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Colorectal cancer (CRC) has the highest incidence in the Asia-Pacific region,

accounting for 51.8% of global cases. Despite early screening methods like

colonoscopy, CT, and MRI, 20-25% of patients are diagnosed at advanced

stages, with some having liver metastasis. Personalized treatments, including

targeted and immunotherapy, are crucial for metastatic or recurrent CRC.

Circulating tumor cells (CTC), emerging as a non-invasive biomarker, play a

key role in assessing metastasis and prognosis. CTC count is linked to CRC stage,

microsatellite instability (MSI-H), and drug resistance, and is valuable in evaluating

the response to immune checkpoint inhibitors (ICIs). Immune cells in the tumor

microenvironment influence CTC behavior, impacting metastasis, immune

evasion, and resistance. Advances in CTC detection and genetic markers offer

new possibilities for early diagnosis and personalized treatment.
KEYWORDS

circulating tumor cell, colorectal cancer, microsatellite instability (MSI), immunotherapy,
drug resistance, immune microenvironment
1 Introduction

Colorectal cancer (CRC) incidence is the highest in the Asia-Pacific region, accounting

for 51.8% of the global burden. With a growing population, a high Human Development

Index (HDI), and rapid economic growth, the region faces an increasing challenge (1).

Early screening methods, including colonoscopy, abdominal computed tomography (CT),
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and magnetic resonance imaging (MRI), can reduce the risk of

colorectal cancer (2–4). Approximately 20-25% of patients are

diagnosed at stage IV during their initial examination, with

10-15% presenting with colorectal cancer liver metastasis

(CRCLM) (5). Additionally, among patients undergoing curative

surgery for CRC, about 40% experience recurrence, primarily in the

form of either local or distant metastasis (6, 7). For patients with

metastatic or recurrent CRC, personalized treatment options, such

as targeted therapy or immunotherapy, are essential for preventive

treatment (8, 9). Biomarkers to guide the selection of the most

appropriate therapy include tumor histology, such as KRAS/BRAF

mutations, HER2 amplification, and microsatellite instability-high

(MSI-H). Previous assessments were based on postoperative

pathology. In contrast, liquid biopsy (LB) and circulating tumor

cell (CTC) assessment offer a non-invasive and easily accessible

technique that can improve personalized treatment before

surgery (10).

Circulating tumor cells (CTCs) are emerging tumor biomarkers,

referring to somatic cells that detach from the primary tumor and

migrate into the circulatory system, which can lead to liver

metastasis via the hepatic portal vein (11). CTC count has been
Frontiers in Immunology 02
established as an independent prognostic factor for patients with

metastatic CRC (12). CTCs were first discovered by Thomas

Ashworth in 1869, but it was not until the 1970s, with the rapid

development of molecular biology technologies, that the

enrichment and characterization of CTCs became feasible (13).

Furthermore, the NCCN guidelines recognize the importance of

CTCs in preoperative screening for central nervous system cancers,

as well as in guiding treatment decisions for advanced prostate and

breast cancers (14–17).

Immunotherapy for colorectal cancer (CRC) works by blocking

immune checkpoint (IC) pathways. Cancer cells can disguise

themselves as normal cells through the IC pathways (Figure 1)

(18). Tumor cells can express inhibitory ligands such as cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) and programmed cell

death ligand 1 (PD-L1), which send “stop” signals to active T cells,

enabling the tumor to escape cell-mediated immunity. These

studies have driven medical advancements, ushering in the era of

precision medicine. The development of monoclonal antibodies

targeting PD-1 (nivolumab and pembrolizumab) and PD-L1

(durvalumab and atezolizumab) has made enhanced antitumor

immunity possible. Immunotherapy can improve clinical
FIGURE 1

Shed tumor cells in peripheral blood can evade immune surveillance and immune killing through various mechanisms. ECM, extracellular matrix;
NETs, neutrophil extracellular traps; Tregs: regulatory T cells; MDSCs, myeloid derived suppressor cells; IL-10, interleukin-10; TGF-b, Transforming
Growth Factor-b; FoxQ1, forkhead box Q1; CCL2, C–C motif chemokine ligand 2; M2-polarized tumor-associated macrophages; PD-L1,
programmed death-ligand 1; PD-1, programmed cell death protein 1.
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outcomes and extend overall survival (OS) (19, 20). However, only a

small subset of CRC patients can benefit from immune checkpoint

therapy (ICT) (21). Only those with MSI-H or defective mismatch

repair (dMMR) in their CRC tumors demonstrate favorable

treatment responses (22). This is due to insertions or deletions of

nucleotides that can lead to DNA or microsatellite repeats. The

accumulation of these mutations results in the generation of novel

neoantigens, which can be recognized by the host immune system

(20). Therefore, preoperative screening to identify patients who are

suitable for immune checkpoint inhibitors (ICIs) treatment is

crucial for the management of advanced colorectal cancer.
2 Clinical significance of circulating
tumor cells in colorectal cancer

