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Sterile inflammation with ensuing immune-mediated kidney damage has been

implicated in pathophysiology of acute and chronic kidney diseases. Disinhibition

of interleukin 1 (IL-1) signaling triggers local inflammation of renal tissue and may

initiate or aggravate systemic inflammatory response. The IL-1a isoform is

released by many cell types during cell necrosis to attract immune cells,

whereas the IL-1b isoform is secreted by immune cells to amplify local

inflammatory responses. The unfolding of IL-1 signaling is restricted by an

endogenous IL-1 receptor antagonist and a decoy IL-1 receptor variant.

Pharmacological IL-1 inhibitors mimicking the natural IL-1 suppressors are

instrumental in management of a broad spectrum of (auto)inflammatory

disorders. Progression of several kidney diseases toward renal fibrosis has been

associated with a disbalance between the pro-inflammatory and anti-

inflammatory IL-1 signaling components. While IL-1 inhibitors have proven

success in prevention and treatment of renal complications accompanying the

autoimmune disorders, broader opportunities in kidney diseases have been

expected. The present review work analyzes potential niches for IL-1 signaling

in the field of nephrology.
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Interleukin 1 family

Members of the interleukin 1 (IL-1) family coordinate the innate and adaptive

immunity thus enabling the proper functioning of the immune system (1). The IL-1

family comprises 11 cytokines endowed with agonistic (IL-1a, IL-1b, IL-18, IL-33, IL-36a,

IL-36b, and IL-36g), antagonistic (IL-1Ra, IL-36Ra, and IL-38), or anti-inflammatory

activities (IL-37) mediated by 10 specific receptors (2, 3). The receptors possess the Toll-IL-

1 resistance (TIR) domain enabling their dimerization upon ligand binding, followed by

signal transduction via recruitment of the myeloid differentiation primary response 88

adaptor protein (MyD88) connecting the downstream kinases to the dimerized receptors.
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The ensuing activation of major kinase and transcription signaling

pathways including the c-Jun N-terminal kinase (JNK), mitogen-

associated protein kinases (MAPKs), extracellular signal-regulated

kinases (ERKs), nuclear factor-kB (NF-kB), activator protein-1

(AP-1), and interferon-regulatory factors (IRF) elicits differential

cell-type specific effects. While all IL-1 members signal via MyD88,

effects of distinct cytokines are largely determined by cell-type

specific receptor repertoires. A fine-tuning of IL-1 family cytokine

signaling by differentially expressed endogenous suppressors is

another major player in response specificity (2). A complex

network of IL-1 cytokines with agonistic, antagonistic, or anti-

inflammatory activities, their signal-transducing or decoy receptors,

as well as intracellular negative regulators fulfils differential tasks in

coordinating the innate and adaptive immunity. Thus, functional

interactions of IL-1 isoforms (IL-1a or IL-1b) with their cognate

type 1 receptor (IL-1R1) are modulated by endogenous competitive

inhibitors encompassing the IL-1 receptor antagonist (IL-1Ra) and

the decoy type 2 receptor existing in the membrane-bound and
Frontiers in Immunology 02
soluble variants (mIL-1R2 and sIL-1R2), as specified below and

in Figure 1.
IL-1a vs. IL-1b

IL-1 was identified by early studies on leukocyte-derived

pyrogens as a factor comprising two molecules, which was

confirmed by later cDNA cloning of the IL-1a and IL-1b
isoforms (4). Although both IL-1 isoforms share the same

receptor for signal transduction, differences in their expression

patters, activity regulation, and cellular sites of action enable

largely non-redundant functional spectra for IL-1a vs. IL-1b.
Both IL-1a and IL-1b are synthesized as intracellular precursors

but the IL-1a precursor is biologically active, whereas the IL-1b
precursor requires cleavage by caspase-1 for activation (2, 5, 6).

The IL-1a precursor exhibits broad and constitutive expression

in epithelial, endothelial, and glial cell types with enriched presence
FIGURE 1

Schematic drawing of interleukin 1 (IL-1) signaling. The IL-1a isoform precursor (pro-IL-1a) is produced in epithelial, endothelial, or glial cells and
released upon necrotic cell death to induce the pro-inflammatory response in neighboring immune cells via binding to the IL-1 receptor type 1
(IL-1R1) and downstream signal transduction through the myeloid differentiation primary response 88 adaptor protein (MyD88). The pro-IL-1a
can be further presented at the cell surface to the neighboring IL-1R1-expressing cell (juxtacrine signaling). Finally, activation of calpains
(Ca2+-dependent proteases) during necrotic cell death may lead to proteolytic cleavage and release of mature IL-1a with higher affinity to IL-1R1.
In contrast to the active pro-IL-1a, the precursor of IL-1b isoform (pro-IL-1b) produced by immune cells is inactive. The proteolytic cleavage of
pro-IL-1b in inflammasomes by caspase-1 converts it to the active IL-1b, which induces and amplifies the inflammatory response upon release and
binding to IL-1R1. The pro-inflammatory action of IL-1a and IL-1b is balanced by endogenous inhibitors encompassing the IL-1 receptor antagonist
(IL-1Ra) and the decoy type 2 IL-1 receptor existing in the membrane bound (mIL-1R2) and soluble forms (sIL-1R2).
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in tissues constituting the barrier function such as keratinocytes in

the skin, epithelial lining of the gastrointestinal tract, type 2

epithelial cells in the lung, urinary bladder epithelium, or

astrocytes in the brain (5). Due to constitutive intracellular

abundance of IL-1a in the active precursor form its release upon

necrotic cell death triggers sterile tissue inflammation via IL-1R1

activation in adjacent cells. Thus, IL-1a functions as an alarmin, i.e.

