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single-cell insights into PLVAP+
subpopulations and their
role in tumor angiogenesis
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Yanbing Song1, Hao Xu1, Zhihan Wang1 and Jin Xing1*

1Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center,
Shanghai, China, 2The First Clinical Medical College, Shandong University of Traditional Chinese
Medicine, Jinan, Shandong, China, 3China Institute of Sport and Health Science, Beijing Sport
University, Beijing, China
Background: Meningioma (MEN) is one of the most common intracranial

tumors, with a significantly higher incidence rate in females than in males.

Although the majority of cases are benign, tumors located in complex

anatomical regions or classified as atypical or malignant have a high

recurrence rate, underscoring the need to optimize therapeutic strategies to

improve patient outcomes. Therefore, this study utilizes single-cell RNA-

sequencing technology to investigate the interaction mechanisms between

endothelial cells (ECs) and meningiomas, aiming to identify potential

therapeutic targets for the treatment of MEN patients.

Methods: Tissue origin analysis of different EC subpopulations was performed

using Ro/e preference analysis. Gene Ontology and Gene Set Enrichment

Analysis were employed to enrich and identify relevant biological processes.

Slingshot and CytoTRACE were used to determine the differentiation trajectories

of cell subpopulations. CellChat was utilized to predict intercellular

communication between EC subpopulations and meningioma cells (MGCs).

The transcription factor (TF) networks of EC subpopulations were constructed

using pySCENIC, and the function of ETS1 was validated in vitro experiments.

Results: The MEN and temporal lobe tissues’ datasets were processed through

quality control and screening, and dimensionality reduction clustering identified

eight cell types. We found that ECs might play a role in MEN progression and

further classified them into four subpopulations. Among these, the C2 PLVAP+

ECs were predominantly located at the later stages of differentiation in the

Slingshot analysis, suggesting a critical role in MEN’s development. Cell

communication analysis revealed that MGCs might stimulate ECs to secrete

angiopoietin via the MDK-NCL ligand-receptor pair, promoting angiogenesis and

MEN’s progression. Using pySCENIC analysis, the key TF ETS1 was identified. In

vitro experiments demonstrated that ETS1 promoted ECs angiogenesis,

proliferation, and migration, providing valuable insights for clinical strategies

targeting MEN’s treatment.
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Conclusion: We identified a key ECs subpopulation, C2 PLVAP+ ECs, which was

at a critical stage of MEN progression and might influence MEN development

through the MK signaling pathway via the MDK-NCL ligand-receptor pair.

Additionally, we discovered the critical TF ETS1 and validated through in vitro

experiments that it promoted MEN’s progression, offering a new perspective for

clinical treatment strategies.
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Introduction

Meningioma (MEN) is common intracranial tumors originating

from the meninges, accounting for 39.7% of all brain tumors and 55.4%

of all non-malignant brain tumors (1). According to the WHO

classification, MEN is divided into three types: benign (Grade I),

atypical (Grade II), and malignant (Grade III), with benign MEN

being the most common (2). In recent years, with the advancement

of medical technology, the success rate of treatment for this disease has

improved (3), but due to the complex pathogenesis, clinical treatment

still faces significant challenges (4). MEN is commonly located at the

skull base, sagittal sinus, cavernous sinus, and other regions, which are

adjacent to important nerves and blood vessels (5). This makes surgical

operations difficult and prone to postoperative complications such as

nerve damage, bleeding, or cerebrospinal fluid leakage (6). Additionally,

MEN is highly vascularized, particularly in high-blood-supply areas,

where surgery may involve significant bleeding, increasing the

complexity of the operation and the patient’s postoperative recovery

time (7). Furthermore, complete resection of larger or more invasive

MEN may be restricted by surrounding critical structures, raising the

risk of tumor recurrence, especially in atypical and malignant MEN (8).

Due to their special location and disease mechanisms, MEN has limited

tolerance to radiotherapy and chemotherapy. It is understood that there

is considerable individual variation among MEN patients, with

differences in age, tumor location, size, and grade significantly

affecting treatment choices and prognosis (9). In conclusion, although

treatment for MEN has made progress, traditional treatment methods

still have many limitations, which severely affect the long-term

prognosis of patients. Therefore, there is an urgent need to introduce

new technologies and innovative methods to further elucidate the

pathogenesis of MEN, optimize treatment strategies, and improve

treatment outcomes while reducing the incidence of complications (10).

Endothelial cells (ECs) play a central role in maintaining vascular

function and tissue homeostasis, and they are particularly crucial in

the tumor microenvironment (TME) (11). Research on ECs in other

tumors, such as breast cancer, lung cancer, and liver cancer, reveals

their multiple roles in angiogenesis, tumor metastasis, immune

evasion, and treatment resistance (12–14). In the TME, ECs are not

only key participants in angiogenesis but also interact directly with

tumor cells to form new blood vessel networks (15, 16). Tumor cells
02
secrete factors like VEGF that act on ECs, stimulating their migration

and lumen formation, thereby driving angiogenesis (17, 18). These

newly formed blood vessels support tumor growth and provide

pathways for metastasis. In MEN, the interaction between ECs and

tumor cells is particularly significant, and the level of angiogenesis

directly influences the growth rate and invasiveness of the tumor.

