE 2 

Detailed single-cell profiling of GC. (A) UMAP plot in the upper left corner displayed the distribution of 10 different cell types, while the UMAP plots 
in the lower right corner displayed the distribution of 20 different samples, cell cycle phases, and groups, respectively. (B) The circular plot showed 
the clustering of four tumor cell subtypes identified in GC, outlined by contour curves. The outer, middle, and inner axes represented the logarithmic 
scale of the clusters for each tumor cell subtype, along with group and phase. UMAP plots were arranged in a clockwise direction starting from the 
top left corner, displaying the expression distributions of CNVscore, Cell-Stemness-AUC, nFeature-RNA, and nCount-RNA across all tumor cells. 
(C) Bubble plot displayed the differential expression of the top 10 marker genes across the four tumor cell subtypes and two groups. The pie charts 
displayed the proportions of G1, G2/M, and S phases, while the violin plots presented the expression levels of G2/M.Score, S.Score, and nCount-
RNA. The size of the bubbles indicated the percentage of gene expression, and the color intensity represented the level of gene expression. 
(D) UMAP plots showcased the distribution of named genes for each tumor cell subtype. (E) Volcano plots highlighted the differentially upregulated 
and downregulated genes in each tumor cell subtype. (F) Violin plots illustrated the expression levels of nCount-RNA, nFeature-RNA, G2/M.Score, 
and S.Score across different tumor cell subtypes. (G) Box plots described the proportion of different samples in each subtype across the two groups. 
(H) Heatmap assessed phase preference for each subtype using the Ro/e score. 
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possess stronger malignant characteristics. In Figure 2G, we

depicted the proportion of different samples for each subtype in 
the two groups, finding that the percentage of intestinal samples in 
C1 NDUFAB1+ subtype was higher than that of diffuse samples. As 
expected, the cell cycle phases of C1 NDUFAB1+ subtype showed a 
preference for the G2/M and S phases (Figure 2H). 
 

Spatial multi-omics features and co-
localization of key subtypes in GC 

To investigate the spatial multi-omics characteristics of GC and 
explore the spatial expression patterns of key molecular events during 
tumor progression, we conducted ST analysis on two collected GC 
tissue sections. We utilized the RCTD deconvolution method to 
display the first cell types inferred at selected points on ST 1 slide in 
Figure 3A. Figure 3B illustrated the ST landscape of C1 NDUFAB1+ 
subtype, which was consistent with the first cell types inferred above. 
To validate the accuracy of RCTD, we further analyzed the data using 
the MIA method (Figures 3C, D). Analysis revealed that the C7 cluster 
showed maximal enrichment within C1 NDUFAB1+ subtype, and the 
spatial distribution characteristics of the C7 cluster on ST 1 slide were 
similar to those of C1 NDUFAB1+ subtype. In addition, we performed 
RCTD analysis on ST 2 slide, which revealed high expression in 
regions spatially corresponding to C1 NDUFAB1+ subtype

(Supplementary Figures 2A, B). Furthermore, Supplementary 
Figure 2C demonstrated that nCount-Spatial, nFeature-Spatial, G2/ 
M.Score, and S.Score exhibited spatial expression patterns similar to 
those of C1 NDUFAB1+ subtype. 
 

Biological functions and metabolic analysis 
of tumor cell subtypes in GC 

These characteristics of C1 NDUFAB1+ subtype suggested that 
they might be a key driver subtype in tumor progression. 
Consequently, we proceeded to investigate their biological 
functions. Figures 3E, F illustrated the main biological processes 
enriched by DEGs in different tumor cell subtypes. We found that 
C0 MUC5AC+ subtype was primarily associated with junction, 
adhesion, and splicing, and were mainly enriched in pathways such 
as cell-cell junction organization, RNA splicing, miRNA metabolic 
process, regulation of miRNA metabolic process, and DNA

templated transcription elongation. C1 NDUFAB1+ subtype was 
mainly associated with mitochondrial, localization, and 
triphosphate, and were predominantly concentrated in pathways 
such as cytoplasmic translation, oxidative phosphorylation, aerobic 
respiration, ATP synthesis coupled electron transport, and 
mitochondrial ATP synthesis coupled electron transport. C2 
SRGN+ subtype was primarily associated with leukocyte, 
production, and immune, and were mainly enriched in pathways 
such as leukocyte cell-cell adhesion, regulation of T cell activation, 
regulation of leukocyte cell-cell adhesion, regulation of cell-cell 
adhesion, and positive regulation of leukocyte cell-cell adhesion. C3 
HEPACAM2+ subtype was mainly associated with peptide, 
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secretion, and splicing, and demonstrating major representation 
in functional pathways such as protein folding, regulation of mRNA 
splicing and via spliceosome, response to unfolded protein, 
regulation of RNA splicing, and response to glucose. Meanwhile, 
in Figure 3F, we illustrated the KEGG terms enriched in each tumor 
cell subtype. C0 MUC5AC+ subtype was primarily associated with 
pathogenic Escherichia coli infection. C1 NDUFAB1+ subtype 
showed significant enrichment in ribosome, Parkinson disease, 
Huntington disease, prion disease, and oxidative phosphorylation. 
C2 SRGN+ subtype was predominantly linked to Th17 cell 
differentiation, Th1 and Th2 cell differentiation, type I diabetes 
mellitus, graft-versus-host disease, and allograft rejection. Finally, 
C3 HEPACAM2+ subtype was mainly related to protein processing 
in endoplasmic reticulum, vibrio cholerae infection, phagosome 
and protein export. Subsequently, in Figure 3G, we displayed the 
top 20 enriched metabolism-related pathways across different 
tumor cell subtypes. Notably, compared to other subtypes, the C1 
NDUFAB1+ subtype showed predominant enrichment in oxidative 
phosphorylat ion,  glutathione  metabol ism,  glycolys is/  
gluconeogenesis, sulfur metabolism, and citrate cycle (TCA cycle). 
The above results indicated that C1 NDUFAB1+ subtype exhibited 
high metabolic activity, a characteristic that likely supported their 
rapid proliferation and survival, making them a key driver subtype 
in tumor progression. Meanwhile, C0 MUC5AC+ subtype, C2 
SRGN+ subtype, and C3 HEPACAM2+ subtype played important 
roles in cell-cell connections, immune responses, and stress 
responses, respectively, highlighting the heterogeneity and 
complexity of the tumor. 
Differentiation trajectories and stemness 
analysis 