a component of the Damage-Associated Molecular Patterns

(DAMPs) mediating recognition of cell necrosis and tissue injury

by the immune system (5). Additional induction of IL-1a
expression and release by injured tissue cells and resident myeloid

cells in response to inflammatory stimuli further promotes

infiltration of immune cells from systemic circulation. Apart from

the IL-1a release, the cytokine can act as an integral membrane

protein expressed on the cell surface of macrophages and capable of

IL-1R1 activation on neighboring cells to induce focal inflammatory

response (7). In contrast to the classical paracrine signaling, the

membrane-bound IL-1a signal transduction mode is referred to as

juxtacrine signaling (5, 8). The induction of pro-inflammatory IL-

1a effects is tightly controlled by intrinsic mechanisms. Intracellular

binding of the IL-1a precursor with the decoy IL-1R2 receptor

reduces the active cytokine pool thus silencing IL-1a in case of cell

necrosis (9). Similarly, nuclear translocation and binding of IL-1a
with DNA during apoptosis prevents its release in the active form

(10). In contrast, proteolytic processing of the IL-1a precursor (pro-

IL-1a) by calpain converts the cytokine to a more potent IL-1R1

ligand, i.e. biological activity of the mature IL-1a is substantially

higher compared to the pro-IL-1a (11). The intracellular buffering

or proteolytic processing of pro-IL-1a adjust its pro-inflammatory

impact on the environment in different modalities of regulated cell

death (12).

Unlike IL-1a with its broad constitutive expression pattern and

active precursor form, IL-1b is an inducible cytokine of myeloid

cells produced in response to inflammatory stimuli as an inactive

precursor with ensuing proteolytic processing by caspase 1 and/or

caspase 11 to obtain the mature IL-1b with high affinity to its

cognate receptor IL-1R1 (11, 13). The proteolytic cleavage of pro-

IL-1b takes place in inflammasomes constituting cytosolic multi-

molecular signaling platforms containing a nucleotide-binding

oligomerization domain-like receptor (NLR), the adapter

apoptosis-associated speck-like protein with a caspase recruitment

domain (ASC), and the effector protease caspase-1 (14). Among

different inflammasome types defined by distinct NLR proteins, the

inflammasomes involving the NOD-, leucine-rich repeat (LRR)-

and pyrin domain (PYD)-containing protein 3 (NLRP3, also known

as NALP3) appear to play the most relevant role in the IL-1b
maturation (14). The formation of NLRP3 inflammasomes occurs

in two steps known as priming (Signal 1) and protein complex

assembly (Signal 2). The priming process represents the

transcriptional and translational response to pathogen-associated

molecular patterns (PAMPs) or DAMPs mediated by the Toll-like

receptor 4 (TLR4) activation or tumor necrosis factor (TNF)

signaling, subsequently driving the NF-kB-dependent synthesis of
NLRP3, pro-IL-1b, and pro-IL-18. The ensuing inflammasome

assembly and activation involves complex cellular events induced
Frontiers in Immunology 03
by various PAMPs or DAMPs such as dysfunction and damage of

cell organelles, oxygen species (ROS) generation, or changes in

intracellular ion concentrations (14). In fact, formation and

activation of NLRP3 inflammasomes is driven by microbial or

sterile inflammatory stimuli and results in maturation and release

of active IL-1b (15). The ensuing activation of IL-1R1 on

neighboring cells triggers release of further potent inflammatory

mediators including IL-6 thus amplifying the local pro-

inflammatory reactions (16). The IL-1b:IL-1R1 signaling occurs

via recruitment of the interleukin-1 receptor accessory protein (IL-

1RAcP, also referred to as IL-R3) and activation of the downstream

interleukin-1 receptor-associated kinase (IRAK) and stress-

activated protein kinases (SAP) (17). The induction of IL-6 in

response to IL-1b is mediated by the phosphatidylinositol 3-kinase

(PI3K) and the protein kinase B (historically termed as Akt (18))

upstream of NFkB (19). Taken together, IL-1b is an inducible

cytokine derived from myeloid cells such as monocytes, dendritic

cells (DCs), tissue macrophages or granulocytes and exerting potent

pro-inflammatory effects via IL-1R1 with ensuing induction of IL-6

and other pro-inflammatory factors.
Interleukin-1 receptor antagonist

IL-1Ra binds to IL-1 receptors but does not elicit intracellular

signaling (20). Alternative splicing of the IL1RN gene encoding for

IL-1Ra enables its soluble (sIL-1Ra) and intracellular variants (icIL-

1Ra) (20). Moreover, three intracellular isoforms (icIL-1Ra1, 2, and

3) have been identified (21). The soluble form can be secreted by

monocytes, macrophages, neutrophils, hepatocytes, and microglial

cells, whereas the intracellular variants are mainly expressed in

keratinocytes and other epithelial cells, monocytes, macrophages,

and fibroblasts (21). Functionally, sIL-1Ra exerts potent anti-

inflammatory effects as a competitive blocker of IL-1b or IL-1a.
The biological roles of icIL-1Ra variants remain unclear, although