Therefore, ECs are a key cell type in this .15recent years, with the

advancements in single-cell RNA-sequencing(scRNA-seq)

technology, targeted therapies may become a potential treatment

strategy for MEN (19, 20). Single-cell sequencing can precisely

analyze the gene expression profiles of individual cells, revealing the

heterogeneity between different cells (21–23). This is crucial for

understanding complex tissues, TME, and various biological

processes (24). Compared to traditional bulk RNA sequencing,

scRNA-seq enables the detection of low-abundance gene expression

at higher resolution, which is particularly advantageous for studying

low-expressed genes, rare cell populations, and genetic mutations (25,

26). Given the high heterogeneity of MEN, this characteristic aligns

well with scRNA-seq technology. This technique can uncover the

molecular heterogeneity of the tumor and the features of the TME,

providing deep insights into key mechanisms such as angiogenesis,

immune evasion, and treatment resistance (27). Through a series of

analyses, it can identify key cell types, determine the evolutionary

sequence of cell subpopulations, and identify important cellular

signaling pathways and receptors, further enhancing our

understanding of MEN heterogeneity. This may provide potential

therapeutic targets for future clinical treatments of MEN, thereby

improving treatment success rates for patients.
Materials and methods

Data collection from MEN patients

We obtained the scRNA-seq dataset GSE256490 from the Gene

Expression Omnibus (GEO) database, a publicly accessible

repository for high-throughput gene expression data. Since this

dataset was derived from publicly available resources and does not

involve any personal or identifiable patient data, it was exempt from

ethical review and approval. The data is openly available for
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researchers to use, ensuring transparency and reproducibility in

scientific studies.
Raw data normalization and visualization

We analyzed the 10X genomic data from each sample using the

Seurat package (28–30). In addition, we used the “DoubletFinder” tool

to detect and remove doublet cells, ensuring data accuracy (31–33).

Cells with extreme nFeature or nCount values were excluded from the

study. Additionally, mitochondrial gene expression in each cell was

kept below 25% of the total gene expression, and red blood cell gene

expression was limited to less than 5% of the total gene expression.

After filtering for high-quality cells based on these criteria, we

normalized the data using the “NormalizeData” function (34–37).

The top 2000 most variable genes were identified using the

“FindVariableFeatures” function (38–41). We then normalized all

genes using the “ScaleData” function, followed by principal

component analysis (PCA). The Harmony package was employed to

remove batch effects between different samples. The top 30 principal

components were selected for further analysis, and Uniform Manifold

Approximation and Projection (UMAP) (42–45) was used to

transform high-dimensional data into a lower-dimensional 2D or 3D

space, making visualization more intuitive. Cell clusters were annotated

by referencing relevant literature and using the “CellMarker” database.
Enrichment analysis and AUCell

For Gene Ontology (GO) analysis (46–50), we performed

functional analysis of biological processes using the “ClusterProfiler”

R package (51–53). Gene Set Enrichment Analysis (GSEA) was

conducted to evaluate the expression trends within gene sets (54–

57). Additionally, we used the AUCell tool to assess the activity of gene

sets in the scRNA-seq data. AUCell was a computational method for

evaluating gene set enrichment in single-cell transcriptome data. The

“AUCell_buildRankings” function was used to evaluate the

enrichment of stemness gene sets, and the gene sets were ranked

according to their enrichment levels.
Identification of cell subpopulations

We extracted ECs and re-normalized the data to identify the top

2000 most variable genes. PCA was then used to determine the major

subpopulations (58, 59). Harmony package was applied to remove

batch effects between cells. Cell subpopulations were annotated based

on known marker genes, and the results were visualized using UMAP.
Differential and enrichment analysis

We used the “FindClusters” and “FindNeighbors” functions in

Seurat for cell clustering, followed by “FindAllMarkers” to identify
Frontiers in Immunology 03
differentially expressed genes (DEGs) for each cluster (60–62).

Further investigation of the heterogeneity of EC subpopulations

in MEN progression was conducted, and Gene Ontology Biological

Process (GOBP) and GSEA were performed for enrichment analysis

of the subpopulations (63).
Cell trajectory and stemness gene analysis

To assess the differentiation status and stemness of EC

subpopulations, we performed analysis using Slingshot (36, 64) and

CytoTRACE (65). Slingshot was used to infer lineage trajectories of EC

subpopulations during differentiation. The “getlineage” and

“getCurves” functions were used to visualize the expression levels of

these lineages, elucidating the differentiation trajectories of EC

subpopulations. CytoTRACE was employed to evaluate the

stemness of each cell subpopulation.
Intercellular communication analysis

We utilized the “CellChat” package to visualize the intercellular

communication network (66–68). The purpose of this software was to

explore the modes of intercellular interactions through signal

pathways and ligand-receptor pairs. The “netVisual_diffInteraction”

function was used to describe the differences in communication

intensity, while the “identifyCommunicationPatterns” function was

applied to identify various communication patterns.
pySCENIC analysis

Using the pySCENIC software in Python, a gene regulatory network

was constructed, and the enrichment of transcription factors (TFs) and

the activity of regulators were assessed (69, 70). The goal of this analysis

was to identify TFs enriched in specific cell states and explore how these

TFs and their regulators influence gene expression changes. Through

this evaluation, we delved deeper into the mechanisms of cell state

transitions and gene expression regulation.
Cell culture

The cell culture of Human Umbilical Vein Endothelial Cell

(HUVEC) was conducted utilizing ECM medium (EC Medium) at

37°C in a humidified atmosphere containing 5% CO2. The initial

fluid change occurred 24 hours post cell attachment, with

subsequent medium changes every 2 to 3 days. Passages were

digested using 0.25% trypsin at a 1:3 ratio, which is advised for

use within 6–8 generations to preserve the endothelial phenotype.

Aseptic conditions are rigorously upheld to prevent contamination,

and cell characterization is periodically verified.
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Running quantitative real-time polymerase
chain reaction and data analysis

Use qRT-PCR to measure gene expression or DNA copy

number after RNA extraction (71–73). RNA was extracted,

reverse transcribed into cDNA, and amplified using primer and

SYBR Green or probe (denaturation at 95°C, annealing extension at

60°C, 40 cycles). The Ct value (2-D D CT technique) was used to

compute relative expression, which was normalized by an internal

reference gene like GAPDH. It is sensitive, specific, and gene

quantitative research-friendly.
The test for cell viability

For the purpose of determining the vitality of the cells, the Cell

Counting Kit-8 (CCK-8) was utilized (74–76). In 96-well plates,

cells were planted at a density of 1×10^3 cells per well, and then

they were cultivated for eight hours. Each well received a 100 µL

detection reagent, which was then incubated for a duration of one

hour. The absorbance at 450 nm was recorded on a daily basis for a

period of four days, and growth curves were drawn by establishing a

correlation between the OD450 values and the passage of time.
Western Blot

The Western Blot is a technique that involves the separation of

protein samples based on their molecular weight via the use of

polyacrylamide electrophoresis (77). Following this, the samples are

transferred to a hybrid membrane (blot), and finally, the target

protein is specifically identified by the use of a primary antibody/

secondary antibody combination (78, 79).
Using flow cytometry to analyze apoptotic
processes