The differentiation process of tumor cells is one of the pivotal 
elements in tumorigenesis and progression, and stemness, as an 
important characteristic of tumor cells, directly influences their self-
renewal, proliferation, and differentiation capabilities (87). 
Understanding the differentiation trajectories and stemness 
features of different tumor cell subtypes is crucial for revealing 
tumor heterogeneity, prognosis, and potential therapeutic targets. 
Therefore, we systematically explored the differentiation lineages 
and related characteristics of different tumor cell subtypes using a 
combination of analytical methods. First, we ranked the stemness of 
different tumor cell subtypes using the CytoTRACE method, and 
the observations supported that C1 NDUFAB1+ subtype possessed 
increased stemness properties, while C0 MUC5AC+ subtype

exhibited lower stemness (Figures 4A, B). This finding suggested 
that C1 NDUFAB1+ subtype might exhibit enhanced capacity for 
self-renewal and differentiation. To further investigate their 
stemness features, we displayed the variations in the expression of 
stemness genes among distinct subtypes (Figure 4C) and visualized 
the distribution of significantly expressed stemness genes 
(CTNNB1, ABCG2, MYC, LGR5) in C1  NDUFAB1+ subtype 
(Figure 4D). The high expression patterns of these genes further 
supported the high stemness characteristics of C1 NDUFAB1+ 
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FIGURE 3 

Spatial distribution features and enrichment analysis of tumor cell subtypes in GC. (A) The ST feature map demonstrated the first cell types inferred 
at selected points on ST 1 slide. Each point represented the cell type with the highest probability within that location. (B) The ST feature map 
revealed the spatial expression pattern of the C1 NDUFAB1+ subtype. The intensity of the color indicated the relative strength of expression. (C) MIA 
analysis assessed the enrichment degree of spatial clusters associated with various cell types on ST 1 slide. (D) The results of spatial spot clustering 
on ST 1 slide were visualized. (E) The word cloud diagrams depicted the main biological processes of each tumor cell subtype. (F) Heatmap 
illustrated the top 5 enriched GOBP and KEGG terms in tumor cell subtype. (G) Heatmaps respectively showed the top 20 enriched metabolism-
related pathways across all tumor cell subtypes and C1 NDUFAB1+ subtype. 
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subtype. To comprehensively understand the differentiation 
dynamics of tumor cells, we used Slingshot to evaluate the 
differentiation lineages of four subtypes (Figure 4E). The results 
showed that both lineage 1 and lineage 2 passed through C0 
MUC5AC+ subtype in the early differentiation stage and diverged 
to different endpoints after passing through C1 NDUFAB1+ 
Frontiers in Immunology 10 
subtype. This observation indicated that C1 NDUFAB1+ subtype 
might serve as critical factors in cellular differentiation mechanisms. 
To further validate this hypothesis, we displayed the distribution of 
lineage 1 and lineage 2 fitted by Slingshot, clearly showing their 
progression along the inferred pseudotime order (Figure 4F). 
Additionally, the pseudotime trajectories of named genes in the 
FIGURE 4 

Developmental and differentiation features of tumor cell subtypes in GC. (A) The two-dimensional graphs depicted the CytoTRACE results of the 
predicted order (left) and distribution characteristics (right) for the four tumor cell subtypes. (B) Box plot described the stemness ranking of the 
tumor cell subtypes predicted by CytoTRACE. (C) Bubble plot displayed the differential expression of the top stemness genes for each tumor cell 
subtype. (D) UMAP plots visualized the distribution of significantly expressed stemness genes in C1 NDUFAB1+ subtype. (E) UMAP plot utilized 
Slingshot analysis to display two cellular differentiation lineages of the four tumor cell subtypes over time. Solid lines and arrows represented the 
differentiation trajectories and the direction of cell differentiation from naive to mature, respectively. (F) UMAP plots illustrated the distribution of 
lineage 1 and lineage 2 fitted by Slingshot, showing their progression along the inferred pseudotime order. (G) Dynamic trend plots depicted the 
pseudotime trajectories of named genes across four tumor cell subtypes in lineage 1 and lineage 2. (H) Heatmap demonstrated the key biological 
processes related to the two lineages in tumor cell differentiation, as presented in the GO enrichment analysis results. The ridge plots displayed the 
pseudotime density changes of the four tumor cell subtypes. The trajectory plots showed the pseudotime score changes of S.Score and G2/M.Score 
across the two lineages. 
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four tumor cell subtypes within lineage 1 and lineage 2 were highly 
consistent with the Slingshot results (Figure 4G), further supporting 
our findings. 

Based on these observations, we speculated that C1 NDUFAB1+ 
subtype might play a critical role in the differentiation process of 
GC cells. Specifically, C0 MUC5AC+ subtype exhibited lower 
stemness and higher differentiation levels, while C1 NDUFAB1+ 
subtype demonstrated higher stemness, proliferative capacity, and 
differentiation potential. To more deeply reveal the biological 
significance of these different lineages, we explored key biological 
processes associated with tumor cell differentiation (Figure 4H). 
The evidence suggested that C1 cluster was mainly tied to immune 
and humoral responses, C2 cluster was related to digestive and 
structural functions, and C3 cluster was closely linked to Wnt 
signaling pathway and morphogenesis. Additionally, C4 cluster was 
significantly associated with visual, brain, and pancreatic functions. 
These enrichment results not only revealed the potential functional 
differences among different tumor cell subtypes but also provided 
new insights into their roles in tumorigenesis and development. 
 

Cell-cell communication and signaling 
pathway regulatory network analysis 

To better elucidate the involvement of C1 NDUFAB1+ subtype in 
the TME, we investigated the complex interactions between tumor 
cells and other cell types. Using CellChat, we executed a detailed 
investigation of the communication networks between C1 NDUFAB1+ 
subtype as both source and target with other cell types (Figure 5A). We 
found that the interactions between C1 NDUFAB1+ subtype and 
fibroblasts, as well as pericytes, were stronger compared to other cell 
types. We examined the main driving patterns of all cell types and the 
interaction proteins under these patterns (Figures 5B, C). The 
investigations indicated that the outgoing and incoming signals of 
C1 NDUFAB1+ subtype were primarily driven by Pattern 3, involving 
significant contributions from CDH, EDN, OCLN, DESMOSOME, 
and EPHA. In Figure 5D, we further presented the relative signal 
strength of various signaling pathways across different cell types and all 
cell types under different signal patterns. Through signal network 
analysis, we discovered that C1 NDUFAB1+ subtype primarily 
communicated with fibroblasts and pericytes via the PARs signaling 
pathway (Figure 5E). Additionally, in Figure 5F, we observed that C1 
NDUFAB1+ subtype mainly took on the responsibilities of sender, 
mediator, and influencer, while fibroblasts and pericytes acted 
as receivers. Subsequently, we used a hierarchical graph to reveal 
that C1 NDUFAB1+ subtype might regulate themselves through 
autocrine mechanisms, while influencing fibroblasts and pericytes 
through paracrine mechanisms (Figure 5G). Furthermore, we 
visualized the expression of key ligand-receptor pairs in the PARs 
signaling pathway across four tumor cell subtypes and nine other cell 
types (Figures 5H, I). We found that PRSS3 and F2R were highly 
expressed in C1 NDUFAB1+ subtype,  fibroblasts, and pericytes. We 
then further analyzed the communication network within the PRSS3
F2R ligand-receptor pair, confirming that the interactions between C1 
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NDUFAB1+ subtype and fibroblasts and pericytes could be mediated 
by PRSS3-F2R within the PARs signaling pathway (Figures 5J, K). 
Integrating single-cell and ST to analyze 
intercellular spatial interactions 