2.1 The relationship between MSI-H and
CTCs

Colorectal cancers (CRCs) with microsatellite instability-high

(MSI-H) are considered to have a better prognosis. The level of

MSI-H in CRC is associated with the extent of tumor-infiltrating

lymphocytes (TILs). The presence of TILs may partially restrict

tumor cell metastasis, potentially by reducing the release of

CTCs (23). Microsatellites refer to short tandem repeat sequences

scattered throughout the genome (comprising 1–6 or more base

pairs, typically repeated 5 to 50 times). When base-pair

mismatches or replication errors occur frequently, they are termed

microsatellite instability. The accumulation of genetic mutations

produces additional tumor antigens, enabling the possibility of

immunotherapy. The incidence of MSI-H in CRC is approximately

10–15% (24). However, in clinical practice, the detection rate of MSI-

H may fall below 10%, attributed to the high costs and technical

complexity of microsatellite testing. This results in many patients

missing the opportunity for immunotherapy. Several recent studies

have demonstrated the feasibility of identifying immunotherapy-

eligible patients more affordably and efficiently by analyzing

circulating tumor cells in the blood. Immunotherapy involves the

use of immune checkpoint inhibitors (ICIs) to specifically block

immune checkpoints such as PD-L1, CTLA-4, and CD47, thereby

disrupting the immunosuppressive tumor microenvironment (25).
2.2 Perioperative CTC dynamics and MSI
status differences

The count of circulating tumor cells (CTCs) correlates with

tumor stage, showing statistically significant differences in

peripheral blood measurements at various stages and time points

(preoperative, intraoperative, postoperative) (26). Notably, the

dynamic trends of perioperative CTC counts differed significantly

between patients with MSI-H tumors and those with microsatellite

−stable (MSS) tumors. The mechanical manipulation–induced tumor

cell shedding effect during surgery was pronounced in the MSI-H

subtype, with a median CTC count of 37.8, which was significantly
Frontiers in Immunology 03
higher than the 23.7 observed in the MSS group (P = 0.0328).

Postoperative dynamic monitoring revealed a rapid decline in CTC

counts from 24 hours to one month after surgery in MSI-H patients,

whereas MSS patients exhibited persistently low-level fluctuations or

no significant change (23, 27). Overall, perioperative CTC counts

were higher in MSI-H patients compared to MSS patients (27).

This finding contradicts intuition, as MSI-H is associated

with better survival outcomes, while a CTC count >3 is linked

to poorer prognosis. Toh JWT et al. showed the median

CTC count for 13 MSS colorectal cancer (CRC) patients at

preoperative, intraoperative, and postoperative time points was 1.

Conversely, MSI-H CRC patients had median CTC counts exceeding

10 at all measured time points. This paradoxical result was not fully

explained in the study. The authors proposed a hypothesis: CTCs shed

from MSI-H tumors retain microsatellite instability and carry more

immunogenic antigens, potentially eliciting stronger immune

responses in peripheral blood and enhancing lymphocyte

immunogenicity (23). Studies have indicated that although peripheral

CTCs in MSI−H CRC patients are relatively more abundant, their

“quality” and functional status may differ from those in MSS patients:

CTCs originating from MSI−H tumors harbor indel−induced

frameshift mutations that profoundly alter protein amino acid

sequences, endowing them with highly immunogenic neoantigens

that are readily recognized and cleared by activated T cells, and their

survival and metastatic potential may be lower than those of MSS

−derived CTCs (28). High PD-L1 expression on the surface of CTCs

can bind to PD-1 on T cells, terminating downstream T-cell receptor

(TCR) signaling and CD28 co-stimulation, thereby transiently

suppressing naïve effector T cells, though its suppressive effect on

memory T cells is limited. Consequently, truly metastatic CTC clones

may be effectively eliminated by memory T cells (29, 30). Moreover,

tumor cell stemness characteristics and inflammatory cytokines (e.g.,

TNFa, IL-6) promote upregulation of adhesion molecules on tumor

cells, facilitating the formation of CTC clusters in peripheral blood (31,

32). Within CTC clusters derived fromMSI−H tumors, heterogeneous

tumor mutation burdens (TMB) aggregate, leading to clusters

containing increased apoptotic markers, which may limit their

distant metastatic potential (33).
2.3 MSI-dependent prognostic utility of
CTCs

This raises important questions: Do CTCs shed from MSI-H

andMSS CRC patients have equivalent metastatic potential? Should

MSI-H and MSS patients share the same CTC cutoff values? Nearly

all clinical studies employ a uniform threshold, namely the FDA-

approved CellSearch criterion of ≥3 CTCs per 7.5 mL of blood as an

adverse prognostic indicator in metastatic CRC (34). Alsayed et al.