their release by keratinocytes has been suggested to exert anti-

inflammatory effects on the microenvironment (21, 22).
IL-1R1 vs. IL-1R2

Two IL-1 receptors, IL-1R1 and IL-1R2, originating from

distinct genes have been identified (23). IL-1R1 possesses the

cytoplasmic TIR domain and is capable of initiating the cellular

signaling in response to IL-1b, IL-1a precursor, or mature IL-1a via

formation of ternary complex with IL-R3, TIR-mediated binding of

MyD88, and MyD88-mediated recruitment of IRAK4. The resulting

IRAK4 autophosphorylation and trans-phosphorylation of IRAK1

and IRAK2 promote several transcription factors including NF-kB,
interferon regulatory factor 5 (IRF5), activation protein 1 (AP-1),

and cAMP response element binding protein (CREB) to induce

expression of the key mediators of inflammation such as IL-6, IL-8,

monocyte chemoattractant protein 1 (MCP-1), and cyclooxygenase

2 (COX-2) (24). Unlike IL-1R1, IL-1R2 lacks the TIR domain and

signal-transducing properties despite binding of IL-1a/b and IL-3.
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Thus, IL-1R2 functions as a decoy factor limiting the pro-

inflammatory effects of IL-1b or IL-1a in a competitive manner.

Also in contrast to the broad IL-1R1 distribution in a wide variety of

cell types, constitutive expression of IL-1R2 is rather restricted to

monocytes, neutrophils, and B cells preserving these immune cells

from exaggerated pro-inflammatory responses (25). Inducible IL-

1R2 expression has been further reported in keratinocytes,

endothelial cells, and T cells. In fact, several lines of evidence

suggest that IL-1R1 signaling is crucial for priming of the pro-

inflammatory T helper 17 cells (Th17), whereas induction of IL-1R2

in Th17 and regulatory T cells (Tregs) dampens their responses to

IL-1 (26–29). Therefore, modulation of IL-1R2 vs. IL-1R1 surface

abundance contributes to the fine tuning of immune responses.

Moreover, IL-1R2 exists in a soluble form (sIL-1R2) generated

either by alternative splicing or proteolytic cleavage (30, 31).

Notably, the binding affinity of IL-1R2 to IL-1b is substantially

higher than to IL-1a or IL-1Ra, whereas the dissociation rate for IL-

1b is slower compared to IL-1a or IL-1Ra (32, 33). Relative high

normal plasma levels of sIL-1R2 ranging from 5 to 10 ng/ml imply a

sufficient buffering capacity for IL-1b in health (24). The ability of

sIL-1R2 to trap secreted IL-1b or IL-1amay be further enhanced by

the soluble IL-1R3 variant (sIL-1R3) derived from alternative

splicing. Binding assays suggest that the interaction between sIL-

1R2 and sIL-1R3 markedly increases the receptor affinity to IL-1a
and IL-1b but not to IL-1Ra (34).
Renal expression of IL-1 signaling networks
in health and disease

The significance of IL-1 signaling in kidney disease has been

increasingly recognized but the data on renal expression and

distribution of its components remain scarce and partially

controversial. IL-1a is typically enriched in epithelia constituting the

barrier function. Consistent with this, relative high IL-1a levels were

detected in the lower urinary tract and their alterations have been

discussed in the context of urinary bladder cancer and urinary tract

infections (35, 36). Although constitutive IL-1a expression has been

postulated for a broad spectrum of epithelial cells including the renal

tubular cells, no convincing localization studies are available for the

kidney to our knowledge (15). However, the IL-1a expression may be

low in healthy kidney tissue but induced in disease as has been shown
Frontiers in Immunology 04
in kidney biopsies from patients with diabetic kidney disease (DKD)

and cultured renal proximal tubule cells exposed to high glucose stress

(37). Likewise, induction of IL-1b in response to uropathogenic

Escherichia coli (UPEC) was documented in renal fibroblasts (38).

To our knowledge, no IL-1b expression was documented in kidney

epithelial cells at steady state or upon challenge except of glomerular

IL-1b mRNA induction in a rat model of glomerulonephritis (39). In

line with this, formation of NLRP3 inflammasomes required for

proteolytic processing of the IL-1b precursor has been convincingly

documented in renal macrophages and dendritic cells, whereas their

presence in non-immune kidney cells remains debatable (40, 41).

Similar to IL-1b, evidence for renal expression of IL-1Ra in non-

immune cells is restricted to glomerular detection in a rat

glomerulonephritis model (39). Finally, IL-1R1 expression was

recorded in glomeruli and shown to be essential for podocyte

survival upon pathophysiological challenge (42). Notably, a

systematic mapping of IL-1R1 distribution in mouse tissues using IL-

1R1 reporter mice revealed no detectable IL-1R1 mRNA or protein in

the kidney despite amplification techniques applied (43). With respect

to IL-1R2, available data suggest that expression of this receptor type is

induced in clear cell renal cell carcinoma (RCC) cells with implications

in disease progression (44). Moreover, alterations in renal IL-1R2

expression were reported in association with multiple kidney

pathology including chronic kidney disease (CKD), acute kidney

injury (AKI), lupus nephritis, IgA nephropathy, RCC, and rhabdoid

kidney tumor (45). Despite the apparent major role of IL-1R2 in kidney

pathology, no systematic localization studies on IL-1R2 expression and

distribution in mammalian kidney have been performed to

our knowledge. The available data on expression and distribution of

IL-1 signaling components in mammalian kidney are summarized

the Table 1.
Effects of IL-1 in the kidney

IL-1 has been shown to induce natriuresis and diuresis in rodents

via stimulation of renal cyclooxygenase 2 (COX-2) activity leading to

increased bioavailability of COX-2-derived prostanoids such as

prostaglandin E2 (PGE2). In the most conducted studies, natriuretic

and diuretic effects of IL-1b could be blunted or abolished by

unselective or selective COX-2 inhibitors suggesting a causal

relationship between IL-1b and renal COX activity (48–53). The
TABLE 1 Expression of IL-1 signaling components in the kidney and urinary bladder.

