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Trimethylamine N-oxide (TMAO), a key metabolite derived from the gut 
microbial metabolism of choline, has recently been implicated as a significant 
contributor to the development of several chronic diseases, including diabetes, 
cardiovascular disease, and chronic kidney disease. Its detrimental effects have 
garnered widespread attention in the scientific community. Inflammatory bowel 
disease (IBD), marked by persistent and recurring gastrointestinal inflammation, is 
a significant global health issue. Emerging evidence highlights a critical role for 
TMAO in the pathogenesis of IBD. This review comprehensively summarizes 
current research on the association between TMAO and IBD, with a particular 
focus on the mechanisms by which TMAO regulates immunometabolism 
in diseases. 
KEYWORDS 

tr imethylamine  N-oxide,  inflammatory  bowel  disease,  gut  microbiota,  
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1 Introduction 

Trimethylamine N-oxide (TMAO) is an endogenous compound predominantly found 
in marine organisms, with only trace amounts present in most freshwater fish (1). In 
marine species, TMAO serves essential physiological roles, including osmoregulation, 
antifreeze activity, and protein stabilization (2, 3). In humans, TMAO is generated from 
choline- and carnitine-rich foods via gut microbiota activity and subsequent hepatic 
metabolism (4). Initially regarded as a mere byproduct of choline metabolism with no 
physiological relevance, TMAO has since been associated with various pathophysiological 
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effects (5–9). This shift in understanding began with the seminal 
study by Wang et al. in 2011 (10), which demonstrated that dietary 
choline and TMAO promoted atherosclerosis. In recent years, 
advancing research has increasingly highlighted the pivotal role of 
TMAO in human health across multiple domains. 

Inflammatory Bowel Disease (IBD) encompasses two primary 
subtypes: Crohn’s disease (CD) and ulcerative colitis (UC). UC is a 
chronic and recurrent gastrointestinal disorder driven by immune 
dysregulation, characterized by alternating episodes of 
inflammation and remission, and remains incurable (11). CD is a 
chronic intestinal inflammation that can affect any part of the 
digestive tract, manifested as segmental and transmural 
inflammation. Its typical symptoms include abdominal pain, 
diarrhea, weight loss, and fatigue, and may lead to extraintestinal 
complications. The prevalence of CD in the population is 
increasing, and specific environmental factors are associated with 
its development (12). The etiology of IBD is multifactorial, 
involving complex interactions among genetic predisposition, 
environmental factors, the intestinal microbiome, and the 
immune system (13–16). Recent studies have implicated TMAO, 
an intestinal microbiota-dependent metabolite, in the pathogenesis 
and progression of IBD through its role in immune regulation. 
TMAO has been shown to contribute to IBD by modulating the 
innate immune response. Notably, elevated TMAO concentrations 
induce oxidative stress and activate the NOD-like receptor thermal 
protein domain associated protein 3 (NLRP3) inflammasome in 
human fetal colon cells, suggesting that TMAO triggers 
inflammasome activation and promotes an inflammatory 
response in the intestinal endothelium (17). 

Immunometabolism is an emerging research field in which 
immune cells regulate energy and biosynthesis through pathways 
such as glycolysis, oxidative phosphorylation, and tricarboxylic acid 
cycle in different microenvironments to meet proliferation, 
differentiation, and effector functions (18). Through the 
“metabolic control” molecular network, immune cells can switch 
between pro-inflammatory and anti-inflammatory states, and their 
abnormal regulation is closely related to IBD, rheumatoid arthritis, 
and tumor immune imbalance (19, 20). Targeted metabolic 
pathways not only accurately regulate the immune responses, but 
also provide new strategies for personalized therapy, demonstrating 
significant clinical application potential. 

In this review, we provide an overview of the latest research on 
TMAO in the context of immunometabolism. We discuss the 
potential mechanisms by which TMAO affects the immune 
regulation of IBD and its impact on several immunometabolism

related diseases, aiming to explore strategies for reducing IBD risk 
through dietary interventions. 
2 Pathogenesis of IBD 

Since its emergence in the western world over a century ago, the 
epidemiology of IBD has undergone a significant shift (21, 22). The 
incidence of IBD has risen markedly in developing and newly 
industrialized countries, while in developed nations, the 
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prevalence continues to increase, particularly among children and 
older adults. IBD, once considered predominantly a disease of 
children and young adults, is now increasingly diagnosed in the 
elderly population (23–25). This growing trend underscores the 
urgent need to further investigate the pathogenesis of IBD. 
Although the precise etiology of IBD remains elusive, 
considerable progress has been made in understanding its 
underlying mechanisms in recent years. Research suggests that 
the pathogenesis of IBD is multifactorial, involving genetic 
predisposition, gut microbiota dysbiosis, environmental factors, 
and immune system abnormalities (26, 27). In this review, we 
focus specifically on the roles of intestinal dysbiosis and immune 
dysfunction in the development of IBD. 
2.1 Dysbiosis of intestinal flora 

A reduction in the abundance and diversity of specific bacterial 
genera in the gut microbiota, as well as alterations in microbiota

derived metabolites, has been identified as a potential key factor in 
the pathogenesis of IBD (28, 29). For instance, an analysis of 
intestinal biopsies and fecal samples from 231 IBD patients and 
healthy controls, using 16S rRNA gene pyrosequencing, revealed 
marked variations in microbiota composition between the two 
groups (30). Morgan et al. discovered that the levels of certain 
microbiota, such as Roseburia and Phascolarctobacterium, were 
markedly decreased in UC and CD patients in contrast to healthy 
people (30). 

Roseburia is known for its role in promoting the generation of gut 
anti-inflammatory regulatory T cells (31), while Phascolarctobacterium 
metabolizes succinate to generate propionate when in co-culture with 
Paraprevotella (32). Propionate, a short-chain fatty acid (SCFA), has 
recognized anti-inflammatory properties (33). The reduction in 
Phascolarctobacterium populations in IBD patients may impair the 
production of propionate, thus diminishing the anti-inflammatory 
effects of SCFAs and contributing to the exacerbation of IBD 
symptoms. In contrast, the family Enterobacteriaceae, particularly 
Escherichia/Shigella, exhibited a significant increase in abundance in 
the gut microbiota of CD patients. This family has been consistently 
linked to intestinal inflammation in multiple studies (34–37). 
Moreover, the abundance of bacteria carrying bile salt hydrolase and 
bile acid inducible enzyme in the gut microbiota of IBD patients, such 
as Firmicutes, Ruminococcaceae, Lachnospiraceae, and  Eubacterium, is  
reduced. A decrease in these bacterial populations can reduce the 
metabolic process turning primary bile acids into secondary bile acids 
(e.g., deoxycholic acid and lithocholic acid) through processes like 
depolymerization and 7a-dehydroxylation. This alteration leads to an 
increase in primary and conjugated bile acids (e.g., cholic acid, 
taurocholate, and glycocholic acid, chenodeoxycholic acid) and a 
decrease in secondary bile acids. Recent advances in genomics and 
metabolomics have provided compelling evidence that bile acids and 
their receptors play a critical role in the pathophysiology of IBD (38– 
41). As signaling molecules, bile acids can influence the gut microbiota, 
epithelial barrier integrity, and intestinal immune responses by 
activating various bile acid receptors, such as the farnesoid X 
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receptor (FXR), vitamin D receptor, and the G protein-coupled bile 
acid receptor 1 (42). 
2.2 Immune abnormalities 