proposed that postoperative CTC levels remaining ≥4 cells per 7 mL

of blood constitute an independent prognostic factor for overall

survival (OS) (27). Toh et al. found that a preoperative median CTC

count >10 in MSI-H patients remained associated with favorable

prognosis, whereas >3 CTCs in MSS patients indicated adverse

outcomes (23). In practice, investigators may stratify CTC counts
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into categories of 0 vs. ≥1, 3, 4, or 5 (depending on study design),

but no studies have specifically calibrated or stratified these cutoffs

by MSI subtype. However, Messaritakis et al. developed a molecular

assay for CTC detection based on carcinoembryonic antigen-like

cellular adhesion molecule 5 (CEACAM5) (35). They found that

CEACAM5 mRNA–positive circulating tumor cells (CTCs) were

associated with reduced overall survival (11.2 months vs. 19.6

months) and poorer clinical outcomes in patients with MSI−H

metastatic CRC (mCRC). Although current evidence for MSI-H

CRC is limited, existing studies suggest that CEACAM5-positive

CTCs in MSI-H patients may predict poorer clinical outcomes. And

post-treatment reduction in CTC burden may be associated with

improved prognosis. Therefore, stratifying patients solely on the

basis of a CTC count >3 cells/mL—without accounting for MSI

status—is inadvisable. In MSI-high colorectal cancer patients, the

clinical value of CTC enumeration should be interpreted in

conjunction with phenotypic and molecular characteristics of the

circulating tumor cells.

Given the limited number and small sample sizes of current

studies, the overall evidence remains incomplete. Large-scale,

prospective studies are needed to validate whether dynamic

changes in CTCs during treatment (including pre- and post-

surgery, chemotherapy, or immunotherapy) can reliably predict

recurrence risk, progression-free survival, or overall survival in

MSI-H CRC patients. Additionally, development of more CTC-

related biomarkers is necessary to assess the metastatic and invasive

potential of individual shed tumor cells.

Current prognostic models based on CTC counts (e.g., ≥3 per 7.5

mL) do not distinguish MSI status, potentially leading to over-risk

stratification of MSI-H patients. In clinical practice, management of

MSI-H colorectal cancer patients should incorporate CTC functional

characteristics (e.g., PD-L1 expression or CEACAM5 mRNA

positivity) and dynamic monitoring of CTC count changes pre-

and postoperatively as well as before and after adjuvant therapy to

optimize personalized management strategies. Ultimately, integrating

these functional CTC assessments with traditional clinicopathological

factors will enable more accurate risk stratification, reducing

unnecessary interventions in low-risk MSI H individuals and

ensuring high-risk patients receive timely escalation of care.
2.4 Tumor site and CTC biological
characteristics

Tumor location also influences CTC counts, a phenomenon

observed in many clinical studies. Left- and right-sided colon

cancers differ in tumor characteristics due to disparities in

embryological origin, gene expression, and clinical behavior.

From an embryological perspective, the demarcation between the

left and right colon lies at the distal third of the transverse colon

(36). During the fourth week of gestation, the endoderm of the fetus

folds and rotates, forming the foregut (blind-ending cranially),

hindgut (blind-ending caudally), and midgut, which remains open

to the yolk sac via the vitelline duct. The midgut develops into the

jejunum, ileum, cecum, ascending colon, and two-thirds of the
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transverse colon. The hindgut forms the remaining third of the

transverse colon, descending colon, and sigmoid colon (37).

Anatomically, the right colon is primarily supplied by the

superior mesenteric artery, while the left colon is perfused by the

inferior mesenteric artery. At the genetic level, right-sided colon

cancers often exhibit distinct genetic mutations, higher PD-L1

expression, and elevated microsatellite instability, which may lead

to increased infiltration of CD8+ tumor-infiltrating lymphocytes

(TILs). Notably, stage II right-sided colon cancers have a higher

likelihood of MSI-H (38).
3 The role of CTCs in immunotherapy

3.1 Expression of PD-L1 in CTCs and
mechanisms of immune resistance

Programmed death-ligand 1 (PD-L1), an immunosuppressive

protein, is regulated by colorectal tumors (39). PD-L1 expression is

fundamentally regulated by the MAPK and PI3K/AKT signaling

pathways (40). In addition to the intrinsic regulation by signaling

pathways within tumor cells, studies on CTCs have further revealed

how tumors promote immune evasion through the expression of

immune checkpoints.