Annexin V-FITC and PI labeling conducted in flow cytometry

were able to identify the presence of apoptosis. The cells were

stained after being washed with PBS and after being subjected to the

treatment. Annexin V might be used to label early apoptotic cells,

whereas PI could be used to designate necrotic or late apoptotic

cells. Flow cytometry was used to examine the staining of the cells in

order to differentiate between healthy cells, early apoptotic cells, and

late apoptotic or necrotic cells.
EdU analysis

In order to conduct the EdU experiment, the cells were

subjected to a culture medium that included 10 µM EdU for a

duration of 30 minutes to 2 hours. Following this, the cells were

fixed with 4% paraformaldehyde and permeabilized with 0.5%

Triton X-100. Finally, the Click reaction mixture was introduced
Frontiers in Immunology 04
to indicate the initiation of DNA synthesis process. Following the

application of the dye, the activity of cell proliferation was

monitored using a fluorescent microscope. Additionally, DAPI

staining was utilized to help in the investigation.
Analyses of migration and invasion through
the transwell assays

Within a transwell chamber that had a porous membrane and a

pore size of 8 m, cells were injected with the desired organism (80, 81).

In order to conduct the migration experiment, cells were introduced

into the upper layer of the medium, and the media that included

attraction factors (such FBS) was introduced into the lower layer of the

medium. In order to imitate the matrix, Matri-gel was introduced into

the chamber in order to carry out the invasion experiment. After

twenty-four to forty-eight hours, the cells that did not migrate were

removed, the cells that had been pierced were fixed and stained, and the

total number of cells that had been penetrated was tallied.
The test for angiogenesis

Over the course of the experiment involving endothelial

angiogenesis, HUVECs were cultivated for a period of forty-eight

hours after being injected into Matrigel that had been brought to

room temperature in preparation. Angiogenesis was induced by the

addition of growth factors like VEGF, which allowed for the

observation of the tubular shape of those cells. In order to test the

capacity of ECs to generate new blood vessels, microscopic imaging

was utilized to examine the measurements of the length and

number of tubes.
Statistical analysis

Statistical evaluations were carried out using R package and

Python software. To determine the differences among different

groups, we applied the Wilcoxon test and calculated the Pearson

correlation coefficient (82–84). The levels of significance were

categorized as follows: *P < 0.05, **P < 0.01, ***P < 0.001, and

****P < 0.0001. Non-significant differences between groups were

marked with “ns”. These statistical methods and significance

markers were utilized to validate the reliability of our results and

strengthen the credibility of our conclusions (85).
Results

Single-cell sequencing analysis revealed
the microenvironment landscape of MEN
tissue

Figure 1 illustrated the basic workflow of this study. We primarily

utilized scRNA-seq methods, employing dimensionality reduction
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clustering, pseudotime analysis, metabolic analysis, stemness analysis,

cell communication analysis, and TF analysis to investigate MEN. In-

depth analysis was conducted to explore the specific mechanisms

underlying MEN development, identify key subpopulations and target

genes, and seek potential therapeutic targets for MEN treatment. To

investigate the specific mechanisms underlying MEN pathogenesis

and ultimately suppress disease occurrence, we conducted a single-cell

analysis of MEN. First, we collected MEN and temporal lobe (TL)

tissue samples. After quality control, we annotated the high-quality

filtered cells into eight known cell clusters (Figure 2A). These clusters

were identified as ECs, T cells and NK cells, macrophages, microglia,

oligodendrocytes, neurons, smooth muscle cells (SMCs), and

meningioma cells (MGCs). In addition, the eight clusters were

further analyzed to explore sample origin, cell grouping, cell cycle,

nCount-RNA, and cell stemness, providing a multidimensional

understanding of the specific characteristics of cells within MEN

tissues. Additionally, we used UMAP plots and violin plots to

further visualize cell stemness, pMT, nCount-RNA, nFeature-RNA,

G2/M.Score, and S.Score, thereby identifying the differential

expression levels among different cell clusters (Figures 2B, C). We

found that ECs exhibited the highest expression levels in stemness
Frontiers in Immunology 05
analysis, indicating that these cells exhibit greater differentiation

potential. Next, we conducted an analysis of cell groups and the cell

cycle phases (Figure 2D). The results showed that ECs and neurons

had relatively higher proportion in the G2/M and S phases, indicating

that these two cell types exhibited active DNA replication and robust

proliferation. Subsequently, we conducted further visualization

analysis of the sample sources for the eight known cell types to

compare the proportions of different samples across different cell types

(Figure 2E). Additionally, we analyzed the biological processes

predominantly enriched in MEN cells and TL cells. MEN tissue

cells were mainly enriched in “positive regulation of cell adhesion”,

“epitheliummigration”, “regulation of peptidase activity”, “ameboidal-

type cell migration”, and “cytoplasmic translation” (Figure 2F).

Furthermore, the GOBP terms of ECs were displayed through

enrichment analysis, which revealed that ECs were primarily

enriched in “ameboidal-type cell migration”, “endothelium

development”, “epithelial cell migration”, “tissue migration”,

“epithelium migration”, and “endothelial cell differentiation”

(Figure 2G). By comparing the biological processes enriched in the

MEN tissues and ECs, we observed certain similarities. Based on this,

we hypothesized that ECs played a role in the progression of MEN.
FIGURE 1

Overall workflow of scRNA-seq of MEN. Relevant sample data were obtained from the GEO database, and a series of methods were employed to
analyze MEN. First of all, we used the UMAP plots to visualize different cell types and EC subpopulations. Then, methods such as Ro/e analysis,
Slingshot analysis, cell stemness analysis, cell communication network analysis and pySCENIC analysis were adopted to reveal the potential
pathogenesis of meningioma. Finally, in vitro experiments were used to verify the specific mechanism of action of the key TF ETS1.
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FIGURE 2