Expression IL-1a IL-1b IL-Ra IL-1R1 IL-1R2 Ref.

Kidney

Glomerulus + (h) + (h, r) + (r) + (h, m) (39, 42, 46)

Tubules + (h) + (h) + (h) (37, 46)

Vasculature + (h) (46)

Interstitium + (h) + (h) (38, 46)

Urinary tract

Urinary bladder + (h) + (h) + (h) (35, 47)
Reported expression (+), human (h), mouse (m), rat (r), reference (Ref.)
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natriuresis was attributed to inhibition of tubular sodium reabsorption

rather than alterations in the glomerular filtration rate (GFR) (48, 49,

54). In general, stimulatory effects of IL-1a and IL-1b on COX-2 were

well documented in different cell types and tissues suggesting a similar

action in the kidney (55–58). IL-1-dependent induction of COX-2 in

cultured renal mesangial cells could be prevented by a calcineurin

inhibitor (CNI) cyclosporin A implicating calcineurin in the IL-1

signal transduction (59). Notably, CNI are widely used for

immunosuppression in organ transplantation but their therapeutic

action is limited by nephrotoxicity in part due to COX-2

suppression (60).

While the aforementioned work reports diuretic and natriuretic

effects of IL-1, contrasting results suggesting renal salt retention in

response to IL-1R1 stimulation were provided by a study in rats

with angiotensin II (AngII)-induced hypertension (61). This study

identified renal macrophages as mediators of the cytokine effects on

tubular salt reabsorption in the thick ascending limb thus stressing

complex interactions between immune and non-immune cells in

the renal physiological performance.

IL-1 has further been shown to increase permeability of the

glomerular filtration barrier to large molecules, an effect largely

mediated by generation of reactive oxygen species (ROS) in

response to the cytokine (62). Thus, exaggerated IL-1 signaling

may cause or aggravate proteinuria in pathophysiological settings.

The glomerular filtration rate (GFR) seems to be unaffected by acute

or subchronic IL-1b administration to normal rats (48, 53), while

impact of the cytokine on GFR in kidney disease may be

multifactorial and requires further investigations.

Apart from local effects in the kidney tissue, IL-1 may affect kidney

performance via modulation of the endocrine hypothalamic-pituitary-

adrenal (HPA) axis (63–68). IL-1 has been shown to promote

vasopressin release most likely via direct effects on vasopressin-
Frontiers in Immunology 05
producing hypothalamic neurons (69–72). Vasopressin, in turn,

may support the natriuretic while limiting the antidiuretic effects of

the cytokine via distinct vasopressin receptor types (73). In addition,

the vasoconstrictive action of vasopressin may blunt the vasodilating

effect of IL-1b and their net effect on the renal vasculature depends on

the local availability of prostaglandins (74–76). Finally, chronically

elevated circulating vasopressin levels exert unfavorable effects on the

kidney (77). The spectrum of potential physiological and

pathophysiological IL-1 effects in the kidney is presented in Figure 2.
Pharmacological modulation of IL-1
signaling

Several IL-1 signaling inhibitors with distinct mechanisms of

action have been clinically approved (78). The modified

recombinant IL-1Ra antagonist anakinra competes with both IL-1a
and IL-1b for the binding to IL-1R thus suppressing their signal

transduction. The recombinant IL-1 trap proteins rilonacept and

goflikicept contain the extracellular IL-1R1 portion enabling them to

compete with IL-1R1 for the binding of IL-1b, IL-1a, or IL-1Ra. The
neutralizing antibodies to IL-1b (canakinumab, gevokizumab), IL-1a
(bermekimab), or IL-1R1 (MEDI-8968) have been developed as well.

Finally, small molecule inhibitors of caspase 1 (belnacasan) prevent

IL-1bmaturation (Figure 3). The therapeutic application field for IL-1

inhibiting drugs encompasses a broad spectrum of local and systemic

(auto)inflammatory disorders primarily affecting joints and bones

with reported complications in other organs including kidneys. A

wide range of cardiovascular and metabolic disorders including gout,

post-myocardial infarction remodeling, cerebrovascular accident,

diabetes mellitus, and metabolic syndrome may profit from IL-1

inhibiting therapies as well (78). With respect to the nephrological
FIGURE 2

Physiologic and pathophysiologic effects of IL-1 signaling in the kidney. The left panel summarizes available data on physiological effects of the IL-1
signaling in the kidney including the coordinated antimicrobial immune response, natriuretic and diuretic actions, as well as potential contribution to
the podocyte survival upon stress. The right panel illustrates pathophysiological implications of the IL-1 in kidney disease such as renal salt retention,
aggravated proteinuria, amplification of vasopressin signaling, as well as local and systemic pro-inflammatory effects.
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implementation, different settings of the acute kidney injury and

chronic kidney disease have been suggested by experimental studies,

whereas the clinical data is still limited (Figure 3).
IL-1 inhibition in kidney diseases

Sterile inflammation with ensuing immune-mediated kidney

damage is a hallmark of many acute and chronic kidney diseases.