Research on CTCs has revealed that oncogenes and tumor

suppressor genes facilitate immune evasion by promoting immune

checkpoint expression. Previous studies have shown that PD−L1

expression is inversely correlated with KRAS mutations in

colorectal cancer, particularly in MSI−H tumors (41). KRAS-

mediated repression of interferon regulatory factor 2 (IRF2)

results in high expression of CXCL3, which binds to CXCR2 on

myeloid-derived suppressor cells (MDSCs) and regulates the

immune responses in colorectal cancers (42). KRAS mutations in

colorectal cancer are commonly associated with a MSS phenotype

and poor response to single−agent immune checkpoint inhibitors;

notably, in the KEYNOTE−177 trial, MSI−H CRC patients

harboring KRAS or NRAS mutations did not benefit from ICI

monotherapy (43). In CTCs with KRAS mutations, the CTLA-4

gene is also highly expressed, with a positive correlation between

KRAS and CTLA-4. MDSCs can secrete immunosuppressive factors

such as IL−10 and TGF−b to induce Treg expansion, and these

CTLA−4–high Tregs further inhibit CD8+ T−cell responses (44,

45). Collectively, these findings indicate that KRAS mutations drive

immune evasion in colorectal cancer through multifaceted

mechanisms, including CXCL3-mediated MDSC recruitment via

IRF2 suppression, PD-L1 downregulation in MSI-H tumors, and

CTLA-4-dependent Treg expansion, ultimately dampening

anti-tumor CD8+ T-cell responses and immune escape (46).
3.2 Predictive value of PD-L1 expression in
CTCs for treatment response

CTCs exhibiting high PD-L1 expression serve as predictive

biomarkers, suggesting potential sensitivity to anti-PD-1/PD-L1
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monotherapy in these patients (47). Additionally, their presence

indicates a persistent immunosuppressive state within the tumor

microenvironment (48). Given this dual role, clinicians managing

such patients should move beyond monotherapy paradigms.

Rational combination strategies—integrating chemotherapy,

targeted therapies, or dual immune checkpoint blockade—can

synergistically disrupt immune evasion mechanisms, thereby

augmenting treatment response and circumventing resistance

pathways (49).

The PD-L1-specific inhibitor pembrolizumab has been

employed in numerous clinical trials for over 30 cancers,

including gastric cancer, colorectal cancer, head and neck cancer,

and melanoma (50). In the study by Yue et al., colorectal cancer

(CRC) patients undergoing PD-1 blockade therapy with IB1308

were stratified into four groups based on PD-L1 expression levels on

circulating tumor cells(CTCs): PD-L1negative (MFI<50), PD-L1low

(50≤MFI<100), PD-L1medium (100≤MFI<150), and PD-L1high

(MFI≥150). This study was the first to propose a PD-L1

expression cutoff value of 20% for CTCs, revealing that patients

with PD-L1highCTCs (≥20% abundance) achieved a significantly

higher objective response rate (ORR: 64% vs. 14%, P<0.001) and

prolonged median progression-free survival (4.27 vs. 2.07 months,

HR=3.342, P=0.002) compared to those below the threshold.

Longitudinal monitoring demonstrated that dynamic reductions

in PD-L1high CTC counts correlated with therapeutic efficacy

(63.6% of disease control patients showed declines, P=0.007),

whereas stable or elevated PD-L1high CTCs predicted progression

(84.2% of PD cases) (51). The study conducted by Tan et al.

demonstrated that PD-L1 is not only broadly applicable in

immunotherapy but also serves as a predictive biomarker.

Patients with high baseline PD-L1 expression on circulating

tumor cells (CTCs) who received anti-PD-1/PD-L1 monoclonal

antibodies combined with conventional chemotherapy regimens

showed significantly prolonged progression-free survival (median

PFS: 4.9 months vs. 2.2 months, P < 0.0001) (52). The detection

method involves isolating CTCs from blood samples using EpCAM

antibodies or other surface markers, combined with CD45 for

leukocyte exclusion, followed by immunofluorescence staining

with PD-L1-specific antibodies (e.g., clones D84TX, 22C3, or

KN802) to evaluate PD-L1 expression.

A study evaluated the efficacy of the oral multikinase inhibitor

regorafenib based on PD-L1 expression in CTCs obtained from

peripheral blood. This study leveraged the advantage of CTCs in

reflecting tumor heterogeneity. CTCs were detected in nearly all

metastatic colorectal cancer patients (38/40, 95%). Among 17

patients with tumor progression following regorafenib treatment,

shorter progression-free survival (PFS) and overall survival (OS)

were observed, with PD-L1(+) CTCs present in their blood. These

findings suggest that PD-L1-positive tumors may develop resistance

to regorafenib. Importantly, such resistance could be detected via

CTCs as early as one month after initiating treatment, enabling

timely adjustments to therapeutic strategies (53). Regorafenib

inhibits the PI3K/AKT/mTOR and RAF/MEK/ERK signaling

cascades, thereby inducing immunogenic cell death in tumor cells

and promoting the release of ATP, high-mobility group box 1
Frontiers in Immunology 05
(HMGB1), and other damage‐associated molecular patterns.