To further understand the spatial distribution and spatial 
interactions of different cell types within the TME, we integrated 
scRNA-seq data with ST data using the RCTD deconvolution 
technique, delineating the spatial architecture of different cell 
types on ST 2 slide (Figure 6A). Subsequently, we analyzed ST 2 
slide using the “Stlearn” package in Python, displaying the top 10 
significant ligand-receptor pairs within the spots in Figure 6B. We  
illustrated the spatial interaction strength and statistical value of the 
THBS2-ITGB1 interaction pair and performed spatial enrichment 
analysis. By combining the results with Figure 6A, we observed that 
the THBS2-ITGB1 interactions were predominantly concentrated 
at the boundaries of tumor cells. This suggested that the ligand-
receptor interactions between THBS2 and ITGB1 might play a 
regulatory role in spatial communication between tumor cells and 
other cell types (Figure 6C). In Figure 6D, we visualized the strength 
of cell-cell interactions mediated by the THBS2-ITGB1 ligand-
receptor pair, revealing higher communication intensity between 
C1 NDUFAB1+ subtype and fibroblasts as well as pericytes. The 
results in Figures 6E, F further confirmed this observation and 
unveiled the complexity of this spatial cell-cell communication 
pattern. Based on these findings, we speculated that C1 
NDUFAB1+ subtype might have reshaped the network of 
intercellular interactions within the TME through abnormal 
communication crosstalk with fibroblasts and pericytes. 
Investigation of C1 NDUFAB1+ subtype 
based on TF regulatory networks 

Investigating TFs is crucial for exploring tumor heterogeneity 
and the TME, as TFs play a pivotal role in regulating gene 
expression and cellular behavior. Figure 7A displayed the 
clustering analysis of tumor cells based on their gene expression 
levels, followed by the clustering patterns of different tumor cell 
subtypes according to regulon activity scores (Figure 7B). 
Subsequently, we identified three regulatory modules through 
hierarchical clustering of TFs within the tumor cell subtypes 
(Figure 7C). We visualized the expression distribution of TFs 
across each module and the expression levels of different tumor 
cell subtypes within each module (Figures 7D, E), revealing that C1 
NDUFAB1+ subtype displayed elevated expression within the M3 
module relative to other subtypes. Meanwhile, within the M3 
module, C1 NDUFAB1+ subtype showed higher regulon activity 
scores relative to other tumor cell subtypes (Figure 7F). Figure 7G 
illustrated the top 5 TFs in C1 NDUFAB1+ subtype, namely 
ZNF615,  TFDP1, E2F1,  ETV4, and  ELK4. In  Figure 7H, we

observed the top 5 TFs with higher specificity scores in C1 
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FIGURE 5 

Cell communication in single-cell transcriptomics. (A) Circle diagrams represented the interactions between C1 NDUFAB1+ subtype as both the 
source (upper) and the target (lower) with other cell types in terms of the number (left) and intensity (right). (B) Heatmaps showed the outcoming 
(left) and ingoing (right) communication patterns of the four tumor cell subtypes and nine other cell types across three cell communication patterns, 
along with the contributions of different proteins in each communication pattern. (C) Sankey diagrams predicted the outgoing communication 
patterns (upper) of the four tumor cell subtypes and nine other cell types as secreting cells, and the incoming communication patterns (lower) as 
target cells, along with the signaling pathways under the three cell communication patterns. (D) Heatmaps displayed the relative intensity of various 
signaling pathways in the four tumor cell subtypes and nine other cell types under the outgoing and incoming signaling patterns, while the bar 
charts illustrated the relative signal intensity of different cell types. (E) Heatmap showed the communication probability of the four tumor cell 
subtypes and nine other cell types under the PARs signaling network. (F) Heatmap depicted the centrality scores within the PARs signaling pathway 
network. (G) Hierarchical diagram portrayed the interactions between four tumor cell subtypes and nine other cell types in the PARs signaling 
pathways network. (H, I) Bubble plot and violin plot compared the expression of significant ligands and receptors in the PARs signaling pathways 
across four tumor cell subtypes and nine other cell types. (J, K) Chord plot and circle diagram displayed the communication network in the PRSS3
F2R ligand-receptor pair. 
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NDUFAB1+ subtype. We further analyzed the expression levels of 
the top 5 TFs in C1 NDUFAB1+ subtype across different subtypes 
(Figure 7I) and visualized their expression distribution within the 
M3 module using UMAP plots (Figure 7J). We noted that ELK4 
Frontiers in Immunology 13 
exhibited elevated expression levels relative to other subtypes, and 
its expression within the M3 module was more pronounced relative 
to the other four TFs. Therefore, we conducted in vitro experiments 
to further investigate the effects of ELK4 on GC cells. 
FIGURE 6 

Spatial cell communication. (A) RCTD analysis predicted the cell types at each spatial spot on ST 2 slide. (B) The ranking plot displayed the top 10 
significant ligand-receptor pairs within the spots. (C) The interaction strength of the THBS2-ITGB1 ligand-receptor pair was represented across all 
spots (left), in significant spots (middle), and its statistical value was shown for each spot (right). (D) The interaction heatmap visualized the intensity 
of intercellular interactions mediated by the THBS2-ITGB1 ligand-receptor pair. (E, F) Chord plot and network diagram depicted the spatial 
interactions among different cell types in the THBS2-ITGB1 ligand-receptor pair. 
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FIGURE 7 

Characterization of TF activity and regulatory modules in tumor cell subtypes. (A) UMAP plot revealed the clustering patterns of tumor cells, which 
were determined by gene expression levels. (B) UMAP plots colored and visualized distinct clustering patterns among tumor cells based on the 
regulon activity scores. (C) Heatmap demonstrated the identification of three regulatory modules through hierarchical clustering of TFs within tumor 
cell subtypes. (D) UMAP plots presented the distribution of expression levels of TFs in each module. (E) Violin plots illustrated the expression levels of 
four tumor cell subtypes within each module. (F) Scatter plots demonstrated the ranking of regulon activity scores of TFs across four tumor cell 
subtypes within each module. (G) Heatmap exhibited the expression of the top 5 TFs in each tumor cell subtype. (H) Scatter plots demonstrated the 
ranking of specificity scores for the top 5 TFs in each tumor cell subtype. (I) Violin plots illustrated the expression levels of the top 5 TFs in C1 
NDUFAB1+ subtype across each tumor cell subtype. (J) UMAP plots visualized the expression distribution of the top 5 TFs in C1 NDUFAB1+ subtype 
within the M3 module. 
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In vitro experiments validated the 
regulatory role of ELK4 throughout the 
advancement of GC 