Disinhibition of IL-1 signaling triggers local inflammation of renal

tissue and may initiate or aggravate systemic inflammatory reactions

as well. The endogenous IL-1 suppressors, IL-1Ra, IL-1R2, buffer the

excessive activity of IL-1a and IL-1b thus restricting and modulating

the inflammatory responses. Progression of kidney diseases is typically

associated with a disbalance between the pro-inflammatory and anti-

inflammatory IL-1 signaling components. In this context,

pharmacological inhibitors of IL-1b receive increasing attention as

tools bearing potential to alleviate immune-mediated kidney damage

and preserve the functional renal architecture.
Acute Kidney Injury

Acute Kidney Injury (AKI) is a clinical syndrome characterized by

an abrupt significant decline of renal function manifesting within

several hours up to several days (79). AKI is prevalent in patients

receiving intensive care and associated with high risk of mortality and

substantial financial burden (80). Hospital-based epidemiological

studies report the AKI incidence in the range of 1 in 5 adults and 1

in 3 children during a hospital episode of care worldwide (81). AKI

frequently develops sudden, which is a great challenge for rapid

implementation of targeted etiologic therapy. Hypovolemia,
Frontiers in Immunology 06
nephrotoxic medications, ischemia, acute urinary tract obstruction,

and acute glomerulonephritis belong to the most common AKI causes

(79). Independently on the primary cause, AKI is associated with the

onset of sterile inflammation in the kidney tissue due to damage and

death of renal cells through apoptosis or necrosis (82). Experimental

studies on the role of inflammation during AKI and ensuing kidney

damage suggest that dampening maladaptive inflammatory response

may support the intrinsic regeneration of kidney epithelia thus

reducing the nephron loss (83).

IL-1b has been increasingly recognized as an emerging target in

AKI due to its major role in triggering local and systemic

inflammatory reactions. Consequently, therapeutic potential of IL-

1b inhibition has been investigated in rodents and cultured cells.

Modeling of cisplatin-induced AKI in normal vs. global IL-1R1

knockout mice (IL-1R1-/-) revealed a milder kidney injury in the

IL-1R1-/- strain suggesting that blockade of IL-1 signaling may exert

renoprotective effects in AKI induced by nephrotoxic agents (84). In

contrast, selective deletion of IL-1R1 in myeloid cells exacerbated

kidney damage in kidney ischemia/reperfusion (I/R) injury model of

AKI suggesting that IL-1 signaling in myeloid cells may act as a

negative feedback loop to dampen excessive inflammation (85).

Indeed, activation of IL-R1 in myeloid cells has been shown to

promote IL-Ra expression and release that may reduce the pro-

inflammatory IL-1b signal in renal tubular cells, as well as in IL-1b
producing immune cells. Thus, exaggerated IL-1b production and

release by IL-1R1-deficient myeloid cells in response to multiple pro-

inflammatory stimuli other than IL-1b aggravated the kidney damage

in mouse AKI model (85). Despite apparently discrepant AKI

outcomes in global vs. myeloid cell-specific IL-1R1 knockout

mouse strains, both models provide conceptual support for

pharmacological suppression of IL-1 signaling in AKI. Clinical

application of the IL-1R1 antagonist anakinra in combination with
FIGURE 3

Potential nephrological fields for therapeutic application of distinct IL-1 signaling inhibitors and mechanisms of actions. The left panel describes the
large renal pathologies which may be responsive to IL-1 signaling inhibitors. The middle panel illustrates mechanisms of IL-1 signaling suppression
utilized by distinct approved inhibitor drugs. The right panel provides the list of currently available and clinically approved IL-1 inhibiting drugs.
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zinc to treat severe alcoholic hepatitis was associated with higher AKI

incidence, more severe AKI course, and lower overall survival

compared to prednisolone (86). However, this fact does not directly

point to nephrotoxicity of anakinra but rather reflects lower anti-

inflammatory efficiency of anakinra compared to prednisolone in the

setting of strong systemic inflammation and multiorgan toxicity due

to severe liver failure. The coronavirus 19 (COVID-19) infection is

another condition frequently complicated by AKI. Several lines of

evidence suggest that the severe acute respiratory syndrome

coronavirus 2 (SARS-CoV-2) may directly damage the kidney

epithelia in addition to the hypoxia and systemic inflammation (87).

Experiments in an ex vivo human cellular model identified IL-1

signaling as a mediator of SARS-Cov2 renal injury and suggested

that IL-1 inhibitors may ameliorate the kidney damage (87). Although

clinical experience with IL-1 inhibitors for managing the SARS-Cov2-

induced hyperinflammatory response is limited, benefits for survival

of critically ill COVID-19 patients with hyperinflammation have been

reported (88). Moreover, two studies claimed a superior effect of the

IL-1R1 inhibitor anakinra compared to an IL-6 receptor inhibitor

tocilizumab in managing the SARS-Cov2 hyperinflammation (89, 90).

Interestingly, higher circulating levels of IL-1Ra in COVID-19 patients

experiencing AKI have been associated with a better prognosis thus

indirectly suggesting benefits of IL-1 inhibition (91). In contrast, a

Cochrane-based meta-analysis of six randomized controlled studies of

IL-1 inhibitors (anakinra or canakinumab) revealed no evidence for

relevant benefits of the IL-1 inhibiting strategy in COVID-19 patients

although AKI incidence and outcomes were not specifically assessed

by the meta-analysis (92). Taken together, the available clinical

research provides no convincing evidence in support of anti-IL-1

therapy in patients with AKI, at least in comparison to the

standard care.
Chronic Kidney Disease

Chronic Kidney Disease (CKD) is a syndrome of gradual kidney

function loss defined as a chronic GFR decline (<60 ml/min*1,73m2)

or albuminuria (>30 mg/g creatinine) persisting for three months or

longer thus reflecting an irreversible deterioration of kidney function

(93). CKD progression is associated with accumulation of toxic

metabolites in the body triggering secondary multiorgan damage

and systemic inflammation (94). Because of the major impact of the

kidney on the fluid homeostasis and blood pressure control,

limitations of renal functions principally affect cardiovascular

performance. Suppression of IL-1b using canakinumab has been

shown to decrease the incidence of major adverse cardiovascular

effects in CKD patients with advanced atherosclerosis (95). Similarly,

administration of the IL-1a/b inhibitor rilonacept reduced systemic

inflammation and improved vasodilatory arterial function in CKD

patients (96). The individual roles of IL-1a vs. IL-1b in the setting of

acute myocardial infarction (AMI) and CKD were investigated in

patients and knockout mice deficient for IL-1a vs. IL-1b (97).