Immune dysregulation in IBD is characterized by epithelial 
damage, including abnormal mucus production and defective 
mucosal repair. This is coupled with an exaggerated inflammatory 
response driven by the intestinal microbiota, leading to extensive 
infiltration of various immune cells, including T cells, B cells, 
dendritic cells (DCs), macrophages, and neutrophils, into the 
lamina propria. The failure of immunomodulatory mechanisms to 
regulate this inflammation further exacerbates the condition (43, 44). 
Activated cells in the lamina propria secrete elevated levels of 
proinflammatory cytokines, including tumor necrosis factor (TNF), 
interleukin (IL) -1b, interferon-g (IFN-g), and cytokines involved in 
the IL-23/T helper cell 17 (Th17) signaling pathway (27, 44, 45). 
Among the various immune mediators, Th17 cells are now 
recognized as a central pathogenic factor in IBD. For example, a 
study identified significant infiltration of Th17 cells within the 
inflamed intestinal mucosa of IBD patients (46). Moreover, the 
number of cells releasing IL-17 and other Th17-related cytokines 
was markedly  higher in  the  inflamed tissues of IBD patients 
compared to normal tissues (46, 47). Additionally, numerous 
studies have demonstrated that specific gut microbiota play a 
crucial role in driving the differentiation of Th17 cells (48, 49). 
3 Microbial-host interplay in TMAO 
synthesis and metabolism 

TMAO originates from dietary precursors metabolized through 
a tightly coordinated interplay between gut microbiota and host 
hepatic enzymes (50). This section delineates the biochemical 
pathways within their biological contexts, emphasizing the roles 
of specific microbial taxa and host factors. 
3.1 Gut microbiota: primary producers of 
trimethylamine 

Gut microbiota, particularly Firmicutes and Proteobacteria, are 
key mediators of TMA production through distinct enzymatic 
pathways  (51, 52).  In  choline  metabolism,  Firmicutes , 
Actinobacteria, and  Proteobacteria utilize the CutC/D enzyme 
system to cleave choline—abundant in eggs, meat, and fish (53)— 
into TMA, a function absent in Bacteroidetes (54). L-carnitine, 
derived from red meat and dairy (55), is directly converted to TMA 
by Proteobacteria and some Firmicutes via the CntA/B system (56, 
57). Alternatively, it can be metabolized into g-butyrobetaine or 
betaine (58, 59), with g-butyrobetaine further transformed into 
TMA by YeaW/X (60), enzymes specific to  Gammaproteobacteria 
(61). Betaine, sourced from cereals and leafy vegetables (53, 62), 
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yields TMA via low-efficiency pathways involving betaine reductase 
or betaine-homocysteine-mediated demethylation (59, 63). 
Additionally, ergothioneine—present in mushrooms and organ 
meats (64)—is degraded by Burkholderia through ergothionease 
to generate TMA (65). Notably, ergothioneine’s anti-inflammatory 
and neuroprotective roles contrast with the pro-atherogenic effects 
of TMAO, underscoring the need for deeper mechanistic 
insights (66). 

Different gut microbes vary in their ability to generate TMA. 
Metagenomic and biochemical surveys have identified key bacterial 
taxa and genes involved in TMA synthesis. In particular, many 
Firmicutes carry the cutC/D genes and convert choline or carnitine 
to TMA. For example, Clostridium sporogenes, C. hathewayi, C. 
asparagiforme and related Clostridia are known TMA producers 
(67, 68). Other Firmicutes genera such as Anaerococcus, Roseburia 
and Ruminococcus have also been linked to TMA formation (67). 
Some Proteobacteria harbor the Rieske-type cntA/B enzymes that 
convert L-carnitine into TMA, and certain Actinobacteria and 
Bacteroidetes also carry cut-like genes. In aggregate, recent 
human studies find that gut communities rich in these taxa tend 
to have higher TMAO output. For example, a large cohort study 
identified eight Firmicutes species, one Bacteroides genus, and one 
Actinobacterium whose abundances correlate strongly with plasma 
TMAO levels (67). In vitro and metagenomic screens also confirm 
that the cutC gene is concentrated in Clostridia and related 
anaerobes, while cntA is found chiefly in Gammaproteobacteria. 
Thus the composition of the gut microbiome and the balance 
between TMA-producing taxa and others critically influence how 
much TMA is made from a given diet (69). 
3.2 Host hepatic oxidation: from TMA to 
TMAO 

Following intestinal absorption, TMA is rapidly oxidized in the 
liver by flavin monooxygenases (FMOs), specifically FMO1 and 
FMO3. FMO3 is the dominant hepatic isoform in adults, exhibiting 
10-fold higher activity than fetal-expressed FMO1 (70). FMO3 
efficiently converts absorbed TMA into TMAO, regardless of its 
precursor origin. The efficiency of TMAO production varies 
depending on the precursor compounds. Among these, choline is 
the most potent precursor, producing TMAO more efficiently than 
either betaine or L-carnitine. Additionally, L-carnitine produces 
TMAO at the fastest rate, while betaine generates TMAO more 
slowly (71). 
3.3 Systemic fate and excretion 

Once produced, most TMAO enters the systemic circulation, 
with a portion being taken up by extrahepatic tissues. However, the 
majority of TMAO is excreted unchanged in the urine within 
24 hours, with only a small amount excreted in the feces 
(72) (Figure 1). 
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4 Dual roles of TMAO in 
immunometabolism 

The field of immunometabolism has made significant strides 
over the past decade, highlighting the critical role of intracellular 
metabolism in regulating immune cell function. Although the 
mechanisms by which metabolites influence the immune system 
are complex, they can generally be categorized into two main types. 
The first category involves metabolites serving as essential nutrients, 
energy sources, and building blocks required for the development, 
differentiation, proliferation, and functional activity of immune 
cells. The second category encompasses metabolites that function 
as signaling molecules, which immune cells detect via receptors 
expressed on various subcellular organelles, including the cell 
membrane, cytoplasm, mitochondria, and nucleus. These two 
mechanisms are now widely recognized as integral to the immune 
response, with cell-specific and systemic metabolism being tightly 
interlinked. The proper functioning of both immune cells and 
metabolism  is  mutually  dependent.  Consequently,  the  
immunometabolism interface—which encompasses both local 
metabolism within immune cells and the broader systemic 
metabolism of the immune system—has emerged as a promising 
therapeutic target for various chronic diseases (73, 74). 
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Given the importance of the immunometabolism interface as a 
therapeutic target for chronic diseases, it is essential to explore the 
impact of specific metabolites on different types of immune cells. 
One such metabolite that has attracted considerable interest is 
TMAO. Understanding how TMAO affects various immune cells, 
including macrophages, DCs, T lymphocytes, B lymphocytes, and 
natural killer (NK) cells, is of great significance in further unraveling 
the complex mechanisms of immunometabolism and potentially 
developing new therapeutic strategies. 
4.1 Impact of TMAO on macrophages 