To gain deeper insights into the involvement of ELK4 in GC 
advancement, in vitro assay was carried out with NCI-N87 and AGS 
cell populations. Originally, we performed knockdown of ELK4 and 
then categorized into three distinct groups: si-NC, siELK4-1, and 
siELK4-2. Subsequently, we observed that the relative expression 
levels of both mRNA and protein were markedly decreased in the 
Frontiers in Immunology 15 
siELK4–1 and siELK4–2 groups when measured against the si-NC 
group (Figure 8A). Additionally, using the CCK-8 assay, we 
observed that the mean optical density (OD) values were also 
significantly decreased in the siELK4–1 and  siELK4–2 groups

(Figure 8B). This demonstrated that the cell viability of the NCI
N87 and AGS GC cell lines was significantly reduced after ELK4 
knockdown. Next, colony formation and EDU staining results 
revealed that the colony numbers and the cell proliferation rates 
were markedly decreased in both GC cell populations after ELK4 
knockdown (Figures 8C–E). Finally, the cell wound healing and 
FIGURE 8 

In vitro experimental validation. (A) Bar plots displayed the relative expression levels of ELK4 mRNA and ELK4 protein in the NCI-N87 and AGS GC 
cell lines for si-NC, siELK4-1, and siELK4-2. (B) The CCK-8 assay demonstrated the OD values of si-NC, siELK4-1, and siELK4–2 in the two GC cell 
lines. (C) The colony formation assays compared the results of cell colony formation among si-NC, siELK4-1, and siELK4–2 in the two GC cell lines. 
(D) Bar plots visually showed the colony numbers and cell proliferation rates of si-NC, siELK4-1, and siELK4–2 in the two GC cell lines. (E) The EDU 
staining assays exhibited the results of cell proliferation among si-NC, siELK4-1, and siELK4–2 in the two GC cell lines. (F) The cell wound healing 
assays evaluated the ability of cell wound healing at 0 h and 48 h among si-NC, siELK4-1, and siELK4–2 in the two GC cell lines. (G) Transwell assays 
evaluated the cell migration and invasion abilities among si-NC, siELK4-1, and siELK4–2 in the two GC cell lines. (H) Bar plots compared the results 
of cell wound healing, migration, and invasion among si-NC, siELK4-1, and siELK4–2 in the two GC cell lines. **P < 0.01, ***P < 0.001. 
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transwell assays showed that the wound healing ability, migration, 
and invasion capabilities of the two GC cell lines were inhibited 
following ELK4 knockdown (Figures 8F–H). Through these studies, 
we uncovered ELK4’s crucial involvement in GC development, 
providing important experimental evidence for further 
exploration of ELK4 as a promising target for GC treatment. 
 

 

Construction and validation of a risk 
scoring model for tumor prognosis 
prediction 

We designed a risk scoring model to probe the molecular 
mechanisms of tumor prognosis and comprehensively assess 
patients’ prognostic risks. Initially, eight genes with notable 
prognostic relevance were ascertained (Figure 9A). To mitigate 
multicollinearity, narrowing down the selection to seven key 
prognostic genes (Figure 9B). In-depth profiling of these genes 
and their coefficients indicated that NHLH2, ATF7, ERG, CREM, 
and NR3C1 were associated with poor prognosis (Figures 9C, D). 
Using the optimal threshold for the NDUFAB1+ tumor cells risk 
score (NTRS), patients were stratified into high and low NTRS 
groups, followed by DEGs analysis. The findings indicated notable 
disparities in the expression of the seven genes between the two 
groups, with the high NTRS group exhibiting poorer prognosis 
(Figures 9E, F). Kaplan-Meier survival curves further validated 
these findings, demonstrating lower OS rates in the high NTRS 
group (Figure 9G). To evaluate the model’s predictive performance, 
ROC curves were plotted. The AUC values for 1-year, 3-year, and 5
year survival predictions all exceeded 0.6, indicating the model’s 
robust predictive capability (Figure 9H). PCA demonstrated notable 
variations in gene distribution between the two groups, with PC1 
and PC2 explaining 10.32% and 8.55% of the total variance, 
respectively (Figure 9I). Additionally, a negative correlation 
between risk scores and OS was observed, further supporting the 
model’s reliability (Figure 9J). Further analysis of the relationships 
among the seven prognostic genes, risk scores, and OS showed that 
NHLH2, ATF7, ERG, CREM, and  NR3C1 exhibited a positive 
correlation with risk scores but an inverse correlation with OS, 
suggesting their potential roles as drivers of poor prognosis. In 
contrast, SOX9 and E2F2 exhibited the opposite trends, indicating 
potential protective effects on prognosis (Figure 9K). To explore the 
influence of various risk factors on prognosis, the distribution of 
clinical features was compared between the high and low NTRS 
groups (Figure 9L). A nomogram incorporating age, gender, race, 
stage, risk score, and TNM classification was constructed, 
demonstrating that the NTRS risk group exhibited the most 
significant survival differences (Figure 9M). Finally, the model’s 
accuracy was validated using the C-index and true positive rate, 
with AUC values for 1-year, 3-year, and 5-year predictions all 
exceeding 0.6, further confirming the model’s robustness

(Figures 9N, O). These findings provide critical theoretical and 
practical insights for optimizing clinical decision-making, 
accurately predicting patient prognosis, and improving 
survival outcomes. 
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Investigating the effect of NTRS on the 
immune landscape and prognosis in tumor 
cells 

The initial step in examining NTRS’s complex involvement in 
the immune microenvironment involved determining the relative 
abundance of distinct immune cell populations (Figure 10A). 
Figure 10B manifested pronounced contrasts regarding the 
estimated proportions of nine immune cell types between both 
groups. In the high NTRS group, MCs resting, Macrophages M2, B 
cells naive, and Monocytes were more abundant. In contrast, T cells 
CD4 memory activated, T cells follicular helper, MCs activated, NK 
cells resting, and Macrophages M0 were more prevalent in the low 
NTRS group. Comprehensive analyses were performed to evaluate 
the interconnections among diverse immune cell types and risk 
scores, prognostic genes, and OS (Figures 10C, D). MCs resting, 
Macrophages M2, Monocytes, and B cells naive showed significant 
positive correlations with risk scores. Conversely, T cells CD4 
memory activated and T cells follicular helper exhibited 
significant negative correlations with risk scores. These findings 
suggested that the observed differences in immune cell composition 
across study groups might be closely related to disease risk and 
prognosis. Next, we compared the differences in signature and 
TIDE  scores  between  the  high  and  low  NTRS  groups  
(Figures 10E, F). The results indicated that the stromal, immune, 
ESTIMATE, and TIDE scores were significantly higher in the high 
NTRS group, suggesting a more immunosuppressive TME in this 
group. Additionally, analysis outcomes of immunological 
checkpoint-associated genes (Figure 10G) uncovered that the 
majority immune checkpoints were positively correlated with risk 
scores. Genes such as ATF7, ERG, CREM, NR3C1, and E2F2 were 
positively correlated with multiple immune checkpoints, while 
NHLH2 and SOX9 showed negative correlations. In the high 
NTRS group, most immune checkpoint-related genes were 
expressed at higher levels, with only TNFRS14 and LGALS9 
showing higher expression in the low NTRS group (Figure 10H). 