Interestingly, IL-1a but not IL-1b appears to play a major role in

leukocyte-endothelial adhesion and vascular inflammatory injury

driving the cardiovascular complications, as well as CKD
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progression. These pathophysiological effects may be mediated via

juxtacrine IL-1a signal transduction from monocytes to endothelial

cells (97). Importantly, IL-1a knockout mice were largely protected

against oxalate- or adenine-induced kidney damage, which stresses the

pathophysiological role of IL-1a in CKD (97). Another experimental

study in IL-1Ra-deficient mice implicated exaggerated IL-1b signaling

in progression of CKD and anemia by showing that an antibody

targeting IL-1bwas able to ameliorate the kidney damage and improve

the response to hypoxia (98).

In addition to the experimental and clinical data, genetic studies in

human revealed strong links between certain polymorphisms within

the IL-1 gene cluster and risk of the End Stage Renal Disease (ESRD)

(99, 100). Blunted negative feedback response to inflammation via IL-

1Ra production has been associated with renal involvement in

autoimmune diseases (101). A pilot clinical trial of anakinra in

ESRD patients receiving hemodialysis suggested that IL-1R1

antagonism may help to reduce systemic inflammation and is safe

in this clinical setting (102). Further studies in patients on

hemodialysis maintenance corroborated the anti-inflammatory effect

of anakinra accompanied by enhanced levels of adiponectin, although

expected metabolic adiponectin effects such as normalization of

insulin sensitivity or protein metabolism were not observed (103–

105). Anakinra has been further tested in porcine kidneys subjected to

renal normothermic machine perfusion. The resulting

downregulation of IL-6 and other pro-inflammatory genes points to

a potential of anakinra to ameliorate the immune-mediated transplant

kidney injury (106). Mendelian randomization revealed a significant

positive correlation between serum IL-1Ra levels and GFR values in

CKD cohorts suggesting that dampening the IL-1 signaling by IL-1Ra

is renoprotective (107). Suppression of IL-1b has been further shown

to attenuate CKD progression in obese and diabetic db/db mice as

reflected by milder GFR decline and reduced renal expression of

kidney damage biomarkers including the neutrophil gelatinase-

associated lipocalin (NGAL) (108, 109). Notably, experiments in

mice have shown that IL-1b is a strong inducer of NGAL

expression (110). Elevated circulating and renal NGAL levels in

response to subcutaneous IL-1b infusion in mice were not

accompanied by an overt kidney damage suggesting that enhanced

renal and urinary NGAL levels observed in patients may be partially

related to IL-1b induction rather than to the degree of renal tissue

damage (110). Indirect suppression of IL-1b signaling by a caspase 1

inhibitor belnacasan (also known as VX-765) has been shown to

ameliorate kidney damage and fibrosis in experimental AKI and CKD

models but these beneficial effects may be also related to inhibition of

pyroptosis (111–113).

Finally, the IL-1b inhibitors anakinra and canakinumab have

proven marked efficiency in treatment of renal amyloidosis in

patients with Familial Mediterranean Fever (FMF) (114). FMF is the

most common inherited autoinflammatory disease distinguished by

recurrent attacks of fever and serositis frequently complicated by

secondary renal amyloidosis (~8-9% of patients) with rapid

progression to ESRD (115). In the most patients, FMF is caused by

hypermorphic bi-allelic mutations in the Mediterranean Fever gene

(MEFV) encoding Pyrin, which decrease the threshold for formation

of Pyrin inflammasomes with ensuing hyperactivation of IL-1b
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processing and secretion (116, 117). FMF therapy is based on

colchicine, but 5-10% of patients show weak or no response to this

medication and are at particularly high risk of developing renal

complications. Importantly, IL-1 inhibiting strategy demonstrated

high efficiency in achieving complete disease remission, as well as

improvement or stabilization of kidney function in colchicine-

resistant FMF patients with renal amyloidosis (114, 115, 118).