Macrophages, as pivotal components of the innate immune 
system, play crucial roles in mediating inflammatory responses (75). 
TMAO has been demonstrated to influence macrophage 
polarization and activation, thereby exacerbating inflammatory 
conditions (76). Studies reveal that TMAO promotes macrophage 
polarization towards the M1 phenotype, characterized by enhanced 
production of pro-inflammatory cytokines and amplified antigen-
presenting capacity. This polarization is critical for developing Th1 
and Th17 responses that accelerate the progression of inflammatory 
disorders such as graft-versus-host disease (77). In TMAO-treated 
FIGURE 1 

Synthesis and metabolism of TMAO. Precursors of TMA (including L-carnitine, choline, ergothionein) can be ingested from foods such as red meat, 
eggs, and mushrooms, and then they are converted to TMA by various enzymes under the action of gut microbiota. TMA is absorbed into the 
bloodstream in the intestine and rapidly oxidized by FMO3 in the liver to form TMAO. Finally, transported through the systemic circulation to other 
organs, about 95% of TMAO is excreted in the urine, only 4% in the feces, and less than 1% in the breath. TMA, trimethylamine; FMO3, flavin
containing monooxygenase 3; TMAO, Trimethylamine oxide; CHDH, Choline dehydrogenase; BADH, Betaine-aldehyde dehydrogenase; BHMT, 
Betaine-homocysteine methyltransferase; CDH, L-carnitine dehydrogenase; CaiB, g-butyrobetainyl-CoA:carnitine CoA transferase. 
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macrophages, significant upregulation is observed in both M1 
signature cytokines (including IL-1b, IL-6, TNF-a, Chemokine 
(C-X-C motif) ligand (CXCL) 9, and CXCL10) and key genes 
such as NLRP3 (77). 

The NLRP3 inflammasome, a critical protein complex in 
macrophage activation, is directly activated by TMAO through 
caspase-1 cleavage and subsequent IL-1b secretion - pivotal 
mediators of inflammatory cascades. Mechanistically, TMAO 
stimulates nuclear factor kappa-B (NF-kB) nuclear translocation, 
thereby enhancing transcriptional upregulation of NLRP3 and 
other pro-inflammatory genes. This process constitutes an 
essential priming signal for NLRP3 inflammasome activation. 
Furthermore, TMAO induces reactive oxygen species (ROS) 
generation in macrophages, creating a feed-forward loop that 
amplifies both inflammatory responses and oxidative stress (10). 
4.2 Impact of TMAO on DCs 

DCs, as the most potent professional antigen-presenting cells in the 
body, play a pivotal role in antigen recognition and signal transmission 
during immune response. The biological characteristics of DCs can be 
divided into two key stages: immature DCs possess remarkable tissue 
migration ability and antigen capture efficiency, while mature DCs, 
through high expression of antigen-presenting molecules and co
stimulatory molecules, specifically activate naive T lymphocytes, 
thereby playing a core hub role in the initiation, regulation, and 
maintenance of the immune response (78). 

In recent years, studies have shown that TMAO can regulate the 
immune function of DCs through multiple pathways. Firstly, at the 
molecular expression level, TMAO can significantly up-regulate 
the expression of MHC-II molecules and co-stimulatory molecules 
CD86 on the surface of DCs. By enhancing the stability of antigen 
peptide-MHC complexes and the intensity of co-stimulatory signals, 
it effectively improves the capacity of DCs to activate T cells (79). 
Secondly, in terms of cytokine network regulation, TMAO can 
promote the secretion of pro-inflammatory factors such as IL-6 
and IL-12p40 by DCs, while inhibiting the production of anti-
inflammatory factor IL-10. This bidirectional regulatory effect 
disrupts immune homeostasis and promotes the cascade 
amplification of inflammatory responses. It is worth noting that 
TMAO can also significantly increase the level of ROS in DCs 
through the mitochondrial dysfunction pathway. When the 
accumulation of ROS exceeds the physiological threshold, it can 
induce cell apoptosis by activating the caspase pathway, ultimately 
leading to a reduction in the number of DCs and immune 
dysfunction (80). 
4.3 Impact of TMAO on T lymphocytes 

TMAO can enhance the activation of effector T cells, shown in 
increased percentages of IFN-g+ TNF-a+ CD8+ and CD4+ T cells, 
and upregulated CD44 expression on CD8+ and CD4+ T cells. After 
TMAO treatment, in tumor-associated macrophages, stimulatory 
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markers like MHC-I, MHC-II, and CD86 are upregulated, while the 
anti-inflammatory marker Arg1 is downregulated (79). This 
indicates a shift of tumor-associated macrophages towards an 
immune-stimulatory  phenotype,  which  can  enhance  T  
cell activation. 

Also, TMAO can modulate macrophage phenotype to support 
T cell responses, promoting effector T cell proliferation and survival 
(77). Experimental data shows that macrophages treated with 
TMAO can significantly increase the expression levels of IFN-g, 
Ki-67, CD103, and CD44 in CD8+ and CD4+ T cells, indicating 
enhanced T cell activation and proliferation. Moreover, TMAO can 
affect T cell transcriptional profiles. Activated functions include 
CD8+ T lymphocyte proliferation, cellular immune responses, 
antigen expression, and cell death in tumor cell lines. Inhibited 
functions involve regulatory T lymphocyte numbers, tumor cell 
proliferation, and proliferation of fibrous tissue tumors and bone 
marrow cells (79). 
4.4 Impact of TMAO on B lymphocytes 

Although there’s little direct research on TMAO’s specific 
impact on B lymphocytes, existing evidence suggests TMAO may 
indirectly affect B cell function by influencing immune responses. 
TMAO can combine with and trigger the ER stress kinase PERK, 
specifically stimulating the PERK arm of the unfolded protein 
response (UPR). This activation process activates Forkhead box 
protein O1 (FoxO1), which is a significant contributor to metabolic 
diseases. Since B lymphocytes are secretory cells highly dependent 
on ER function, TMAO’s regulation of UPR may impact B cell 
development, differentiation, or antibody production (81). 
Regarding inflammatory responses, TMAO reportedly promotes 
vascular inflammation by activating the NF-kB signaling pathway, 
increasing endothelial adhesion molecule expression and white 
blood cell recruitment (82). While this study mainly focuses on 
endothelial cells, NF-kB is also crucial for B cell activation and 
function. Thus, TMAO-induced NF-kB activation may influence B 
lymphocyte responses. 