Single-cell analysis of tissue heterogeneity in MEN. (A) Dimensionality reduction and clustering of selected tissue samples. Eight known cell clusters
were annotated. The four UMAP plots surrounding the circle, arranged clockwise from top-left to bottom-left, show the distribution features of the
following: group, cell cycle phases, Cell-Stemness-AUC and nCount-RNA (left). UMAP plots displayed the distribution of sample origin, tissue
classification, and cell cycle across different cell types at a three-dimensional level (right). (B, C) UMAP and violin plots depicted the distribution and
expression levels of eight cell types across various features: Cell-Stemness-AUC, pMT, nCount-RNA, nFeature-RNA, G2/M.Score, and S.Score. (D)
Stacked bar charts illustrated the relative proportion of groups and cell cycle phases in each cell types. (E) Compare the relative proportions of the
eight cell types across different sample origins. (F) Compare the differences in enrichment analysis of different tissues. (G) Compare the differences in
the enrichment of GOBP terms in the ECs. (H) GSEA enrichment analysis of GOBP terms for ECs. (**P < 0.01, ****P < 0.0001).
Frontiers in Immunology frontiersin.org06
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Then, to explore the role of ECs in the progression of MEN, we

conducted further studies on ECs. GSEA analysis (Figure 2H) showed

a positive enrichment trend in “vasculogenesis”, “endothelial cell

differentiation”, “angiogenesis”, “bicellular tight junction assembly”,

and “endothelial cell apoptotic process”. In these biological processes,

ECs exhibited higher activity, suggesting that ECs might be more

prominently involved in these biological functions. This also partially

validated that ECs might provide essential nutritional support for the

progression of MEN through vascular-related mechanisms.
DEGs and related enrichment analysis in
EC subpopulations

In the above analysis, we had identified ECs. To further clarify the

role of ECs in MEN progression, we clustered the ECs into four

subpopulations: C0 MALAT1+ ECs, C1 SLCO1A2+ ECs, C2 PLVAP+

ECs, and C3 ACKR1+ ECs. Additionally, the distributional

characteristics of ECs subpopulations in terms of nCount-RNA,

nFeature-RNA, G2/M.Score, and S.Score were visualized using

UMAP plots (Figure 3A). We then used a heatmap to analyze the

average expression levels of the top 5 genes in each subpopulations

(Figure 3B). Furthermore, we studied the DEGs among the four

subpopulations and identified 5 upregulated and downregulated genes

(Figure 3C). To further clarify the main functions of these

subpopulations, we visualized the marker genes of the EC

subpopulations and displayed the results using violin plots

(Figure 3D). In addition, we employed UMAP plots to analyze the

expression levels of Cell stemness AUC, nCount-RNA, and nFeature-

RNA for each subpopulation (Figure 3E). To explore the specific

mechanisms underlying MEN development, we examined the tissue

origins of each subpopulation. We found that the C2 subpopulation

primarily originated fromMEN tissue cells, while the C1 subpopulation

predominantly came from TL tissue cells (Figure 3F). Compared to TL

tissues, MEN tissues cells had a higher contribution to disease

progression. Therefore, we hypothesized that the C2 subpopulation

might play a positive role in MEN progression. Ro/e preference analysis

and box plots were consistent with the above conclusions (Figures 3G,

H). The C2 subpopulation preferred MEN tissue cells, while the C1

subpopulation preferred TL tissue cells. In subsequent analyses

(Figure 3I), we found that the C0 subpopulation was mainly enriched

in processes such as “ameboidal-type cell migration” and “cytoplasmic

translation”. The C1 subpopulation was primarily enriched in processes

like “viral process” and “cytoplasmic translation”. The C2 subpopulation

showed significant enrichment in “epithelial cell migration” and

“ameboidal-type cell migration”, while the C3 subpopulation was

primarily enriched in “cytoplasmic translation” and “viral process”.

Based on the comprehensive analysis of EC subpopulations, we focused

on the C2 subpopulation. To further clarify the specific mechanisms of

C2 subpopulation in MEN disease progression, we conducted a more

detailed visualization analysis of C2 subpopulation. The biological

processes enriched in the C2 subpopulation were analyzed through

GSEA. The results revealed significant positive enrichment for the gene

sets “blood vessel development”, “blood vessel endothelial cell

migration”, “vasculature development”, and “regulation of blood
Frontiers in Immunology 07
vessel endothelial cell migration” (Figure 3J). Based on this, we

hypothesized that ECs primarily promoted the development of MEN

through biological processes such as angiogenesis. The relationship

between ECs and angiogenesis was closely intertwined. During

angiogenesis, ECs underwent proliferation and migration, providing

nutrients to MEN and thereby promoting their development.
Metabolic analysis of EC subpopulations

To explore the specific mechanisms of EC subpopulations, we

performed metabolic pathway analysis on the C2 subpopulation firstly

(Figure 3K). It was found that the C2 subpopulation was predominantly

enriched in metabolic pathways such as “oxidative phosphorylation”,

“glutathione metabolism” , “glycolysis/gluconeogenesis” ,

“glycosaminoglycan degradation”, and “drug metabolism-other

enzymes”. Besides, we conducted a comprehensive metabolic analysis

of EC subpopulations. First, we analyzed the relative proportions of the

four subpopulations in MEN and TL tissues from different dimensions

(Figures 4A, B). In line with prior findings, the C2 subpopulation was

primarily derived fromMEN tissue cells, whereas the C1 subpopulation

predominantly originated from TL tissue cells.