Concomitantly, these activate T cells to secrete IFN-g, which, via
the JAK–STAT pathway, upregulates PD-L1 expression and

engenders an “immune editing” effect that maintains PD-L1

exposure on residual tumor cells, thus furnishing targets for

subsequent immunotherapy (54, 55). Consequently, in patients

harboring PD-L1–positive CTCs, regorafenib monotherapy

demonstrates limited efficacy, whereas its combination with

immune checkpoint inhibitors yields significantly enhanced

therapeutic responses (56).
3.3 CTCs and microsatellite status in
multimodal therapy

Circulating tumor cells (CTCs) play a crucial role in

monitoring disease progression (PD) and serve as important

biomarkers for prognostic assessment and intermediate response

evaluation in immunotherapy. CTCs are integral to prognostic

stratification in colorectal cancer (CRC) patients, with numerous

studies validating their clinical utility. Previously, Bahnassy et al.

conducted a prospective cohort study involving 44 CRC patients

(Stages I–IV) to evaluate the prognostic significance of changes in

CTC counts and microsatellite instability (MSI) profiles before

and after curative surgery. The study revealed that a sustained

postoperative decline in CTCs, combined with MSI-high (MSI-H)

status, served as independent indicators of better progression-free

survival (PFS) and overall survival (OS) in advanced-stage

patients (P<0.001) (27). This could be attributed to the dynamic

evolution of tumor lesions influenced by time, treatment, and

surgical intervention, wherein immunotherapy stimulates the

expansion of tumor subclones, resulting in changes in the

number and molecular characteristics of CTCs (57). In this

review, we summarize several studies related to circulating

tumor cells (CTCs) in colorectal cancer (CRC). The findings not

only underscore the potential value of CTC counts but also

provide deeper insights into the feasibility of utilizing CTCs as a

liquid biopsy tool (Table 1).
4 Mechanisms of immune evasion by
circulating tumor cells in the tumor
microenvironment

4.1 Macrophage-CTC interaction

Circulating tumor cells (CTCs), as critical mediators of primary

tumors and distant metastases, play a pivotal role in cancer initiation,

progression, and metastasis through interactions with the tumor

microenvironment (TME) (Figure 1) (59). The TME in colorectal

cancer comprises stromal and immune cells that regulate immune

suppression and inflammation (60). Tumor-associated macrophages

(TAMs), the predominant immune cells in the TME, exhibit functional

polarization toward either the M1 or M2 phenotype, modulated by
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tumor and stromal signals. Advances in gene expression profiling,

morphology, and single-cell RNA sequencing have provided deeper

insights into TAM heterogeneity (61). In the TME, M1 macrophage

polarization is induced by recognizing pathogen-associated molecular

patterns (e.g., lipopolysaccharide [LPS]) and type 1 helper T cell (Th1)

cytokines, such as interferon-g (IFN-g) and tumor necrosis factor-a
(TNF-a). M1 macrophages primarily function in innate immunity to

combat infections and tumors. In contrast, M2 polarization is driven by

interleukin-4 (IL-4), interleukin-13 (IL-13), macrophage colony-

stimulating factor (M-CSF), and transforming growth factor-b (TGF-

b), contributing to pro-tumor characteristics (62, 63). Most TAMs

exhibit the M2 phenotype, significantly promoting tumor cell survival,

proliferation, and immune evasion by enhancing immunosuppression.

This ultimately leads to cancer progression, chemoresistance, and

metastasis. Within the TME, signals such as IL-10, CCL2, CSF-1,

VEGF, and IL-6 secreted by cancer cells, adaptive immune cells,

fibroblasts, and TAMs recruit and differentiate monocytes into

M2-like TAMs (64, 65).

In vitro and in vivo studies suggest that CTCs may originate from

the fusion of tumor cells with hematopoietic or myeloid cells,

particularly macrophages (66). This intercellular interaction relies on

the formation of membrane protrusions, which facilitate signal

exchange over short distances (tens of micrometers) and long

distances (hundreds of micrometers) through direct cell contact.

Among these structures, the most extensively studied are protrusions

derived from filopodia, including cytochromes and tunneling nanotubes

(TNTs). TNTs represent the extended filopodia, connecting previously

non-adjacent cells through a process referred to as “protrusion

elongation” (67). M2−polarized macrophages more readily form
Frontiers in Immunology 06
membrane protrusions and fuse with tumor cells via tunneling

nanotubes than M1 macrophages. Wei et al. showed that M2

−derived IL−6 activates the JAK2/STAT3 pathway in tumor cells,

leading to STAT3 nuclear translocation and repression of miR−506

−3p, which upregulates FoxQ1. FoxQ1 induces epithelial–mesenchymal

transition (EMT), yielding CTCs with enhanced invasiveness, and

drives C-C motif chemokine ligand 2 (CCL2) secretion to recruit

more M2 macrophages, creating a pro−metastatic feedback loop (68).