In summary, despite limited direct evidence on TMAO’s impact 
on B lymphocytes, its ability to regulate pathways like UPR and NF
kB, which are essential for B cell function, suggests potential 
indirect effects. Further studies are required to clarify the specific 
mechanisms by which TMAO impacts B cell biology. 
4.5 Impact of TMAO on NK cells 

NK cells are important immune cells in the body, which are not 
only involved in anti-tumor, antiviral infections, and immune 
regulation, but also participate in the occurrence of autoimmune 
diseases in some cases, and can recognize target cells and killing 
mediators (83). TMAO has been shown to affect the cytotoxicity of 
NK cells. Elevated levels of TMAO may impair the ability of NK 
cells to lyse target cells, thereby potentially impairing immune 
surveillance against tumors and infections (84). Meanwhile, 
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TMAO can alter the production of cytokines by NK cells. Changes 
in cytokine secretion profiles may affect the regulation of immune 
responses, inflammation, and immune cell communication (85). In 
order to comprehensively understand the effects of TMAO on NK 
cells, further research is necessary to elucidate these mechanisms 
and their impact on immune related diseases. 
5 TMAO-mediated 
immunometabolism in IBD 

Emerging evidence highlights TMAO’s dual role as both a 
biomarker of microbial-host metabolic crosstalk and a direct 
instigator of immune-inflammatory cascades, bridging gut 
dysbiosis to intestinal mucosal damage (86). Mechanistically, 
TMAO exacerbates IBD pathogenesis by modulating key 
signaling pathways—including endoplasmic reticulum stress 
(ERS) via protein kinase RNA-like endoplasmic reticulum kinase 
(PERK) activation, NF-kB-driven proinflammatory cytokine 
Frontiers in Immunology 06
production, and NLRP3 inflammasome-mediated pyroptosis— 
thereby disrupting intestinal epithelial integrity, amplifying 
macrophage and T cell activation, and skewing immune 
homeostasis toward a proinflammatory milieu. Notably, recent 
studies have elucidated how TMAO’s tissue-specific interactions 
with these pathways converge to perpetuate oxidative stress, barrier 
dysfunction, and unresolved inflammation, hallmarks of CD and 
UC. The following sections dissect the molecular interplay between 
TMAO, PERK, NF-kB, and NLRP3, providing a roadmap to 
understand how microbial metabolites shape immune outcomes 
in IBD (Figure 2). 
5.1 TMAO and endoplasmic reticulum 
kinase PERK 

TMAO, a gut microbiota-derived metabolite, has emerged as a 
critical modulator of ERS through its interaction with the PERK 
pathway. A landmark study by Chen et al. identified PERK as a 
RE 2 FIGU

The effect of TMAO on the immunometabolism of IBD. TMAO affects intestinal homeostasis and immune response through PERK, NF-kB, and 
NLRP3 signaling pathways. TMAO, Trimethylamine oxide; PERK, protein kinase R-like ER kinase; eIF2a, eukaryotic initiation factor 2a; ATF4, 
activating transcription factor 4; CHOP, C/EBP homologous protein; PPARg, peroxisome proliferator-activated receptor g; HSP60: Heat shock 
protein 60; GRP78: glucose regulated protein 78kD; Ikk, inhibitor of kappa B kinase; IkB, inhibitor of NF-kB; NF-kB, nuclear factor kappa-B; SIRT3, 
NAD-dependent protein deacetylase sirtuin-3; ROS, reactive oxygen species; mtROS, mitochondrial reactive oxygen species; SOD, Superoxide 
dismutase; NLRP3, nucleotide-binding oligomerization domain-like receptor protein 3; Caspase-1, cysteinyl aspartate specific proteinase 1; (IL)-1b, 4,  
8, 18, (Interleukins) -1b, 4, 8, 18; TNF-a, tumor necrosis factor-a; IBD, inflammatory bowel disease. 
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specific receptor for TMAO, demonstrating that TMAO directly 
activates the PERK branch of the UPR at physiological 
concentrations, thereby inducing the transcription factor FoxO1, 
which is implicated in metabolic and inflammatory diseases (81). 
Recent advancements further highlight TMAO’s role in activating 
PERK across diverse tissues. For instance, Yang et al. observed that 
chronic TMAO exposure in zebrafish models induced hepatic lipid 
accumulation, inflammatory infiltration, and fibrosis, accompanied 
by PERK pathway activation in liver tissues and in vitro cell systems 
(87). These findings underscore PERK as a central mediator of 
TMAO-driven ERS and inflammation. Notably, TMAO also 
amplifies ERS markers such as heat shock protein 60 and glucose 
regulated protein 78kD in macrophages, correlating with elevated 
toll-like receptor 4 expression and proinflammatory cytokine 
production (e.g., TNF-a, IL-6) (88, 89). 

In IBD, the PERK-C/EBP homologous protein (CHOP) axis 
plays a key role in linking ERS to mucosal inflammation (81). 
During sustained ERS, PERK phosphorylates eukaryotic initiation 
factor 2a (eIF2a), leading to activating transcription factor 4 (ATF4)
mediated upregulation of the pro-apoptotic transcription factor 
CHOP (90, 91). CHOP is markedly elevated in the intestinal 
epithelium of IBD patients and murine models, where it 
exacerbates colitis by inhibiting peroxisome proliferator-activated 
receptor g (PPARg), a negative regulator of NF-kB. This inhibition 
facilitates NF-kB nuclear translocation, driving the expression of 
proinflammatory cytokines (e.g., IL-8) and recruiting macrophages to 
inflamed tissues (92). 

In addition to the CHOP signaling pathway, eIF2a, a direct

substrate of the PERK pathway, has also been implicated in immune 
responses in IBD (93). Cao et al. (94) reported that phosphorylation of 
eIF2a plays a critical role in maintaining the function of intestinal 
paneth cells and mucosal homeostasis. This is achieved by activating 
the UPR signaling and promoting the recruitment of messenger RNA 
to ER membranes for translation. Pyramid-shaped columnar epithelial 
cells and paneth cells, located at the base of small intestinal crypts (95), 
are crucial for innate immunity and host defense against fungi, bacteria, 
and certain viruses. They accomplish this by secreting antimicrobial 
factors, such as lysozyme, cryptins (alpha-defensins), and 
phospholipase A2 (96). Defective protein secretion within Paneth 
cells has been linked to Crohn’s ileitis. Meanwhile, for colonic goblet 
cells, which are another type of secretory cell, their impaired 
differentiation and function have been associated with UC (97–99). 
Additionally, double-stranded RNA-activated protein kinase (PKR) 
has been identified as a key transducer of inflammatory signals in 
colonic epithelial cells. PKR promotes intestinal epithelial cell 
homeostasis and survival by activating the eIF2a-mediated UPR, as 
well as the STAT3 and AKT signaling pathways. In the absence of PKR, 
intestinal epithelial cells show impaired survival and proliferation, 
which exacerbates intestinal inflammation (100). In experimental 
colitis models, ERS inhibitors such as sodium phenylbutyrate can 
significantly improve intestinal inflammation, indicating the 
important role of the ER stress PERK axis in IBD (101). Although 
there is a lack of specialized research on the direct impact of TMAO on 
IBD through the PERK pathway, considering TMAO’s ERS inducing 
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ability and the critical role of the PERK pathway in IBD, the 
relationship between the two deserves further in-depth investigation. 