To comprehensively reveal the discrepancies between both 
groups, we probed the upregulated and downregulated DEGs and 
distinct gene expression patterns (Figures 10I, J). DEGs were found 
to be predominantly enriched in pathways such as neuroactive 
ligand-receptor interaction, calcium signaling pathway, adrenergic 
signaling in cardiomyocytes, cAMP signaling pathway, and 
cytoskeleton in muscle cells (Figure 10K). GSEA enrichment 
analysis (Figure 10L) further demonstrated that upregulated genes 
were primarily engaged in biological processes such as membrane 
depolarization during action potential, peptide cross linking, 
smooth muscle contraction, and sodium ion export across plasma 
membrane. Downregulated genes were chiefly implicated  in
kinetochore organization, cell cycle DNA replication, and 
centromere complex assembly. GSVA analysis highlighted 
significant differences in major biological pathways and gene set 
enrichment between both groups (Figure 10M). Finally, we 
evaluated the sensitivity to different therapeutic drugs 
(Figure 10N). The high NTRS group showed greater sensitivity to 
AZD.2281, Imatinib, MG.132, MK.2206, Pazopanib, PF.02341066, 
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FIGURE 9 

Creation and validation of a prognostic risk scoring model. (A) Forest plot demonstrated the results of univariate Cox regression analysis, where HR < 
1 represented protective factors and HR > 1 indicated risk factors. (B) LASSO regression analysis identified prognostic genes by determining the 
optimal parameters through cross-validation (upper) and generating the coefficient profile based on the optimal lambda (lower). (C) Forest plot 
illustrated the results of multivariate Cox regression analysis. (D) Bar plot exhibited the coefficients of the genes in the constructed model. (E) The 
risk curve and scatter plot contrasted the risk scores (upper) and survival outcomes (lower) over time in the high and low NTRS groups, respectively. 
(F) Heatmap compared the differences in expression levels of prognostic genes in the constructed model between the high and low NTRS groups. 
(G) Kaplan-Meier curves compared the OS rates between the high and low NTRS groups. (H) ROC curves analysis for survival prediction showed 
sensitivity and specificity for 1-year, 3-year, and 5-year survival. (I) Scatter plot utilized PCA to demonstrate the differences in gene distribution 
between the high and low NTRS groups. (J) Scatter plot combined with a linear regression line showed the relationship between risk scores and OS. 
(K) Heatmap and scatter plots for correlation analysis, showing the correlation coefficients among prognostic genes, OS, and risk. (L) Pie chart 
compared the proportional distribution of clinical characteristics, including status, age, gender, race, stage, and TNM classification, between the high 
and low NTRS groups. (M) Nomogram predicted 1-year, 3-year, and 5-year OS using various clinical characteristics, including age, gender, race, 
stage, risk score, and TNM classification. *P < 0.05, **P < 0.01, ***P < 0.001. (N) Violin plot demonstrated the C-index for 1-year, 3-year, and 5-year 
predictions, measured by AUC through cross-validation. (O) ROC curves illustrated the predictive performance of the model through AUC values for 
1-year, 3-year, and 5-year predictions. 
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FIGURE 10 

Analysis of immune profiling, enrichment, and drug sensitivity in the prognostic model. (A) Box plot displayed the estimated proportions of 22 
immune cell types. (B) Box plot showcased significant differences in the estimated proportions of nine immune cell types between the high and low 
NTRS groups. (C) Lollipop plot revealed the results of the correlation analysis between different immune cell types and the risk score. (D) Heatmap 
manifested the correlation between different immune cell types and prognostic genes, OS, and risk scores. (E) Box plot compared the differences in 
signature scores (stromal, immune, and ESTIMATE) between the high and low NTRS groups. (F) Violin plot exhibited the comparison of TIDE score 
between the high and low NTRS groups. (G) Bubble plot presented the results of Spearman correlation analysis between different immune 
checkpoint-related genes and prognostic genes, OS, and risk scores. (H) Box plot showed significant differences in the expression of various 
immune checkpoint-related genes between the high and low NTRS groups. (I) Volcano plot exhibited the DEGs between the high and low NTRS 
groups. (J) Heatmap revealed significant differences in gene expression between the high and low NTRS groups. (K) Bar plot displayed the top 20 
enriched pathways of DEGs in the KEGG enrichment analysis. (L) GSEA enrichment analysis of DEGs revealed the enrichment results of major 
biological processes. (M) GSVA enrichment analysis showed the main biological pathways and gene sets enriched in the high and low NTRS groups. 
(N) Violin plots combined with box plots illustrated the drug sensitivity differences between the high and low NTRS groups by comparing the IC50 
values assessed using different therapeutic drugs. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. 
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and Sunitinib. In contrast, the low NTRS group exhibited higher 
sensitivity to Metformin, Methotrexate, and Paclitaxel. These 
findings not only revealed the complex regulatory network of 
NTRS within the immune landscape and its possible influence on 
disease prognosis but also laid a crucial foundation for developing 
precise treatment strategies tailored to different risk score groups. 
Discussion 

GC maintains a notable position in the epidemiology of 
digestive system cancers (88). Owing to nonspecific initial clinical 
manifestations, most cases are diagnosed during progressive disease 
phases, leading to unfavorable outcomes and a 5-year OS rate below 
5% (89). Although the treatment options for GC are diverse, such as 
surgical removal, chemotherapy, radiation therapy, targeted 
treatments, and immunotherapeutic approaches, these methods 
still face significant limitations in practical applications. Firstly, 
tumor heterogeneity leads to substantial differences in treatment 
responses among distinct patients or even within different regions 
of the same tumor, greatly limiting the universality and effectiveness 
of treatments (90). Secondly, drug resistance is a particularly 
prominent issue (91), with many patients developing resistance 
after initial treatment, leading to disease progression (92). 
Additionally, the complexity of the TME further exacerbates 
treatment challenges, as the immunosuppressive cells within, such 
as tumor-associated macrophages and regulatory T cells, promote 
immune evasion and drug resistance in tumor cells by secreting 
immunosuppressive factors and metabolites (93–95). Meanwhile, 
GC cells adapt to microenvironmental changes through metabolic 
reprogramming, such as enhanced glycolysis, glutamine 
metabolism, and fatty acid synthesis, to maintain their survival 
advantages, which also provides a potential mechanism for 
treatment resistance (96). These factors not only limit the 
effectiveness of current treatments but also highlight the urgent 
need to develop new therapeutic strategies. 