Recent studies have revealed that TNT-mediated paracrine

signaling and juxtacrine interactions between tumor cells and

macrophages play crucial roles in shared molecular pathways that

enhance cell migration and invasion. The interaction between

macrophages and tumor cells in the TME predominantly depends

on classical paracrine mechanisms (69). Specifically, macrophages

secrete epidermal growth factor (EGF), which binds to epidermal

growth factor receptors (EGFR) on tumor cells, activating

downstream signaling pathways and inducing colony-stimulating

factor 1 (CSF-1) secretion. CSF-1 binds to its receptor to recruit

macrophages to tumor sites. This paracrine loop, mediated by tumor

cell-secreted CSF-1 and macrophage-secreted EGF, is critical in

facilitating the co-migration of tumor cells and macrophages

toward blood vessels. Once tumor cells enter the bloodstream, they

can be detected as circulating hybrid cells or CTCs (70).
4.2 Neutrophils-CTC interaction

Surgery-induced dissemination of circulating tumor cells (CTCs)

and the accompanying inflammatory response promote the growth
TABLE 1 Summarization of clinical trials related to the CTCs in Colorectal immunotherapy.

Number
of

CRC
patients

Stage
Rate of MSI-
H/PD-L1(+)

Results Reference

5 Advanced tumor 0.6(3/5) The dynamic changes of CTC could indicate the therapeutic response at early time (51)

8 Advanced tumor 0.75(6/8)
The clinical benefit of anti-PD-1/PD-L1 monotherapy in patients with advanced
colorectal cancer is limited, which may be related to the low proportion of MSI-H.

(52)

100 I-IV 0.44(44/100)
In 100 patients, MSI and CTC serve as accurate, reliable, and sensitive diagnostic and

prognostic biomarkers for survival and outcome in CRC patients
(27)

17 I-IV 0.24(4/17)

In MSI-H CRC, CTC release was increased before, during and after operation. The
number of CTC in peripheral blood of MSI-H tumor patients was much higher than
that of MSS patients. When using CTC as a prognostic predictor, the same cutoff value

should not be used for both

(23)

198 I-IV 0.05(8/163)

In 179 patients, both MSI-H and CTC elevation were associated with decreased PFS
and OS, but there was no significant difference, and CEACAM5mRNA positive CTCS
were considered to be predictors of poor prognosis (decreased OS) in patients with

metastatic CRC

(35)

31 I, III, IV 0.06(2/31)

A comprehensive genomic and transcriptomic analysis of colorectal source CTCS
revealed significant heterogeneity among CTCS, which may explain the relatively small
number of metastases compared to the number of CTCS present in the bloodstream
(42), and suggests that only a small percentage of CTCS are actually able to form

new lesions

(58)

62 I-IV 0.16(10/52)
The presence of more CTCs was significantly associated with advanced cancer stage (p

= 0.045) and adenocarcinoma subtype
(46)
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and metastasis of occult tumors by constructing a supportive tumor

microenvironment (TME) (71). Neutrophil extracellular traps(NETs),

composed of depolymerized DNA fibers modified by proteins secreted

by activated neutrophils, capture CTCs in cases of severe postoperative

sepsis. This fosters early adhesion of tumor cells to distant organs,

creating favorable conditions for tumor metastasis (72). These CTC-

neutrophil clusters form a “shield” around tumor cells, not only

physically isolating CTCs but also suppressing NK cell-mediated

cytotoxicity. Additionally, they promote tumor cell evasion by

releasing cytokines such as IL-1B, MMP-9, and HMGB1 (62, 73).

The significance of NETs-related genes in immunotherapy and

cancer treatment has garnered increasing attention. Studies have

demonstrated that the expression levels of NETs-related genes (e.g.,

H3Cit, NE, MPO) are closely associated with an immunosuppressive

microenvironment and the response to cancer immunotherapy (74).