In conclusion, TMAO likely modulates immune responses in 
IBD through the activation of the PERK-CHOP and PERK-eIF2a 
pathways, underscoring the complex interplay of UPR signaling in 
maintaining intestinal homeostasis and immune function. 
5.2 TMAO and NF-kB signaling 

NF-kB is a master  regulator of inflammation, and its activation by 
TMAO has been extensively documented. Seldin et al. demonstrated 
that TMAO activates NF-kB in aortic endothelial cells via mitogen

activated protein kinase (MAPK)/extracellular regulated protein 
kinases (ERK) signaling, promoting leukocyte adhesion and vascular 
inflammation (82). Through pharmacological inhibition, the study 
further confirmed that NF-kB activation was essential for TMAO-

induced expression of inflammatory genes and the subsequent 
endothelial cell adhesion of leukocytes. These findings align with 
recent advancements in understanding NF-kB’s role in IBD, where  it  
orchestrates both innate and adaptive immune responses. 

TMAO’s proinflammatory effects in IBD are mediated through 
NF-kB’s dual role in epithelial barrier dysfunction and immune cell 
activation. In colonic epithelial cells, TMAO induces NF-kB
dependent upregulation of IL-8 and TNF-a, disrupting tight 
junctions and increasing permeability (17). A study revealed that 
TMAO synergizes with gut-derived lipopolysaccharides (LPS) to 
amplify NF-kB activation in dendritic cells, enhancing Th17 
differentiation and IL-17 production, which are critical drivers of 
mucosal damage in UC (102, 103). Furthermore, TMAO-induced 
NF-kB activation suppresses regulatory T cell (Treg) function by 
downregulating forkhead box protein P3 expression, thereby tipping 
the balance toward proinflammatory Th1/Th17 dominance 
(104–106). 

Recent clinical data also implicate dietary TMAO precursors in 
NF-kB activation. Several studies found that high red meat 
consumption (a major TMAO source) increased colonic NF-kB 
activity by 2.3-fold in UC patients compared to plant-based diets 
(107, 108). These findings underscore the importance of dietary 
interventions in modulating TMAO-driven inflammation. In 
addition, studies have found that TMAO increases  NADPH oxidase

activity, induces the production of ROS, and an increase in ROS can 
promote the translocation of NF-kB from the cytoplasm to the nucleus 
(68). Moreover, TMAO can also affect the phosphorylation cascade. A 
molecular medicine report suggests that TMAO promotes p65 NF-kB 
subunit phosphorylation when stimulating macrophages, while 
hydrogen sulfide inhibits this process by upregulating silent 
information regulator 1 (SIRT1) (a negative regulator of NF-kB) 
(109). In other words, TMAO may indirectly enhance NF-kB 
signaling by inhibiting SIRT1. Research has found that NF-kB 
activation can lead to the amplification of intestinal inflammation 
and exacerbate mucosal barrier damage. NF-kB not only induces 
canonical pro-inflammatory cytokines (TNF-a, IL-6,  pro-IL-1b) but
simultaneously up-regulates facilitative glucose transporter, 
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metabolically locking macrophages, DCs and activated T cells into a 
glycolytic, NO-rich phenotype that fuels chronic mucosal 
inflammation (11, 110–112). Therefore, TMAO induced activation of 
the NF-kB signaling pathway may be an important cause of 
IBD pathogenesis. 
5.3 TMAO and the inflammasome NLRP3 

The activation of the NLRP3 inflammasome is a critical 
mediator of TMAO-induced pro-inflammatory effects. In colonic 
epithelial cells, TMAO has been shown to trigger inflammasome 
activation and ROS production in a dose- and time-dependent 
manner. Notably, NLRP3 activation is strongly associated with IBD 
(113). TMAO activates the NLRP3 inflammasome through three 
distinct signaling mechanisms: mitochondrial dysfunction induced 
by Rac1-NOX2-dependent ROS production, which causes cytosolic 
release of oxidized mtDNA; uptake of nanoscale TMAO aggregates 
that triggers lysosomal rupture and subsequent cathepsin B release; 
and ROS-mediated dissociation of Thioredoxin-interacting protein 
(TXNIP) from thioredoxin, thereby enabling TXNIP-NLRP3 
interaction. These signals collectively trigger assembly of the 
NLRP3-ASC-caspase-1 complex, resulting in mature IL-1b/IL-18 
secretion and gasdermin-D-mediated pyroptosis (101). This 
pyroptotic cascade further suppresses oxidative phosphorylation 
and sustains glycolytic metabolism (114). Furthermore, TMAO has 
been found to enhance macrophage infiltration, promote M1 
polarization, and stimulate Th1 and Th17 differentiation in 
allogeneic graft-versus-host disease (77). Interestingly, inhibition 
of NLRP3 inflammasome activation reversed the M1 polarization of 
TMAO-stimulated macrophages, suggesting that NLRP3 plays a 
crucial role as a proteolytic activator in TMAO-induced 
macrophage responses. 

Yue et al. (17) treated fetal human colon cells with TMAO for 3– 
24h to study colonic inflammation. Autophagy markers (ATG16L1) 
and NLRP3 inflammasome components were analyzed by Western 
blotting, qRT-PCR, and immunofluorescence. Adenoviral vectors 
were used for ATG16L1 overexpression, and siRNA for NLRP3 
knockdown. Results showed TMAO inhibited autophagy and 
activated NLRP3 inflammasome, which were reversed by ATG16L1 
or NLRP3 knockdown, indicating a mechanistic link in IBD 
pathogenesis. The NLRP3 inflammasome is significantly 
upregulated in the colonic mucosa of patients with UC, and its 
activity correlates with disease progression (115). Genetic studies on 
CD have also linked mutations in NLRP3-associated single 
nucleotide polymorphisms to increased susceptibility to CD (116). 
Clinically, NLRP3 polymorphisms are linked to increased CD 
susceptibility, and its activity correlates with UC severity (117). 
Emerging therapies, such as NLRP3 inhibitors and nanoligomers, 
show promise in attenuating TMAO-driven inflammation (118). 
These findings position NLRP3 as a therapeutic nexus for TMAO-

mediated IBD. 
The interplay between TMAO, PERK, NF-kB, and NLRP3 

underscores a multifactorial pathogenesis in IBD. Contrary to 
predictions based on experimental models, clinical studies have 
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consistently reported reduced plasma TMAO levels in patients with 
IBD. In a pivotal study, Wilson et al. demonstrated that individuals 
with IBD had significantly lower plasma TMAO concentrations 
compared to healthy controls Notably, patients with UC exhibited 
particularly low levels, markedly less than those observed in 
individuals with inactive disease (119, 120). These findings have 
been independently replicated in subsequent research, including a 
recent study by Laryushina et al., which confirmed that TMAO 
levels in UC patients vary according to disease activity (121, 122). 
Furthermore, a Mendelian randomization analysis by Banno et al. 
supported an inverse relationship between plasma TMAO levels 
and IBD risk, suggesting that TMAO may exert a protective, rather 
than pathogenic, role in the context of IBD (123). The reduced 
TMAO levels observed in IBD likely reflect gut microbiota dysbiosis 
and altered host metabolism. Disruption of TMA-producing 
bacteria, reduced availability of dietary precursors, impaired 
hepatic FMO3 activity,  and increased renal clearance under 
inflammatory conditions all contribute to diminished TMAO 
synthesis (124–128). These findings suggest TMAO is more 
indicative of microbial disruption than a driver of IBD 
pathogenesis, highlighting limitations in translating experimental 
models to clinical disease (129). In conclusion, TMAO orchestrates 
immune dysregulation in IBD through PERK-mediated ERS, NF
kB activation, and NLRP3 inflammasome signaling. Future research 
should prioritize clinical trials to validate these mechanisms and 
explore personalized therapies targeting the gut-microbiota-