However, a case series study in pediatric patients with secondary

amyloidosis due to autoinflammatory diseases treated with IL-1

inhibitors anakinra or canakinumab reported no decrease or even

enlargement of amyloid deposits in kidney tissue despite reduction of

proteinuria (119). In contrast, another small cohort analysis of

hemodialysis patients empirically treated with IL-1 inhibitors

reported stabilization or reduction of renal amyloid load as detected

by serum amyloid-P scintigraphy (120). Finally, isolated cases of

anakinra-associated renal amyloidosis were reported recently (121,

122). Thus, anakinra may cause subcutaneous amyloidosis at the site

of injection, as well as renal or systemic amyloidosis (123). This fact

has been recognized in a recent update of the amyloid nomenclature

(124). IL-1b neutralizing antibodies may represent a safer alternative

in this respect. Moreover, early initiation of canakinumab before

decline of GFR below 60 ml/min*1,73m2 appears mandatory for

efficient reduction of proteinuria in FMF patients with renal

amyloidosis (125).
Autosomal dominant polycystic kidney
disease

IL-1 signaling may contribute to pathophysiology of the

autosomal dominant polycystic kidney disease (ADPKD) as

suggested by enhanced IL-1a and IL-1b expression in kidneys

specimens from ADPKD patients, presence of IL-1b in the cystic

fluid, decreased urinary IL-1Ra excretion in ADPKD patients, kidney

disease-related polymorphisms within the IL-1 gene cluster, as well as

protective effects of genetic IL-1R1 deletion in an ADPKD mouse

model (99, 100, 126–128). Being the most prevalent inherited kidney

disease affecting up to 1 of 500 people, ADPKD represents a significant

burden due to challenging conservative management and frequent

progress to ESRD requiring kidney replacement therapy (129). In

most affected individuals, ADPKD is caused by inactivating mutations

in the PKD1 or PKD2 genes encoding for polycystin 1 (PC1) and

polycystin 2 (PC2), respectively (130). PC1 and PC2 build a molecular

complex with transient receptor potential (TRP) channel activity

which plays a critical role in the functionality of primary cilium

(131). The disease pathophysiology is attributable to reduced

polycystin signaling in the primary cilium due to mutations in

PKD1, PKD2, or some other genes involved in maturation and

trafficking of the PC1/PC2 complex (130). Molecular details of cysts

induction are still poorly understood. Elevation of the intracellular

cAMP has been meanwhile established as a factor promoting

proliferation of cyst epithelium and cyst growth (132). Disrupted

intracellular calcium signaling caused by PKD gene mutations enables

disproportionally strong cAMP-induced activation of the Mitogen-

Activated Protein Kinase/Extracellular Signal-Regulated Kinase (MEK
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or MAPKK) and the downstream Extracellular Signal-Regulated

Kinase (ERK), promoting epithelial proliferation and cyst growth in

ADPKD (133). Additionally, elevated cAMP levels stimulate activity

of the cystic fibrosis transmembrane conductance regulator (CFTR)

chloride channel and ensuing transepithelial chloride secretion driving

accumulation of water in cysts (133). For these reasons, the cAMP-

generating hormone vasopressin acting in the renal collecting duct via

its V2 receptor aggravates the cyst growth, whereas selective V2

receptor antagonists (vaptans) retard ADPKD progression (134). IL-

1R1 activation recruits the cAMP signaling pathway either directly or

via PGE2 thus enhancing intracellular cAMP levels as well (135–138).

The Mammalian Target of Rapamycin (mTOR) signaling is another

potential pathway linking IL-1 to ADPKD progression. The mTOR

signaling pathway is essential for protein translation, cell growth and

proliferation in the physiological setting, whereas excessive mTOR

activity has been implicated in pathophysiology of renal cyst

formation in ADPKD and tuberous sclerosis (139–142). Several

physiological and pathophysiological effects of IL-1b in the kidney

are mediated by mTOR activation. While the activation of the IL-1R1

and downstream stimulation of the mTOR signaling in podocytes is

cytoprotective, renal tubular cells exhibit pro-inflammatory and pro-

fibrotic responses instead (42, 143, 144). Although transgenic or

pharmacologic mTOR inhibition alleviated ADPKD in experimental

animal studies, the clinical success of mTOR inhibitors (sirolimus and

everolimus) was rather limited in ADPKD patients (145–148). The

inefficiency of mTOR inhibitors may be related to lower dosing in the

clinical ADPKD setting as compared to experimental conditions, since

these drugs may cause serious systemic adverse effects (149). Likewise,

long-term therapy with V2 receptor antagonists such as tolvaptan to

lower intracellular cAMP levels and retard proliferation rate in cyst

epithelium is limited by polyuria and hepatic adverse effects in the real

clinical situation (150). The scarcity of therapeutic interventions in

ADPKD produces a strong demand for new options. Inhibitors of the

IL-1 signaling may help to retard the ADPKD progression by

combined suppression of cAMP and mTOR signaling pathways. In

addition to direct effects in the cyst epithelium, inhibition of IL-1

cytokines may reduce inflammation-driven ADPKD complications

such as hypertension or insulin resistance (151, 152). Further

mechanistic elucidation of the IL-1 signaling in the ADPKD

environment is mandatory to assess the therapeutic potential of

available IL-1 inhibitors.
Limitations of IL-1 inhibitors in renal
patients

Safety
Accumulating clinical data suggests that IL-1 inhibiting agents

are generally safe and well tolerable in patients with mild, moderate,

or even advanced CKD. Moreover, suppression of IL-1 signaling

provides cardiovascular benefits in CKD patients who are otherwise

at increased risk of cardiovascular events (CVE) due to systemic

inflammation and vascular problems associated with CKD

progression (94, 95). The CANTOS trial (Canakinumab Anti-

Inflammatory Thrombosis Outcome Study) enrolled 10061 patients
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with a history of prior myocardial infarction and elevated high-

sensitivity C-reactive protein (hsCRP) including 1875 patients with

CKD stages 1–3 thus providing a solid evaluation platform for renal

safety of canakinumab in the setting of mild to moderate CKD (95).

Retrospective analysis of CKD patients enrolled in the CANTOS

study revealed no relevant safety problems with canakinumab (95).