During immune checkpoint inhibitor therapy, changes in the

expression of these genes can serve as indicators of immune

response intensity. Transcriptome analyses have identified 19 genes

associated with NETs formation, leading to the establishment of a

NETs scoring system. This score has been found to negatively

correlate with cancer patient prognosis (75, 76). Furthermore, the

expression levels of NETs-related genes across different tumor types

are intricately linked to mechanisms of tumor immune evasion,

immunosuppression, and cancer progression. In CTC-related

studies, the interaction between NETs and CTCs promote tumor

invasion, metastasis, and immune evasion through multiple

mechanisms. First, NETs physically entrap CTCs, enhancing their

intravascular retention and adhesion while shielding them from

immune clearance. Concurrently, NETs release proteolytic enzymes

—such as matrix metalloproteinase-9 (MMP-9) and neutrophil

elastase—that degrade the extracellular matrix, thereby creating a

permissive niche for tumor cell invasion and migration. They also

secrete cytokines like interleukin-8 (IL-8) and transforming growth

factor-b (TGF-b), which induce EMT in CTCs and further augment

their migratory and invasive capabilities. Moreover, NET-associated

high-mobility group box 1 (HMGB1) activates the RAGE and TLR4

signaling pathways to drive the release of pro-inflammatory

mediators (e.g., CXCL2, IL-8), recruiting additional neutrophils and

establishing a pro-metastatic inflammatorymicroenvironment. In the

realm of immune regulation, NETs discharge immunosuppressive

factors—including programmed death ligand-1 (PD-L1), reactive

oxygen species (ROS), and arginase-1 (ARG1)—to inhibit T cell

and natural killer (NK) cell cytotoxicity, while fostering the

accumulation of myeloid-derived suppressor cells (MDSCs) and

regulatory T cells (Tregs), thereby remodeling the tumor

microenvironment into an immunosuppressive state (77, 78).
4.3 Other immune cells

Circulating tumor cells (CTCs) evade immune surveillance

through multiple mechanisms, facilitating tumor metastasis and

modulating the function of immune cells. First, CTCs escape NK

cell surveillance by upregulating HLA-I through the cGAS-STING-

IFNb-HLA signaling pathway (79). Additionally, CTCs enhance
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immune evasion by upregulating N-cadherin, a natural ligand of the

NK cell receptor KLRG1. The interaction between N-cadherin and

KLRG1 inhibits NK cell cytotoxicity, induces NK cell

differentiation, and increases the proportion of KLRG1+ cells,

leading to NK cell exhaustion and impaired antitumor efficacy

(80). Furthermore, CTCs achieve immune evasion through

interactions with T cells, particularly via exosome-derived CD45

transferred to the tumor cell surface, forming CD45+ CTCs. These

CD45+ CTCs inhibit TCR signaling through CD45-CD45

interactions with T cells, reducing T-cell cytotoxic responses and

accelerating tumor metastasis (81). These findings elucidate the

complex interaction mechanisms between CTCs and immune cells,

providing new insights into tumor immune evasion and

highlighting potential therapeutic targets for CTCs-targeted

immunotherapy. The mechanisms of CTC immune evasion

involving various immune cells are summarized in Table 2.
5 Innovation and progress in
circulating tumor cell screening
technologies

5.1 Screening and application of novel
genetic markers

Liquid biopsy has emerged as a transformative approach in

oncology, encompassing diverse biomarkers such as circulating

tumor DNA (ctDNA), microRNAs (miRNAs), extracellular

vesicles (EVs), and CTCs to guide precision medicine (83). These

components collectively provide a non-invasive window into tumor

dynamics, enabling real-time monitoring of disease progression and

therapeutic response. Among these, CTCs hold unique value as

intact cellular entities that reflect both genetic and functional

characteristics of tumors, offering insights into metastasis and

immune evasion mechanisms.

In CTC screening, common genetic mutations associated with

colorectal cancer include KRAS and BRAF mutations. KRAS

mutations lead to the activation of KRAS protein, which

promotes tumor cell proliferation. BRAF gene mutations, in the

B-Raf proto-oncogene serine/threonine kinase, are closely related to

metastasis and drug resistance. However, the mutation rates of

KRAS and BRAF in colorectal cancer patients are only 40% and

10%, respectively (84–86). Advances in proteomic technologies,

such as those highlighted in hepatocellular carcinoma (HCC)

biomarker research, could enhance CTC characterization in CRC

(87). For example, mass spectrometry and pathway analysis—tools

pivotal for uncovering PI3K/AKT/mTOR dysregulation in HCC—

could likewise characterize post-translational modifications and

protein interactions in CTCs, thereby refining prognostic

assessments and therapeutic strategies in CRC. Notably, CTC

detection shows a 77% concordance with tumor tissue profiling

(88). The application of DNA microarray technology not only

allows for the detection of mutated genes that are masked by

wild-type DNA in contaminating leukocytes, but it also offers
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lower costs and higher sensitivity. With the help of DNA

microarrays, research can progress to the coding level. Commonly

analyzed mutations include KRAS mutations in exon 2 (codons 12

and 13), 3 (codon 61), and 4 (codon 146), NRAS mutations in exon

2 (codons 12 and 13), and BRAF mutations in exon 15

(V600E) (89).

Cluster differentiation (CD) markers are emerging as potential

targets. The expression of CD45 in CTCs is consistent with that in

corresponding tumor tissues, while CD47 expression is significantly

upregulated and closely associated with immune evasion by cancer

cells (90, 91). Mass spectrometry has been used to localize protein

glycosylation, revealing that cancer-associated glycans such as Sialyl-

Tn (STn) are expressed in most advanced gastrointestinal cancers,

including colorectal cancer, but are minimally expressed or absent in

normal tissues. Glycans, by modulating the activity of cell-surface

glycosyltransferases in tumor cells, induce aberrant glycosylation and

the emergence of truncated glycan epitopes (e.g., Tn and Sialyl-Tn).