TMAO axis. 
6 TMAO and other diseases 

Beyond IBD, TMAO’s role in immunometabolism and its 
involvement in diverse chronic diseases is increasingly 
recognized (Figure 3). 
6.1 TMAO and cardiovascular disease 

Elevated circulating TMAO is strongly linked to cardiovascular 
and cerebrovascular diseases. Observational studies in Caucasian 
populations associate doubled TMAO levels with higher mortality, 
sudden cardiac death, first cardiovascular events, and death risk 
(130). Prospective cohort studies have shown that long-term 
elevated plasma TMAO levels significantly increase the risk of 
cardiovascular disease. The group of healthy women with the 
highest TMAO increase within 10 years had a 58% increased risk 
of coronary heart disease (RR 1.58), while those with sustained high 
TMAO had the highest risk (RR 1.79) (131); The risk of first onset 
atherosclerotic cardiovascular disease (ASCVD) in the highest 
baseline TMAO group of the elderly in the community increased 
by 21% (HR 1.21), and the risk of recurrence in ASCVD patients 
increased by 25% (HR 1.25), of which the association was stronger 
in patients with renal insufficiency (132). Mechanistically, TMAO 
contributes to endothelial dysfunction, an early atherosclerosis 
feature characterized by increased ROS and pro-inflammatory 
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factors (133). It promotes inflammation via NF-kB pathway

activation (82) and by activating the NLRP3 inflammasome in 
endothelial cells and arterial walls in mice, involving mitochondrial 
ROS, TXNIP, and lysosomal instability (101, 134). 

TMAO accelerates atherosclerosis through multiple mechanisms. 
In ApoE-/- mice on a high-fat diet (HFD), TMAO supplementation 
significantly increased vascular plaque progression, macrophage 
recruitment, and CD36/pro-inflammatory cytokine expression. In 
vitro, inhibiting MAPK/c-Jun n-terminal kinase (JNK) reduced 
TMAO-induced CD36 expression and foam cell formation (135). 
Frontiers in Immunology 09
Furthermore, TMAO increased aortic plaque area and altered bile 
acid composition in male ApoE(-/-) mice, accelerating aortic lesions 
by modifying bile acid profiles, activating FXR and small heterodimer 
partner, and inhibiting bile acid synthesis (136). 
6.2 TMAO and chronic kidney disease 

As a small organic amine oxide, ~95% of ingested TMAO is 
renally excreted (50, 76). TMAO serves as a prognostic marker for 
 frontiersin.or
FIGURE 3 

Immunomodulatory effects of TMAO in a variety of chronic diseases. TMAO is involved in cardiovascular disease, MAFLD, chronic kidney disease, 
type 2 diabetes mellitus, and nervous system diseases by triggering inflammatory responses and regulating the immune system through various 
mechanisms. The upper arrow indicates increased, the lower arrow indicates decreased, and the horizontal arrow indicates activated. TMAO, 
Trimethylamine oxide; NLRP3, nucleotide-binding oligomerization domain-like receptor protein 3; TGF-b, transforming growth factor-b; Smad3, 
Mothers against decapentaplegic homolog 3; NLRP3, nucleotide-binding oligomerization domain-like receptor protein 3; (IL)-1b, 18, (Interleukins) 
-1b, 18; ERS, endoplasmic reticulum stress; FoxO1, Forkhead box protein O1; TLR4, Toll-like receptor 4; Cox-2, Cyclooxygenase-2; GFR, glomerular 
filtration rate; MAFLD, metabolic associated fatty liver disease. 
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survival in CKD patients, correlating with glomerular filtration rate, 
C-reactive protein, and cystatin C (137). In a 5-year study of 521 
stable CKD patients, plasma TMAO levels increased over time, and 
long-term dietary TMAO intake directly associated with renal 
fibrosis and dysfunction progression (137). Animal models 
confirm TMAO’s pathogenic role: reducing plasma TMAO slows 
CKD progression (138), while TMAO accelerates diabetic 
nephropathy by activating NLRP3 inflammasome, promoting IL
1b/IL-18 release, and worsening renal dysfunction/fibrosis (139). 
6.3 TMAO and neurological disorders 

Detection of TMAO in human cerebrospinal fluid suggests a 
link to neurodegenerative diseases (140). TMAO is identified as a 
metabolite significantly associated with Alzheimer’s disease (AD) 
aspects and shares genetic pathways with AD biomarkers (141). 
High TMAO levels correlate with early neurological deterioration in 
acute ischemic stroke patients, potentially mediated by 
inflammatory markers like IL-6 and C-reactive protein (142). 

Elevated TMAO downregulates hippocampal antioxidant enzyme 
MsrA, contributing to neuroinflammation and cognitive decline post-
surgery in aged rats (143). High circulating TMAO correlates with 
increased brain proinflammatory cytokines and astrocyte activation 
markers (144). TMAO-mediated neurodegeneration involves 
activation of peripheral/central inflammatory pathways (NF-kB, 
NOD-, LRR-, NLRP3 inflammasomes, MAPK/JNK) (145). TMAO 
levels rise with age-related cognitive dysfunction, inducing 
mitochondrial dysfunction, oxidative stress, neuronal senescence, and 
synaptic damage. 
 

6.4 TMAO and type 2 diabetes 

Clinical studies consistently link higher serum TMAO to T2DM 
compared to prediabetes or controls (146). Acarbose treatment 
significantly reduces TMAO levels and improves insulin resistance 
in T2DM patients (147). T2DM and T2DM-CKD patients exhibit 
increased gut microbiota TMA-producing bacteria and significantly 
higher serum TMAO, positively correlating with zonulin, LPS, 
inflammation, and endothelial dysfunction biomarkers (148). A 
meta-analysis (12 studies, n=15,314) found high circulating TMAO 
associated with increased diabetes risk (OR=1.89); each 5 µmol/L 
plasma TMAO increase raised DM incidence OR by 54% 
(OR=1.54), showing a positive dose-dependent relationship (149). 