We then performed a comprehensive metabolic analysis of the EC

subpopulations and different tissue cells. We began by enriching the

top 5 metabolism-related pathways of the EC subpopulations

(Figure 4C). Subsequently, we analyzed the top 5 metabolism-

related pathways in MEN and TL tissue cells (Figure 4D). To gain

further insight, we conducted a more detailed visualization analysis of

some metabolic pathways. We used violin plots to examine the

expression levels of “oxidative phosphorylation”, “glutathione

metabolism”, “glycosaminoglycan degradation”, and “glycolysis/

gluconeogenesis” in the four cell subpopulations, two groups, and

cell cycle phases (Figures 4E–G). We found that the C2 subpopulation

exhibited relatively higher expression levels in these pathways, while

“glycosaminoglycan degradation” and “glycolysis/gluconeogenesis”

pathways were more highly expressed in MEN tissue. This

suggested that “glycosaminoglycan degradation” and “glycolysis/

gluconeogenesis” might be linked to MEN progression, potentially

promoting tumor initiation and development through specific

mechanisms. Based on these findings, we inferred that the metabolic

pathways in MEN might exert their tumor-promoting effects

predominantly during the S phase. Additionally, we analyzed the

distribution patterns of these four metabolic pathways using contour

plots (Figure 4H).
Pseudotemporal trajectory evolution
analysis of EC subpopulations

After identifying ECs and the C2 subpopulation, we performed

a pseudotemporal analysis to validate the screening results. The

UMAP plot illustrated the overall evolutionary trajectory of 24,964

cells (Figure 5A). The plot showed the lineage trajectory of lineage 1

over time, with differentiation sequence from C1→ C3→ C0→ C2

(“→” represented the differentiation order). As mentioned earlier,
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FIGURE 3

Differential enrichment analysis landscape of EC subpopulations. (A) Circle plot showed the distribution of EC subpopulations. The four surrounding
UMAP plots displayed the expression levels of the following: nCount-RNA, nFeature-RNA, G2/M.Score, and S.Score. (B) Heatmap illustrated the
mean expression of different genes across the four EC subpopulations. (C) Volcano plots showed the top 5 upregulated and downregulated DEGs in
EC subpopulations. (D) Compare the expression levels of marker genes across EC subpopulations. (E) UMAP plots depicted the distribution features
of EC subpopulations in relation to Cell-Stemness-AUC, nCount-RNA, and nFeature-RNA. (F) Stacked bar charts displayed the relative proportion of
EC subpopulations in different MEN and TL tissue samples. (G) Ro/e analysis illustrated the preference of EC subpopulations for MEN and TL tissue
types. (H) Box plots showed the frequency of EC subpopulations in MEN and TL tissues. (I) Compare the differences in the enrichment analysis of
biological functions among different EC subpopulations. (J) GSEA enrichment analysis of GOBP terms for EC subpopulation C2. (K) Heatmap
illustrated the top 20 metabolic pathways (AUCell values) enriched in C2 subpopulation. (***P < 0.001, ****P < 0.0001).
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the C1 subpopulation mainly originated from TL tissue cells, which

were composed mainly of normal tissue cells, while the C2

subpopulation predominantly came from MEN tissue cells. The

evolution from normal tissue to pathological tissue adhered to the

general disease progression pattern. Next, we performed dynamic

trend analysis of the marker genes in each subpopulation. The

results showed that the expression level of MALAT1 remained
Frontiers in Immunology 09
relatively stable, SLCO1A2 were highly expressed in the early

stages, PLVAP were highly expressed in the later stages, and

ACKR1 showed higher expression in the mid-stages. These

dynamic trends were consistent with the disease progression

lineage in the Slingshot analysis (Figure 5B). To gain a clearer

understanding of the progression of different subpopulations in

disease development, we clustered genes with similar functions into
FIGURE 4

Metabolic analysis of EC subpopulations in MEN and TL tissues. (A, B) Stacked bar charts showed the relative proportion of EC subpopulations in
different tissues (MEN and TL). (C, D) Heatmap displayed the top 5 metabolic pathways enriched in different EC subpopulations and distinct tissues.
(E-G) Violin charts illustrated the expression levels of four selected metabolic pathways across different subpopulations, tissues, and cell cycle
phases. (H) Contour plots showed the distribution features of the four selected metabolic pathways across different EC subpopulations.
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four clusters and visualized their expression levels over time using

heatmap (Figure 5C). In addition, we used CytoTRACE to predict

the ordering of the subpopulations (Figure 5D). We found that the

C1 subpopulation scored the highest, followed by the C3

subpopulation, and then the C2 subpopulation. The C2

subpopulation might possess enhanced stemness and contribute

to tumor progression.

In addition, we analyzed the stemness genes of ECs subpopulations

and the TL andMEN tissues (Figure 5E). The results showed that genes

such as CTNNB1were highly expressed in the C0 subpopulation, while

NES, CD34, EPAS1, ABCG2, KLF4,NOTCH1, and PROM1were highly

expressed in the C1 subpopulation. In the C2 subpopulation, NES,
Frontiers in Immunology 10
CD34, EPAS1, CTNNB1, and HIF1A showed high expression, and in

the C3 subpopulation, genes like TWIST1, MYC, KLF4, and HIF1A

were highly expressed. In MEN tissue, genes such as CD34, EPAS1,

CTNNB1, and HIF1A were highly expressed, while in TL tissue, NES,

ABCG2, KLF4, and NOTCH1 were more highly expressed. By

observation, we found that the gene expression in the C2

subpopulation closely resembled that of MEN tissue, prompting a

deeper analysis of these shared genes. We visualized the distribution of

CD34, CTNNB1, EPAS1, and HIF1A genes in the UMAP plots

(Figure 5F). Using violin plots, we visualized the expression levels of

these stemness genes across different tissues and subpopulations. The

expression levels of these stemness genes were higher in MEN tissue
FIGURE 5

Pseudotime analysis of EC subpopulations. (A) UMAP plot showed the pseudotemporal trajectory of lineage 1. (B) Dynamic trend plots illustrated the
temporal changes of the four EC subpopulations over time. (C) Heatmap displayed the DEGs across different cell clusters, along with the enriched
GOBP terms. (D) Inferred stemness order of EC subpopulations using CytoTRACE (left). The right plot showed the stemness scores of cell
subpopulations and their corresponding cell types. (E) Bubble plot showed the expression levels of stemness-related genes across different cell
subpopulations and tissues. (F) UMAP plots visualized the distribution expression of CD34, CTNNB1, EPAS1, and HIF1A genes within EC
subpopulations. (G, H) Violin plots showed the expression levels of CD34, CTNNB1, EPAS1, and HIF1A genes across different tissues (MEN and TL)
and subpopulations.
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than in TL tissue except EPAS1, and these genes showed relatively

higher expression in the C2 subpopulation (Figures 5G, H).
Intercellular communication effects