ScRNA-seq technology not only reveals the molecular 
characteristics of GC but also deciphers makeup and operational 
dynamics of various cellular entities in the TME, offering essential 
perspectives on tumor heterogeneity, drug resistance mechanisms, 
and immune evasion (97–99). In this research, we pinpointed 10 
key cell types that were pivotal in the advancement of GC. Notably, 
the heterogeneity of EPCs, particularly the identification of four 
distinct tumor cell subtypes (C0 MUC5AC+, C1 NDUFAB1+, C2 
SRGN+, and C3 HEPACAM2+), highlighted the complexity of GC 
biology. Among these tumor cells, C1 NDUFAB1+ subtype 
demonstrated elevated expression of genes associated with the cell 
cycle and indicators of cellular activity, suggesting a more aggressive 
phenotype. This subtype was more prevalent in intestinal-type GC 
samples, aligning with its potential role in driving tumor 
progression. We also observed that C1 NDUFAB1+ subtype 
showed a preference for the G2/M and S phases, further 
supporting their proliferative and potentially more malignant 
characteristics. ST analysis further confirmed these findings, 
revealing the spatial enrichment of C1 NDUFAB1+ subtype in 
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specific regions of GC tissues. These findings not only supported 
the proliferative activity and malignant features of C1 NDUFAB1+ 
subtype but also revealed their spatial heterogeneity within the 
TME. The specific spatial localization patterns of C1 NDUFAB1+ 
subtype in tumor tissues were likely closely related to their 
functional role in tumor progression. 

The investigation additionally uncovered notable distinctions in 
the biological process and metabolic profiles among each subtype. 
The results showed that C1 NDUFAB1+ subtype was primarily 
associated with mitochondrial function, localization, and 
triphosphate metabolism, and was significantly enriched in 
biological processes including cytoplasmic translation, oxidative 
phosphorylation, aerobic respiration, ATP synthesis coupled 
electron transport, and mitochondrial ATP synthesis coupled 
electron transport. These findings indicated that C1 NDUFAB1+ 
subtype exhibited high metabolic activity, which likely provided 
energy support for their rapid proliferation and survival, further 
solidifying their role as a critical driving subtype in tumor 
progression. Additionally, C1 NDUFAB1+ subtype also 
demonstrated significant activity in metabolic pathways 
encompassing oxidative phosphorylation, glutathione metabolism, 
glycolysis/gluconeogenesis, sulfur metabolism, and citrate cycle 
(TCA cycle), further emphasizing their critical role in tumor 
metabolic reprogramming (100, 101). In contrast, other tumor 
cell subtypes exhibited distinct functional characteristics. C0 
MUC5AC+ subtype was mainly associated with cell junctions, 
RNA splicing, and miRNA metabolism, potentially playing a role 
in maintaining intercellular communication and transcriptional 
regulation (102). C2 SRGN+ subtype was significantly enriched in 
pathways related to leukocyte-mediated immune responses and the 
regulation of cell-cell adhesion, suggesting their potential role in the 
tumor immune microenvironment (103, 104). Meanwhile, C3 
HEPACAM2+ subtype was primarily linked to protein folding 
and endoplasmic reticulum stress responses, possibly functioning 
in cellular stress responses and the maintenance of protein 
homeostasis (105). These findings highlighted the functional 
heterogeneity of GC tumor cell subtypes and revealed the diverse 
roles of different subtypes in tumor progression. 

The differentiation trajectories and stemness analysis of tumor 
cell subtypes in GC provided profound insights into the cellular 
dynamics and functional heterogeneity within the TME. Our 
findings revealed that C1 NDUFAB1+ subtype displayed greater 
stem-like characteristics relative to other subtypes, suggesting that 
these cells might possess stronger self-renewal and differentiation 
potential (106). Stemness genes were essential for supporting the 
self-renewal, preservation, and differentiation potential of cancer 
stem cells (107, 108). The high stemness of C1 NDUFAB1+ subtype 
was likely supported by the elevated expression of key stemness 
genes. CTNNB1, a pivotal molecule in the Wnt signaling pathway, 
was involved in cell proliferation and stemness maintenance (109). 
MYC, a proto-oncogene, regulated the cell cycle and metabolism 
(110, 111). ABCG2, a multidrug resistance protein, was potentially 
associated with treatment resistance in tumor cells (112, 113). 
LGR5, a target gene of the Wnt signaling pathway, was 
commonly used to mark tumor stem cells (114). The high 
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stemness and metabolic activity of C1 NDUFAB1+ subtype 
suggested that they might play a critical role in driving tumor 
advancement and resistance to therapy (115). The differentiation 
trajectories inferred through Slingshot analysis further highlighted 
the influential role of C1 NDUFAB1+ subtype in the developmental 
dynamics of GC cells. Both lineage 1 and lineage 2 originated from 
C0 MUC5AC+ subtype, which exhibited lower stemness and higher 
differentiation levels, and diverged after passing through C1 
NDUFAB1+ subtype. This observation suggested that C1 
NDUFAB1+ subtype might act as a transitional or progenitor-like 
population, driving the differentiation of tumor cells into distinct 
functional states. The pseudotime trajectories of named genes 
within these lineages further validated this hypothesis, showing a 
clear progression along the inferred differentiation pathways. 
Functional enrichment analysis of the differentiation lineages 
revealed cluster-specific biological processes. For instance, the C1 
cluster was linked to immune and humoral responses, suggesting a 
potential role in modulating the tumor immune microenvironment. 
The C2 cluster showed a connection to digestive and structural 
functions, possibly reflecting its involvement in maintaining tissue 
architecture and function. The C3 cluster showed a strong 
connection to the Wnt signaling pathway (116) and morphogenesis, 
indicating its potential effect on regulating cell fate and tissue 
patterning. Finally, the C4 cluster was related to visual, brain, and 
pancreatic functions, hinting at a broader role in systemic tumor 
biology. These findings underscored the functional diversity and 
complexity of tumor cell subtypes in GC. The high stemness and 
differentiation potential of C1 NDUFAB1+ subtype, coupled with their 
central role in differentiation trajectories, suggested that this subtype 
might function as an important driver of tumor progression 
and heterogeneity. 