Animal studies confirm TMAO’s impact:  serum TMAO

increase correlated with impaired glucose tolerance in monkeys 
on HFD (150). TMAO-dependent N-nitros compounds may drive 
insulin resistance and diabetes. TMAO supplementation reduces 
bile acid pools, inducing inflammation and T2DM (149). TMAO 
induces ERS via PERK/FoxO1 activation, decreasing insulin 
receptor expression and causing insulin resistance (81). Insulin 
normally suppresses liver FMO3 expression via phosphoinositide 3
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kinase; insulin resistance abrogates this suppression, increasing 
FMO3 expression and plasma TMAO, positioning TMAO as a 
liver insulin resistance marker (151). 
6.5 TMAO and metabolic associated fatty 
liver disease 

MAFLD, closely linked to metabolic syndrome, T2DM, and 
obesity, associates with elevated TMAO. TMAO levels are 
significantly higher in MAFLD patients than controls and 
correlate positively with disease severity (152). MAFLD patients 
with obesity show downregulated FXR expression and elevated 
circulating TMAO and deoxycholic acid (153). 

Adipose tissue dysfunction (increased cytokines/chemokines, 
immune cell infiltration) links to insulin resistance. In mice fed 
HFD, TMAO supplementation exacerbated glucose intolerance, 
induced adipose tissue inflammation, and promoted insulin 
resistance (154). TMAO reduces bile acid pools, inhibiting FXR 
activity, disrupting bile acid-FXR signaling, and upregulating 
pathways worsening hepatic steatosis, as confirmed in HFD-fed 
C57BL/6J mice and human samples (154). 
7 Alleviating TMAO to treat IBD 

An increasing amount of epidemiological evidence suggests that 
many underlying factors, including high altitude, hypoxia, 
urbanization, pollution, physical activity, nutrition, and medication, 
play important roles in the development and progression of IBD 
(155). Among them, nutrition, as a key controllable factor, has 
become the main focus of IBD research. This high level of 
attention stems from its multifaceted potential impact, which not 
only affects disease risk, but also affects the pathogenesis, course of 
disease, management strategies, as well as the nutritional and health 
status of patients (156–158). Diet is recognized as a crucial factor 
influencing both the onset and progression of IBD, with the ability to 
directly affect inflammatory processes and immune function, either 
through direct mechanisms or by modulating the gut microbiota. 
Consequently, dietary modification emerges as a potentially simple 
and relatively low-risk strategy to mitigate TMAO-associated IBD. 

Fish and seafood, which are typically high in TMAO, have been 
shown to significantly elevate circulating TMAO levels within 15 
minutes of consumption, indicating that dietary TMAO is absorbed 
directly without the need for microbial conversion (159). Based on 
this observation, one might infer that increased fish consumption 
could heighten the risk of IBD. However, contrary to this notion, a 
growing body of evidence supports the health benefits of fish and 
seafood consumption, indicating that they may not increase, but 
rather reduce, the risk of IBD. A systematic review and meta

analysis of observational studies (160) demonstrated an inverse 
relationship between fish intake and the risk of CD. Moreover, 
several bioactive compounds found in fish, such as n-3 
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polyunsaturated fatty acids, taurine, and other active substances, 
may contribute to the health benefits of seafood. A prospective, 
population-based cohort study found that consumption of oily fish 
and fish oil supplements (e.g., EPA and DHA) may serve as 
protective factors against IBD (161). Additionally, in experimental 
mouse models of IBD, dietary taurine was shown to protect 
intestinal epithelial cells, reduce mucosal inflammatory cytokine 
production, and attenuate colitis (162). Thus, the overall health 
effects of seafood consumption should be considered in light of 
nutrient-nutrient interactions. Further research is warranted to gain 
a better understanding the underlying mechanisms that drive these 
effects and to clarify the complex relationship between diet, TMAO, 
and IBD risk (163). 

In addition to directly obtaining TMAO from fish and seafood, it 
is more commonly produced by the gut microbiota through the 
conversion of foods rich in choline, L-carnitine, and ergothioneine 
(e.g., red meat, eggs, and mushrooms) (164). This raises the question 
of whether dietary modification could induce changes in the 
composition of the microbiome, potentially increasing the 
abundance of beneficial bacteria and reducing TMAO production. 
Alternatively, could dietary interventions directly disrupt the TMAO 
biosynthesis pathway? Long-term adherence to a vegan diet has been 
associated with a reduced capacity for L-carnitine, a precursor of 
TMAO, to be converted into TMAO (76). Prebiotics, defined as 
“selectively fermented components that lead to specific changes in the 
composition and/or activity of the gastrointestinal microbiota, 
thereby conferring health benefits to the host” (165, 166), offer a 
promising strategy. Supplementation with soluble dietary fiber has 
been shown to increase the abundance of beneficial bacteria while 
significantly reducing TMA and TMAO metabolism in red meat-fed 
mice (by 40.6% and 62.6%, respectively). Similarly, long-term 
adherence to a fiber-rich diet has been linked to reduced TMAO 
concentrations in obese children, alongside changes in the gut 
microbiota and improvements in metabolic health (167). Dietary 
supplementation with resveratrol, a bioactive compound found in 
wine and grape juice, has also been shown to increase Lactobacillus 
abundance, reduce TMAO levels, and attenuate the atherosclerotic 
phenotype in ApoE (-/-) mice fed a high-choline diet (168). Likewise, 
flavonoids from oolong tea extract and citrus peel promoted 
Lactobacillus growth, reducing the carnitine-induced increase in 
plasma TMAO levels in mice (169). However, further mechanistic 
studies and human intervention trials are needed to better elucidate 
the relationship between diet, microbiota-dependent TMAO 
production, and its impact on human diseases. 

In addition to reducing TMAO intake and synthesis, an anti-
inflammatory diet plays an important role in managing IBD. The 
Mediterranean diet (MD), which emphasizes plant-based foods, 
olive oil as the primary fat source, limited dairy intake, moderate 
daily consumption of fish, poultry, and wine, and small amounts of 
red meat, has been shown to reduce inflammation effectively (170). 
Recent reviews and meta-analyses have reported that high MD 
compliance is associated with a significant reduction in chronic 
disease risk (171). Mechanistically, MD has strong anti-
inflammatory effects and enhances the abundance of beneficial 
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gut microbiota (172–174). For example, observational data from 
healthy adults indicate that the higher the MD adhesion rate, the 
more SCFAs in feces, and the lower the systemic inflammatory 
markers (175). Moreover, epidemiological research has 
demonstrated an inverse association between habitual adherence 
to the MD and urinary (176) and plasma (177) TMAO levels in 
southern European populations. Thus, by reducing intake of 
TMAO precursors and feeding fiber-metabolizing microbes, the 
MD tends to shift the gut metabolic profile away from TMAO 
production. Weber et al. investigated various dietary patterns, 
including a diet low in carbohydrates, with restricted FODMAPs, 
no gluten, and emphasizing anti-inflammatory properties, and MD, 
and found that the MD was particularly beneficial for IBD symptom 
enhancement and mucosal healing (178). Epidemiological and 
clinical data indicate that MD adherence is beneficial in IBD: 
higher MD scores are linked to lower IBD incidence (especially 
CD) and to better disease outcomes, including reduced 
inflammatory markers, improved clinical scores and even lower 
mortality. These benefits are attributed to MD’s anti-inflammatory 
and microbiome-modulating effects. For example, mechanistic 
studies show MD consumption enriches beneficial gut bacteria 
(e.g. Faecalibacterium prausnitzii, Roseburia) and depletes 
pathobionts (e.g. Ruminococcus gnavus), thereby strengthening 
the gut barrier and immune tolerance (179). Additionally, foods 
such as soy products, vegetables, fruits, and cereals, along with their 
bioactive components, have been found to play a significant anti-
inflammatory role in the progression of IBD (180–192) (Table 1). 
This compilation of evidence aims to assist IBD patients in selecting 
foods that may be beneficial during the course of their disease. 
8 Conclusion 