To further elucidate the crosstalk among TME, we analyzed the

intensity and quantity of interactions between EC subpopulations

and other cell types using circle diagrams (Figure 6A). We found

that interactions between MGCs and the C2 PLVAP+ ECs

subpopulation was particularly significant. When considering

MGCs as signal senders, both the interaction counts and weight

revealed substantial connections to the C2 PLVAP+ ECs

subpopulation (Figure 6B). This suggested that MGCs could

influence the C2 PLVAP+ ECs subpopulation via specific signals,

thereby stimulating certain biological processes in C2 PLVAP+ ECs

that promoted the development of MGCs. Next, we used heatmaps

to analyze the relative strength of outgoing and incoming signaling

patterns across cell types (Figure 6C). MGCs and the C2 PLVAP+

ECs subpopulation exhibited notable communication in the MK

pathway. Moreover, a centrality score heatmap revealed the roles of

various subpopulations within the MK signaling pathway

(Figure 6D). MGCs functioned as senders, receivers, mediators,

and influencers, while the C2 PLVAP+ ECs subpopulation

predominantly acted as receivers and influencers. These findings

were corroborated by Figure 6E, which demonstrated the

communication probability between MGCs and the C2 PLVAP+

ECs subpopulation within the MK signaling pathway network.

Subsequently, we examined ligand-receptor pairs involved in

this signaling pathway (Figures 6F, G). The ligand MDK was highly

expressed in MGCs, while the receptor NCL was expressed in the

C2 PLVAP+ ECs subpopulation. We speculated that the two cell

types primarily engaged in crosstalk via the MDK-NCL ligand-

receptor pair. EC subpopulations might provide developmental

conditions for MGCs through MDK-NCL interactions. MGCs

transmitted signals to the C2 PLVAP+ ECs subpopulation,

enabling ECs to exhibit tumor-promoting effects. A hierarchical

graph illustrated the modes of interaction between cell types in the

MK signaling pathway (Figure 6H). We observed substantial

communication between MGCs and ECs, suggesting a complex

relationship. This aberrant signaling likely disrupted normal

biological processes, potentially contributing to the aberrant

development of MGCs. Finally, the circle plot highlighted the

relationship between the two cell types, showing that MGCs and

the C2 PLVAP+ ECs subpopulation interacted via the MDK-NCL

ligand-receptor pair (Figure 6I). MDK-NCL played a crucial role in

EC angiogenesis, and the abundant vasculature it facilitated

provided favorable conditions for MEN progression.
TFs analysis of EC subpopulations

After selecting the cell subpopulations, we further investigated

the TFs in ECs. We re-clustered the TFs of each subpopulation and

displayed their distributional characteristics using UMAP plot
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(Figure 7A). We then analyzed the distributional characteristics of

TFs in each subpopulation (Figure 7B). TFs with similar or

synergistic functions were grouped into two distinct modules: M1

and M2 (Figure 7C), and the distribution patterns of these modules

were analyzed using UMAP plots (Figure 7D).

We found that in the M1 module, the C2 subpopulation had a

higher regulon activity score, while in the M2 module, the C1

subpopulation had a higher regulon activity score (Figure 7E). Since

the C2 subpopulation predominantly originated from MEN tissue,

the TFs associated with the M2 module might facilitate tumor cell

proliferation and dissemination through certain mechanisms. Next,

we discovered that TFs in the M1 module, such as FOSL2 (+),

IKZF1 (+), and TCF7L1 (+), contributed significantly to variance

across subpopulations, suggesting that these TFs might play a key

role in M1-related biological processes. Similarly, TFs in the M2

module, such as FOXO1 (+), CEBPD (+), and ETS2 (+), also

contributed significantly to variance, indicating their importance

in M2-specific functions or signaling pathways. These results

revealed the modular characteristics of the TF regulatory

network (Figure 7F).

Additionally, we visualized the expression levels of the M1 and

M2 modules in different subpopulations and groups (Figures 7G,

H). As expected, the expression levels of the M1module were higher

in the C2 subpopulation and MEN tissue, while the M2 module

showed higher expression levels in the C1 subpopulation and TL

tissue. We also analyzed the specificity scores of the TFs in each

subpopulation (Figure 7I). Given the C2 subpopulation’s higher

potential to drive disease progression, we focused on analyzing the

TFs in the C2 subpopulation. The top 5 TFs in the C2

subpopulation were further analyzed using UMAP plots to

explore their activity scores (Figure 7J).
In vitro experiments related to TF ETS1

To further clarify the potential relationship between

meningiomas and endothelial cell subsets, we conducted in vitro

experiments. In the C2 subpopulation, ETS1 had a strong activity

score. To further validate the role of ETS1 in ECs, we conducted in

vitro experiments. First, we used the CCK8-assay to observe the

changes in the viability of HUVECs before and after ETS1

knockout. The results showed that the cell viability significantly

decreased after ETS1 knockout (Figure 8A). Then, we carried out a

more in - depth study on the mRNA and protein expression levels

related to before and after ETS1 knockout (Figures 8B, C).

Compared with the negative control group, the mRNA and

protein expressions in HUVECs after ETS1 knockout were lower.

Thus, we concluded that ETS1 could affect the viability of ECs and

promote the progression of related biological processes of ECs to

some extent. In addition, to further explore the effects of ETS1

knockout on ECs’ proliferation, we investigated the cell cycle phases

of HUVECs (Figures 8D, E). We found that after ETS1 knockout,

the proportion of HUVECs in the G0/G1 phase was higher. In

comparison, the ECs in the negative control group had stronger

proliferation ability. In the cell apoptosis experiment (Figures 8F,
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G), we obtained similar results. The proportion of apoptosis was

higher after ETS1 knockout, which affected EC proliferation to a

certain extent. The subsequent tube formation assays further

supported this view (Figures 8H, I). We could observe significant
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changes in branch points before and after ETS1 knockout.