Next, we carried out a detailed exploration of the cell-cell 
communication network of C1 NDUFAB1+ subtype within the 
TME using CellChat. The results revealed that C1 NDUFAB1+ 
subtype communicated with fibroblasts and pericytes through the 
PARs signaling pathway. Proteinase activated-receptors (PARs), a 
class of G protein-coupled receptors, have been demonstrated to 
play important roles in various cancers (117–119). Particularly in 
GC, the expression of PARs was closely associated with tumor 
development and progression (120, 121). The role of the PARs 
signaling pathway in the TME has been extensively studied, 
especially in the interactions between tumor cells and stromal 
cells (122, 123). We observed that PRSS3 and F2R were highly 
expressed in C1 NDUFAB1+ subtype, fibroblasts, and pericytes, 
suggesting that the PRSS3-F2R ligand-receptor pair might 
contribute significantly to mediate communication between these 
cells. This discovery provided new insights into the molecular 
mechanisms of cell-cell communication in the TME. To achieve a 
deeper insight into the spatial distribution and interactions of 
different cell types within the TME, we integrated scRNA-seq 
data with ST data. We found that the THBS2-ITGB1 ligand-
receptor pair exhibited particularly significant interactions at the 
boundaries of tumor cells. This phenomenon suggested that 
THBS2-ITGB1 might act as an important regulator in spatial 
communication between tumor cells and other cell types. By 
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visualizing the strength of cell-cell interactions facilitated by 
THBS2-ITGB1, we observed higher communication intensity 
between C1 NDUFAB1+ subtype and fibroblasts, as well as 
pericytes. This result further supported the hypothesis that C1 
NDUFAB1+ subtype reshaped the network of intercellular 
interactions within the TME through abnormal signaling 
crosstalk. Such aberrant communication patterns may have 
provided favorable conditions for tumor multiplication, 
infiltration, and metastasis. Through integrating spatial 
transcriptomic data with histomorphological information, we not 
only revealed the spatial distribution characteristics of the C1 
NDUFAB1+ subtype but also provided a more comprehensive 
interpretation of its biological significance in tumor progression. 

In this study, we conducted a meticulous exploration of C1 
NDUFAB1+ subtype through TF regulatory networks. TFs 
orchestrate the regulation of gene expression and cellular 
behavior (124, 125), making their investigation crucial for 
understanding tumor heterogeneity and the TME. Further 
research revealed that C1 NDUFAB1+ subtype exhibited higher 
expression levels and regulon activity scores in the M3 module, 
suggesting that this module might have been a significant player in 
the functional regulation of C1 NDUFAB1+ subtype. Within the M3 
module, C1 NDUFAB1+ subtype displayed higher expression of 
specific TFs, particularly the top 5 TFs: ZNF615, TFDP1, E2F1, 
ETV4, and ELK4. Among these, the expression level of ELK4 was 
particularly prominent in C1 NDUFAB1+ subtype, significantly 
higher than in other tumor cell subtypes. This finding suggested 
that ELK4 potentially served as a critical factor in the biological 
behavior of C1 NDUFAB1+ subtype. Prior studies demonstrated 
that ELK4, an ETS-family TF, promoted GC progression by 
activating oncogenic lncRNA SNHG22, and its knockdown 
suppressed GC cell proliferation and invasion (126). Additionally, 
ELK4 was shown to drive malignant phenotypes in GC by 
regulating the KDM5A-PJA2-KSR1 axis (127). To validate this 
hypothesis, we further investigated the effects of ELK4 on the 
proliferation, migration, and invasion capabilities of GC cells 
through in vitro functional experiments. 

In vitro studies indicated that silencing ELK4 markedly 
hindered the growth of NCI-N87 and AGS cell strains. Using 
CCK-8 assays, colony formation assays, and EDU staining, we 
observed that the viability and proliferation rates of GC cells 
considerably diminished after ELK4 knockdown. Additionally, 
wound healing and transwell assays further confirmed that the 
migration and invasion capabilities of GC cells were markedly 
suppressed following ELK4 knockdown. These results collectively 
implied that ELK4 served as a critical factor in modulating the 
oncogenic properties of GC cells. 

By integrating multi-omics data and clinical prognostic 
information, we designed and confirmed a predictive risk scoring 
model using C1 NDUFAB1+ subtype. The results demonstrated 
that NHLH2, ATF7, ERG, CREM, and NR3C1 were associated with 
poor prognosis, while SOX9 and E2F2 exhibited potential protective 
effects. Using the optimal threshold for NTRS, patients were 
grouped into high and low NTRS cohorts, where the high NTRS 
cohort showed significantly poorer survival rates. We thoroughly 
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investigated the impact of C1 NDUFAB1+ subtype on the immune 
microenvironment, particularly their roles in immune escape and 
metabolic reprogramming. In the high NTRS group, the 
proportions of MCs resting, Macrophages M2, B cells naive, and 
Monocytes were higher, which are typically associated with an 
immunosuppressive microenvironment (128–131). In contrast, the 
low NTRS group exhibited higher proportions of T cells CD4 
memory activated, T cells follicular helper, MCs activated, NK 
cells resting, and Macrophages M0, which are generally linked to an 
immune-activated state (132–135). These differences in immune 
cell distribution may have reflected the ability of the high NTRS 
group to evade immune surveillance through immune escape 
mechanisms, thereby promoting tumor progression. Further 
analysis revealed that MCs resting, Macrophages M2, Monocytes, 
and B cells naive were significantly positively correlated with the 
risk score, while T cells CD4 memory activated and T cells follicular 
helper were negatively correlated with the risk score. These 
evidences reflected that the TME in the high NTRS group might 
be more immunosuppressive, providing favorable conditions for 
tumor cell immune escape. Additionally, the high NTRS group 
showed significantly higher stromal, immune, ESTIMATE, and 
TIDE  scores,  further  supporting  the  hypothesis  of  an  
immunosuppressive microenvironment in the high NTRS group. 
The elevated TIDE score, often associated with enhanced immune 
escape capabilities of tumor cells (136, 137), indicated that the high 
NTRS group might evade immune system attacks through multiple 
mechanisms. During this analysis, we observed a positive 
correlation between SOX9 expression and patient prognosis, but a 
negative correlation with immune checkpoint markers. This 
suggested that the primary mechanism by which SOX9 improved 
patient outcomes might be independent of or only weakly related to 
the immune system, instead operating through direct effects on 
tumor cell-intrinsic biological behaviors. Future studies should 
further investigate the precise molecular mechanisms through 
which SOX9 regulates malignant phenotypes in GC cells and the 
immune microenvironment. These findings indicate that clinical 
practice should comprehensively consider both the tumor biological 
characteristics and immune microenvironment features reflected by 
SOX9 expression levels to develop more precise treatment strategies. 