This review summarizes the current evidence on the multifaceted 
role of TMAO in regulating immunometabolism during IBD. Our 
analysis reveals that TMAO, generated from dietary precursors via gut 
microbial metabolism, exacerbates IBD pathogenesis through three 
interconnected mechanistic pathways. Firstly, there is the ERS pathway 
mediated by PERK, where TMAO directly binds to and activates 
PERK, triggering the PERK-eIF2a-ATF4-CHOP axis. This cascade can 
impair Paneth cell function, disrupt intestinal epithelial integrity, and 
promote NF-kB driven inflammation by inhibiting PPARg. The  second  
is the NF-kB inflammatory signaling pathway. TMAO synergizes with 
LPS to enhance the activation of NF-kB in DCs  and macrophages,

increase the production of pro-inflammatory cytokines, and impair the 
function of Tregs. This disrupts the homeostasis of the mucosal barrier 
and promotes Th17 polarization. The third is the activation of NLRP3 
inflammasome. By inhibiting autophagy and inducing mitochondrial 
ROS, TMAO activates NLRP3 inflammasome, leading to the release 
and pyroptosis of IL-1b/IL-18 dependent on caspase-1 in colon 
epithelium, which is a hallmark of IBD severity. 

It is crucial that our findings address the apparent paradox in 
clinical observations. Although TMAO from fish sources can 
rapidly increase circulating levels, seafood consumption may 
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prevent IBD due to anti-inflammatory nutrients such as n-3 PUFA 
and taurine, highlighting the context dependent effects of dietary 
sources. The reduction of TMAO in active IBD patients may reflect 
the depletion of TMA producing taxa caused by ecological 
imbalance, rather than ruling out the pathogenic role of TMAO. 
Targeting the gut microbiota- TMAO axis has positive therapeutic 
implications. Dietary interventions reduce TMAO by reshaping gut 
microbiota composition and inhibiting microbial CutC/CytA 
enzymes. Pharmacological strategies that block PERK, NF-kB, or 
NLRP3 have reduced TMAO induced inflammation in preclinical 
models, indicating their translatable potential. 

However, current evidence largely relies on animal models. In 
future research, more human cohort studies can be conducted to 
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correlate TMAO levels with IBD phenotypes through multi-omics 
analysis. Meanwhile, the bidirectional relationship between TMAO and 
bile acid metabolism also deserves further exploration, as they jointly 
regulate FXR signaling. In addition, personalized nutrition methods 
should consider individual differences in microbial TMAO production 
capacity and host genetic susceptibility. 

In summary, TMAO is both a pathogenic effector and a 
therapeutic target in IBD. Regulating its production or signaling 
pathways provides a promising strategy for restoring immune 
metabolic balance and reducing intestinal inflammation. Future work 
should prioritize clinical validation of TMAO-lowering interventions 
and elucidate tissue-specific mechanisms underlying its dual roles in 
inflammation resolution and exacerbation. 
TABLE 1 The role of food and its bioactive components in IBD. 

Foods Bioactives Effects Mechanisms References 

Soy 
Soyasaponins, 
Phytosterols 

Antioxidant,anti-inflammatory and 
immunomodulatory activity 

Inhibited TNF-a,NF-kB,iNOS and COX-2 (180) 

Yoghurt Lactic acid bacteria 
Anti-inflammatory and 
immunomodulatory activity 

Increased in the number of the IgA+ cells, a 
decrease in CD8+ population 

(181) 

Fruit Phenolic acid 

Improved intestinal mucosal barrier function, 
inhibited excessive activation of the immune 
response, and regulated the balance of the 
intestinal microbiota 

Suppressed p65-NF-kB,NLRP3 and IL-6/p
STAT3 activation 

(182) 

Cruciferous Vegetables Glucosinolates 
Gut microbiota modulation, anti-
inflammatory activity and maintained the 
intestinal barrier. 

Regulation of gut microbiota composition, 
downregulated inflammatory mediators and 
inhibited NF-kB 

(183) 

Mushrooms HECP,CMP33,LEP 

Regulation of inflammatory status, gut 
microbiota, and immune system and 
protection of the intestinal epithelial 
barrier function 

Downregulated TNF-a,IL-1b, IL-6,iNOS, 
COX-2,NO, PGE2,NF-kB,p-p65, NLRP3, 
Caspase-1 

(184) 

Purple sweet potato 
Purple sweet 
potato anthocyanins 

Maintenance of intestinal homeostasis and 
protection against bacterial 
intestinal inflammation 

Modulation of gut microbiota (185) 

Quinoa QPro,QPep 
Alleviated colitis symptoms,reduced colonic 
shortening, inflammatory factor release, and 
intestinal barrier injury 

Suppressed TLR4 levels and inhibited IkB-a 
and NF-kB phosphorylation 

(186) 

Olive Oil HT Anti-inflammatory 
Reduced pro-inflammatory cytokines and 
chemokines like IL-6,TNF-a and CXCL10/ 
IP-10,inhibited the NF-kB pathway 

(187) 

Pistachio g-tocopherol 
Anti-inflammatory,protection of gut barrier 
integrity and altered gut 
microbial community 

Mitigated elevation of IL-6, inhibited colitis-
induced loss of the tight junction 
protein occluding 

(188) 

Cocoa and Chocolate Polyphenols Antioxidant, anti-inflammatory effects 
Activated TLR4/NF-kB/signal transducer and 
activator of transcription (STAT),modulated 
intestinal microbiota 

(189) 

Coffee Caffeine 
Reduced Bacterial translocation into other 
organs and pro-inflammatory 
cytokines production 

Down-regulation of CHI3L1 expression and 
its associated bacterial interaction effect 

(190) 

Green Tea Green tea polyphenols Antioxidant, anti-inflammatory 
Downregulation of NF-kB, TNF-a, IL-1b and 
other cytokines 

(191) 

Ginger Gingerols Anti-inflammatory, anti-oxidative 
Inhibited NF-kB,STATs, NLRPs,TLRs, 
MAPKs,mTOR pathways and various pro-
inflammatory cytokines 

(192) 
HECP, polysaccharide of H. erinaceus; CMP33, carboxymethyl polysaccharide; LEP, Lachnum polysaccharide; QPro, quinoa protein; QPep, quinoa peptides; HT, hydroxytyrosol. 
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