According to the transwell assays, we learned that ETS1 also

played an important role in the migration and invasion processes

of ECs (Figures 8J–L). After ETS1 knockout, both the migration and
FIGURE 6

Cellular communication network analysis. (A) The interaction intensity (left) and quantity (right) between different cell types were comparatively
analyzed. (B) MEGs were analyzed as a signal source to observe its communication count (left) and weight (right) with other cells. (C) Heatmaps
were used to compare the relative strength of outgoing and incoming signaling patterns among different cell types. The bar charts above the
heatmap represented the distribution of cell types. (D) The roles of different cell types in the MK signaling pathway network were comparatively
analyzed. (E) The communication probabilities of different cell types within the MK signaling pathway network were analyzed. A heatmap with bar
charts above and to the right represented various cell types, where darker colors indicated stronger communication probabilities. (F) The expression
levels of ligand-receptor pairs in different cell types were comparatively analyzed. (G) Violin plots were used to illustrate the expression levels of
ligands and receptors in different cell types. (H) The signal crosstalk among different cell types within the MK signaling pathway network was
comparatively analyzed. (I) The role of the MDK-NCL ligand-receptor pair in a circle plot was analyzed.
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invasion of ECs were inhibited. We reached a similar conclusion in

the EdU assays (Figures 8M, N). There were more cells and more

significant fluorescence staining in the negative control group, and

the cell proliferation was lower after ETS1 knockout.
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In conclusion, ETS1 could promote angiogenesis, and the poor

prognosis of meningioma was mainly due to abundant blood vessels.

The experiment verified that ETS1 knockout could significantly

inhibit angiogenesis. Then we speculated that ETS1 knockout could
FIGURE 7

TFs regulatory mechanisms in EC subpopulations. (A, B) UMAP plots illustrated the distribution of TFs across EC subpopulations. The UMAP facet
plots on the right showed the specific distribution of TFs in each subpopulation. (C) Heatmap displayed the clustering analysis of TF correlations,
revealing two modules: M1 and M2. (D) UMAP plots showed the expression levels of TFs in the M1 and M2 modules. (E) Regulon activity scores for
different EC subpopulations within the M1 and M2 modules. (F) Variance contribution distribution of TFs in different subpopulations, categorized into
M1 and M2 modules based on their characteristics. (G, H) Violin plots illustrated the expression levels of the M1 and M2 modules across different
subpopulations and tissues (MEN and TL). (I) Scatter plots showed the specificity scores of the top 5 TFs in each subpopulation. (J) The UMAP plots
showed the transcriptional activities of the top 5 TFs derived from the C2 subpopulation in the M1 module.
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FIGURE 8

Knockout of ETS1 resulted in changes in ECs in vitro experiments. (A) The comparison of cell viability before and after ETS1 knockout. (B, C) The
mRNA and protein levels in ECs were analyzed, both prior to and following ETS1 knockout. (D, E) Compare the changes in cell cycle phases (G0/G1,
S, G2/M) both prior to and following ETS1 knockout. (F, G) Changes in apoptosis rate following ETS1 knockout. (H, I) The results of tube formation
assays verified the functional changes of ECs before and after ETS1 knockout. (J-L) After ETS1 knockout, transwell assays demonstrated a notable
reduction in HUVECs’ migration and invasion. (M, N) After ETS1 knockout, EdU staining demonstrated that HUVECs’ proliferation was suppressed.
(**P < 0.01, ***P < 0.001).
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inhibit the progression of meningioma. Targeting ETS1 became a

potential direction for the treatment of meningioma.
Discussion

Existing studies showed that the incidence of MEN was steadily

increasing (86). Although most MEN was benign tumors, they still

presented numerous challenges during treatment. According to the

available literature, MEN exhibited significant heterogeneity in both

onset and treatment (87). To delve deeper into the pathogenesis of

MEN, we utilized scRNA-seq technology to study this disease.

Initially, we analyzed the obtained single-cell dataset, selected

high-quality cells, and performed dimensionality reduction

clustering to classify these cells into eight distinct types. Among

them, ECs drew our attention. Existing research indicated that ECs

played a role in the development of various tumors (88, 89). ECs

contributed to tumorigenesis and progression by promoting

angiogenesis, shaping the TME, supporting tumor metastasis, and

causing abnormal tumor vasculature (90–92). They might provide

nutritional and metabolic support through mechanisms such as the

VEGF signaling pathway, and assisted tumor metastasis through

immune evasion and barrier disruption. Moreover, abnormalities in

the structure and function of tumor vasculature not only

exacerbated malignancy but also impacted drug delivery and

therapeutic efficacy (16). Therefore, we focused on the ECs cluster

and conducted further analysis, subdividing it into four

subpopulations. These subpopulations’ marker genes were directly

or indirectly involved in angiogenesis. We discovered that the C2

PLAVP+ ECs subpopulation predominantly originated from MEN

tissue. Existing research had shown that PLVAP was a membrane

protein unique to ECs, primarily distributed in small blood vessels

and capillary openings, as well as in fenestrated vesicles (93). It

regulated material exchange across the vascular wall, supporting

dynamic adjustments of endothelial permeability, thus promoting

the maturation and functionalization of newly formed vessels.

PLVAP played a crucial role in angiogenesis by enhancing EC

migration and proliferation (94). A rich vascular network provided

essential nutrients and oxygen to tumor cells, promoting their

proliferation and growth. Therefore, we may speculate that

targeting PLVAP therapy is expected to be a potential therapeutic

molecule to inhibit the development of meningioma.