KEGG and GSEA enrichment analyses revealed striking 
differences in metabolic pathways between both groups. The high 
NTRS group’s DEGs were primarily mapped to metabolic pathways 
such as neuroactive ligand-receptor interaction, calcium signaling 
pathways, and cAMP signaling pathways. The activation of these 
pathways might have promoted metabolic reprogramming in tumor 
cells (138–140), enabling them to adapt to nutrient deprivation and 
hypoxic conditions in the TME, thereby sustaining their 
prol i ferat ion  and  surviva l .  Notably ,  these  metabol ic  
reprogramming features were highly consistent with the 
metabolic activity of the previously mentioned C1 NDUFAB1+ 
subtype. This metabolic reprogramming not only provided energy 
for tumor cells but also supplied precursor molecules for 
biosynthesis, supporting the maintenance of their malignant 
phenotype (141). Finally, we conducted extensive drug sensitivity 
screening and found that the high NTRS group was more sensitive 
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to drugs such as AZD.2281, MG.132, and Pazopanib. These findings 
helped identify novel potential therapeutic targets, elucidate 
resistance mechanisms, and provide preliminary clues for future 
drug repositioning or combination therapy research. 

This study revealed that the unique metabolic characteristics of 
the C1 NDUFAB1+ subtype not only supported its malignant 
phenotype but also potentially mediated treatment resistance. The 
concurrent activation of both oxidative phosphorylation and 
glycolysis pathways in this subtype enabled it to switch energy 
production modes in response to microenvironmental stresses, 
which likely represented a key mechanism underlying the failure 
of conventional chemotherapy and targeted therapies. Particularly 
noteworthy was the significant activation of the glutathione 
metabolic pathway, which might have further promoted drug 
resistance by scavenging reactive oxygen species and protecting 
tumor cells from chemotherapeutic damage (142, 143). The 
hyperactive TCA cycle and mitochondrial function in the C1 
NDUFAB1+ subtype suggested its potential adaptive resistance to 
glycolysis-targeted therapies. Furthermore, this study revealed that 
high-NTRS patients exhibited significant immunosuppressive 
microenvironment characteristics, manifested by increased 
infiltration of immunosuppressive cells such as Macrophages M2 
and MCs resting, accompanied by suppressed T cell function. This 
immunosuppressive state was closely associated with the unique 
metabolic reprogramming features of the C1 NDUFAB1+ subtype, 
indicating that targeting metabolic-immune interactions might 
represent a novel strategy to overcome immune evasion. Based on 
these findings, we proposed the following therapeutic strategies: 
First, targeting key metabolic reprogramming pathways (such as 
oxidative phosphorylation and glycolysis) and developing drugs 
targeting NDUFAB1 or ELK4 specifically disrupted the metabolic 
hub of this subtype, effectively inhibiting its energy supply and 
consequently limiting its proliferation. Second, combined 
application of mitochondrial inhibitors with glycolysis blockers 
could help overcome monotherapy resistance caused by 
“metabolic compensation.” Additionally, combining ELK4 
targeting with TME feature-based prognostic models, along with 
co-administration of immune checkpoint inhibitors and metabolic 
modulators, could effectively counteract immunosuppression, 
overcome immune evasion, and enhance anti-tumor immune 
responses. Finally, patients were classified by detecting 
characteristic metabolic markers of the C1 NDUFAB1+ subtype 
(including NDUFAB1 and ELK4 expression levels as well as 
metabolic enzyme activity profiles), which guided personalized 
treatment selection. A risk scoring model incorporating 
metabolic-immune features (integrating parameters such as 
mitochondrial function indicators and immunosuppressive cell 
infiltration levels) was explored in combination with other 
emerging modalities (144–146) to predict patient responses to 
conventional chemotherapy and immunotherapy, as well 
as prognosis. 

This study provided new targets and strategies for the precision 
treatment of GC, particularly demonstrating significant advantages in 
combining targeted metabolic pathways with immunomodulatory 
therapies. However, there are some limitations. First, the study was 
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constrained by the sample size and geographical origin, which may 
not fully reflect the broad heterogeneity of GC, especially the 
differences across various molecular subtypes. Second, the existing 
ST data and resolution limitations (147) made it difficult to precisely 
analyze the interactions between individual tumor cells and specific 
stromal cells. Additionally, although in vitro experiments confirmed 
the regulatory role of ELK4, further in vivo studies were needed to 
validate its function in the intact TME. Due to the prolonged 
experimental timeline and complex sample acquisition procedures, 
the collection, processing, and staining analysis of samples could not 
be completed within the short term. Subsequent studies needed to 
establish prospective cohorts incorporating systematic staining 
analyses of both NDUFAB1 and ELK4 into the research design. 
Finally, although we built a risk prediction framework, its clinical 
application still requires validation through large-scale prospective 
cohort studies to ensure its clinical utility and reliability. Future studies 
should further explore the molecular characteristics and clinical 
translational value of the C1 NDUFAB1+ subtype and its key 
regulator ELK4 in different GC subtypes, and deepen the 
understanding of the metabolic-immune interaction mechanisms 
through multi-omics integrated analysis. 
Conclusion 

This study successfully deciphered the high heterogeneity of GC 
through scRNA-seq technology and identified the C1 NDUFAB1+ 
subtype as a critical cell population. In-depth analysis revealed that 
this subtype exhibited unique metabolic reprogramming 
characteristics, including significantly activated oxidative 
phosphorylation and glycolysis pathways, which potentially drove 
malignant tumor progression by providing energy and biosynthetic 
precursors. To further investigate the microenvironmental features of 
this subtype, we employed ST technology to elucidate its spatial 
distribution pattern in tumor tissues, discovering its enrichment at 
the tumor-stroma interface with observed strong spatial interactions. 
This distinct spatial distribution pattern not only enhanced the 
understanding of tumor-immune microenvironment interactions 
but also held potential clinical translational value, such as predicting 
tumor progression or therapeutic response based on spatial 
distribution features. In vitro experiments demonstrated that ELK4, 
as a key molecule of the C1 NDUFAB1+ subtype, significantly 
promoted the proliferation, migration, and invasion of GC cells. 
Based on these findings, we constructed a prognostic risk scoring 
model, which provided an important tool for patient stratification and 
personalized treatment. In summary, this study systematically 
elucidated the core mechanisms through which ELK4 mediated 
tumor progression, metabolic reprogramming, and immune evasion 
in C1 NDUFAB1+ subtype, offering crucial theoretical foundations for 
developing precision therapeutic strategies targeting this subtype. 
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SUPPLEMENTARY FIGURE 1 

Analysis of inferCNV. (A, B) Heatmaps compared the expression distribution of CNVs 
between ECs and EPCs (upper) and between ECs and four tumor cell subtypes 
(lower), where red represented amplification and orange represented deletion. 

SUPPLEMENTARY FIGURE 2 

Spatial expression pattern analysis of C1 NDUFAB1+ subtype. (A, B) The ST 
feature maps displayed the first cell types inferred at selected points on ST 2 
slide and the spatial expression pattern of the C1 NDUFAB1+ subtype. (C) The 
ST feature maps visualized the spatial expression of nCount-Spatial, 
nFeature-Spatial, G2/M.Score, and S.Score for all cell types in ST 2 slide. 
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