With respect to the advanced CKD (stages 4-5), no major safety

concerns have been identified by pilot and retrospective clinical

studies with anakinra or canakinumab. A retrospective analysis of

31 patients with advanced CKD or kidney transplantation receiving

anakinra for management of gout revealed only one serious infection

which was unrelated to the anakinra therapy (153). Similarly, a pilot

study of anakinra in two hemodialysis patients with pseudo-arthritis

caused calcium pyrophosphate deposition demonstrated high efficacy

and very good safety at long term (154). In addition, a recent

retrospective analysis of anakinra and canakinumab in kidney

transplant recipients suffering from FMF demonstrated prolonged

graft survival and lower rejection supporting renal benefits of IL-1

inhibition (155). However, the anti-IL-1 therapy was associated with

higher mortality rate among kidney transplant recipients with FMF

due to infections or unknown reasons (155). Since organ

transplantation is accompanied by a strong immunosuppressive

therapy, additional immunosuppression provided by IL-1 inhibiting

agents is a critical point of concern in kidney transplant recipients

independently on renal benefits. Therefore, guidelines for adjustment

of standard immunosuppressive protocols to supplementary anti-IL-

1 therapy need to be established to prevent serious infections in organ

transplant recipients. In view of recent information on iatrogenic

renal or systemic amyloidosis rarely associated with anakinra, an

initial choice of or switch to canakinumab might be considered in

kidney transplant recipients to ensure maximal renal safety of IL-1

inhibition (118, 121–124).

Cost effectiveness
Broad adoption of IL-1 inhibiting strategies in non-orphan

kidney diseases such as CKD may face significant cost-efficiency

challenges due to the high patient numbers and chronic disease

course (156). The CANTOS study rendered canakinumab not cost-

effective for prevention of recurrent CVE and the situation with

CKD may be largely the same (157). Similarly, long-term anakinra

therapy is associated with extremely high costs (158). Genetic
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biomarkers predicting high response to IL-1 inhibition such as

polymorphisms within the IL-1 gene cluster may provide

reasonable therapeutic niches for IL-1 inhibiting agents with

improved cost-efficiency in the context of ESRD and kidney

transplantation (99, 100). ADPKD may represent another cost-

effective model if clinical evidence corroborates the putative

therapeutic potential of IL-1 suppression suggested by

experimental and genetic studies (99, 100, 126–128).
Current state and future perspectives

Based on the available research and clinical information, IL-1

inhibitors may be of advantage in colchicine-resistant FMF patients

with secondary renal amyloidosis. IL-1b neutralizing antibodies

such as canakinumab may be safer compared to IL-1Ra analogues

such as anakinra, since the latter may induce or aggravate amyloid

deposits in rare cases (114, 115, 118, 122, 123). Management of FMF

in kidney transplant recipients using anti-IL-1 agents has proven

efficiency but revealed safety problems potentially related to

immunosuppressive drug effects requiring adjustment of standard

immunosuppressive regimen in such patients (155). IL-1a or IL-1b
suppression reduces cardiovascular risks in patients with late CKD

stages, including ESRD and/or prolonged hemodialysis, but cost-

effectiveness limits broad implementation of these strategies (95, 96,

157). IL-1 inhibitors may further contribute to improved

management of hyperinflammation and kidney damage

associated with SARS-Cov2 but supporting clinical evidence

remains limited and partly controversial. ADPKD may emerge as

a therapeutic niche for IL-1 inhibiting agents especially in the light

of scarcity of currently available strategies to delay cyst growth.

Clinical trials of IL-1 inhibiting agents in ADPKD patients are

pending to validate the experimental data (126–128). In general,

selective pharmacological suppressors of pro-inflammatory

pathways, such as IL-1 signaling inhibitors, hold great promise

for improved management of local and systemic inflammation in

diverse nephrological conditions (Table 2). However, an improved

mechanistic understanding of their effects in the kidney is

mandatory to identify reasonable therapeutic niches balancing

benefits with risks and cost effectiveness. Recent progress in

omics-based analytics led to development of the high-plex protein
TABLE 2 Summary of potential renal indications for and clinical experience with interleukin-1 inhibiting agents.

Disease IL-1 signaling Tested IL-1 inhibitors (effects) References

AKI ↑IL-1b anakinra (~) (86)

COVID-19/AKI ↑IL-1b anakinra (+, ~) (88–90, 92)

CKD (1–3) ↑IL-1a/IL-1b canakinumab (+), rilonacept (+) (95, 96)

ESRD/HD ↑IL-1a/IL-1b anakinra (+) (153, 154)

KT ↑IL-1a/IL-1b anakinra (+, !), canakinumab (+, !) (155)

FMF/renal AA ↑IL-1b anakinra (+, !), canakinumab (+) (114, 115, 118, 121)

ADPKD ↑IL-1a/IL-1b no clinical information (126)
Acute kidney injury (AKI), chronic kidney disease (CKD), end stage renal disease (ESRD), hemodialysis (HD), kidney transplantation (KT), Familial Mediterranean Fever (FMF), serum amyloid A protein
amyloidosis (AA), autosomal dominant polycystic kidney disease (ADPKD), increased levels of IL-1 isoforms in plasma or cystic fluid (↑), proven efficacy (+), lack of significant efficacy (~), safety concerns (!).
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and whole transcriptomics co-mapping technology integrating

proteomic and transcriptomic data at spatial resolution (159).

Search for optimal nephrological indications for IL-1 inhibiting

agents would strongly profit from implementation of such multi-

modal, omics-based, spatial-resolving methods permitting detailed

molecular characterization of cellular and tissue drug effects in

kidney samples from animal models or patient biopsies.
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