In our metabolic analysis, we found that biological processes

such as oxidative phosphorylation, glutathione metabolism, and

glycolysis/gluconeogenesis exhibited higher AUCell scores in the C2

subpopulation. This suggested that these biological processes were

more active or strongly expressed in the C2 subpopulation, playing

a critical role in angiogenesis and tumor progression (95–97). These

processes supported tumor rapid growth, invasion, and metastasis

by regulating energy metabolism, redox states, and changes in the

microenvironment. Particularly in hypoxic microenvironments,

enhanced glycolysis promoted lactic acid accumulation, which

could activate angiogenesis signaling pathways (98). Furthermore,

the regulation of redox balance through glutathione metabolism

helped stabilize and form vasculature within the TME (99).
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Additionally, we utilized Slingshot and CytoTRACE to assess the

differentiation process of each subpopulation in the disease. The C2

subpopulation was found to be at the terminal differentiation stage,

which could play a key role in disease progression. To further clarify the

underlying mechanisms, we analyzed stemness-associated genes across

various cell types. We observed that the gene expression profiles of the

C2 subpopulation closely resembled those of MEN tissues. CD34, a cell

surface marker primarily expressed in endothelial progenitor cells,

hematopoietic stem cells, and fibroblasts, played an important role in

EC proliferation, migration, and lumen formation during angiogenesis

(100). CTNNB1 encoded b-catenin, which regulated the Wnt signaling

pathway, an important factor in angiogenesis (101). b-catenin
promoted the formation of new blood vessels by regulating EC

proliferation, differentiation, and migration (102, 103). Under

hypoxic conditions, both EPAS1 (HIF-2a) and HIF1A (HIF-1a)
were upregulated, leading to the activation of genes associated with

angiogenesis (104). Specifically, HIF-1a activated the expression of

angiogenic factors such as VEGF and angiopoietin, promoting the

formation of new blood vessels (105, 106). EPAS1 (HIF-2a) also played
a substantial impact on regulating angiogenesis under hypoxia,

particularly in chronic hypoxic environments, by activating similar

angiogenic factors (107). In conclusion, CD34, CTNNB1, EPAS1, and

HIF1A could promote MEN progression by regulating angiogenesis. In

other words, these stemness genes were expected to become potential

therapeutic targets.

During disease progression, cellular signaling crosstalk often

occurred. We identified that the C2 subpopulation likely interacted

with MGCs through the MK signaling pathway. The MK pathway is a

critical factor in cell proliferation, differentiation, migration, and

apoptosis, especially in the development of tumors, inflammation,

and cellular senescence (108, 109). In this study, we explored the

major ligands and receptors of the MK signaling pathway, such as

MDK-NCL, which were involved in the progression of various cancers,

including lung cancer, breast cancer, liver cancer, gastric cancer, and

colorectal cancer (110). They promoted tumor progression by

regulating cell proliferation, migration, angiogenesis, and anti-

apoptotic processes (111). Therefore, we hypothesized that the MDK-

NCL ligand-receptor pair might have played a crucial role in MEN

development, contributing to the dysregulation of signaling pathways.

Furthermore, we conducted a transcription factor regulatory

analysis to explore how TFs influenced gene expression, thereby

affecting cellular biological processes. Among the many TFs, ETS1

attracted our attention. ETS1, a member of the ETS family of TFs,

had been shown to play a key role in angiogenesis (112). ETS1

regulated the expression of various angiogenesis-related genes and

participated in EC proliferation, migration, and vessel lumen

formation (113, 114). ETS1 played a proactive role in

angiogenesis, particularly in tumor-associated angiogenesis (115).

In the TME of MEN, ETS1 might have further promoted

angiogenesis by regulating local hypoxia and inflammation (116).

Hypoxia was a potent inducer of angiogenesis, and ETS1 likely

enhanced the expression of VEGF and other angiogenic factors by

regulating hypoxia-responsive signaling pathways such as HIF-1a
(117, 118). In vitro experiments also validated the role of ETS1,

showing that it promoted EC proliferation, differentiation, and
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angiogenesis. Therefore, ETS1 could have been a potential

therapeutic target in the treatment of MEN, providing valuable

guidance for clinical interventions in MEN patients. Although this

study conducted in-depth research on the development of

meningiomas, there were still some insufficiencies. Firstly, this

study mainly relied on public datasets from the GEO database,

which, although providing rich information, inevitably suffered

from batch effects and data heterogeneity. Therefore, future

research should combine multi-center data to further validate the

conclusions. Additionally, the study lacked in vivo experimental

support. Although scRNA-seq revealed the characteristics of the

meningioma microenvironment, it was still necessary to conduct

experiments through animal models or clinical samples. In the

future, animal experiments will be conducted based on these

findings. Moreover, although this study identified some potential

treatment-related biomarkers, it failed to propose clear drug targets

or verifiable therapeutic hypotheses, which somewhat affected its

clinical translational value. Therefore, future research should

combine drug screening experiments or gene editing techniques

to further explore intervention strategies for meningiomas. Recent

studies have shown that immune therapy targeting T cell

exhaustion showed promising prospects in non-small cell lung

cancer (119), while immune therapy for meningiomas was still in

the exploratory stage. Combining scRNA-seq to analyze the

immune characteristics of the meningioma microenvironment

provided new directions for the development of future immune

therapy strategies. At the same time, the combination of scRNA-seq

technology and personalized immune therapy strategies was

expected to provide more precise treatment options for

meningioma patients.
Conclusion

Based on the single-cell characteristics of MEN, we studied the

heterogeneity of the TME in MEN. Through further analysis of the

EC subpopulations, we found that the C2 subpopulation was

significantly presented in MEN and played an important role in

angiogenesis and cell signaling crosstalk. We discovered that the

MDK-NCL ligand-receptor pair might play a critical role in

intercellular communication. Additionally, we found that ETS1

could promote angiogenesis, thereby providing favorable conditions

for MEN progression, a finding that was confirmed in vitro. These

findings are expected to provide potential therapeutic targets for

MEN treatment. Although our study contributes to advancing the

treatment of MEN patients, there are still limitations. We plan to

collect more comprehensive and reliable data and conduct a more in-

depth and precise analysis ofMEN from the perspective of prognostic

models. In addition, we will introduce a larger clinical cohort to

validate the findings and enhance the robustness of the prognostic

model. At the same time, we plan to conduct in vivo experiments to

further validate the function of key genes in meningioma

angiogenesis through animal models and evaluate their feasibility

as potential therapeutic targets. By optimizing predictive models,

conducting in vivo functional studies, and exploring targeted
Frontiers in Immunology 16
intervention strategies, we hope to provide stronger support for

accurate diagnosis and personalized treatment of meningiomas.
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