These truncated glycan structures contribute to enhanced metastatic

potential, invasive capacity, and immune evasion (92, 93). In CTCs,

STn expression is considered one of the primary drivers of metastasis

and a significant downstream biological target. Studies have shown

that STn(+) CTCs can also be captured, with an incidence three times

higher than that of EpCAM(+) CTCs (94).
5.2 Breakthroughs in emerging screening
technologies: microfluidics and molecular
aptamers

5.2.1 CellSearch system
Counting circulating tumor cells (CTCs) is technically

challenging, as CTCs constitute less than 0.004% of all

mononuclear cells (95). The CellSearch System (Veridex) is the
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most widely utilized antibody-based isolation technology and the

only method approved by the U.S. Food and Drug Administration

(FDA) for detecting CTCs in the blood of patients with certain

cancers (96). The CellSearch System enriches tumor cells using

ferromagnetic beads coated with EpCAM antibodies. EpCAM

stands for Epithelial Cell Adhesion Molecule. Colorectal cancer

arises from the epithelial cells lining the colon or rectum, and these

tumor cells are highly likely to express EpCAM on their surface

(97). Consequently, EpCAM offers high specificity, as colorectal

carcinoma cells generally retain epithelial characteristics even

during metastasis. In contrast, CD45 serves as a pan−leukocyte

marker for negative selection, effectively labeling and depleting the

vast majority of immune cells to minimize contamination (98).

These magnetic beads specifically bind to EpCAM-positive CTCs,

capturing them and isolating them from the patient’s peripheral

blood (99). Flow cytometry is subsequently used to further sort out

and remove leukocytes, ultimately isolating individual CTCs (100).

CellSearch is currently the most established CTC‐enrichment

method, and the genomic mutational profile of isolated CTCs is

largely concordant with that of the primary tumor. However, its low

sensitivity has constrained the informational value of CTC

enumeration in this disease (101).

5.2.2 Microfluidics-based technology
Microfluidics-based cell sorting methods leverage fluid

dynamics and external forces (such as magnetic fields, electric

fields, acoustic waves, and optical forces) to separate cells based

on their physical and biological properties (102). Microfluidic

technology can organize CTCs into monolayers in a few minutes

(103). Yang et al. developed a label-free wedge-shaped microfluidic

chip called CTC-Dchip. This enrichment technique relies on size-

based filtration, using nano- to micron-scale pores to isolate CTCs,

which are larger and stiffer in shape, from blood cells (104). The
TABLE 2 the escape mechanism of CTC in immune microenvironment.

Immune
cell

Mediator Forming pathway Escape mechanism Reference

Macrophages M1 polarization

Induced by pathogen-associated molecular patterns
(PAMPs; e.g., LPS) and Th1 cytokines (e.g., IFN-g,
TNF-a). Induced by pathogen-associated molecular
patterns (PAMPs; e.g., LPS) and Th1 cytokines (e.g.,
IFN-g, TNF-a).

M1 macrophages contribute to anti-tumor immunity by
releasing pro-inflammatory cytokines and activating
cytotoxic T cells.

(70)

M2 polarization Driven by IL-4, IL-13, M-CSF, and TGF-b.

M2 macrophages secrete immunosuppressive factors
(IL-10, CCL2, MMP9), recruit regulatory T cells
(Tregs), and upregulate PD-L1 to inhibit T-
cell responses.

(70)

Neutrophils

NETs
(Neutrophil
Extracellular

Traps)

Activated by pathogens or inflammatory signals via
NETosis (chromatin release with proteases like
NE, MPO).

NETs physically trap CTCs, shield them from immune
clearance, degrade extracellular matrix (via MMP-9),
and recruit immunosuppressive cells (MDSCs, Tregs).

(82)

NK cell
mesenchymal
stromal cells
(MSCs)

CTCs secrete cGAMP to activate the STING pathway
in MSCs.

STING-IFNb signaling upregulates HLA-I on CTCs,
enabling evasion from NK cell surveillance.

(80)

T cell CD45+ CTCs Transfer of CD45 from exosomes to CTC surfaces.
CD45+ CTCs inhibit TCR signaling via CD45-CD45
interactions, reducing T-cell cytotoxicity and promoting
immune evasion.

(81)
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self-assembled cell array (SACA) has been demonstrated as a

reliable platform for CTC enumeration. When combined with a

3D-microDialysis chip, SACA enables image analysis to be

completed in under 4 hours and exhibits high sensitivity in

detecting one CTC among 105^55 cells. Additionally, SACA

combined with carcinoembryonic antigen (CEA) serves as a

powerful risk stratification tool. Patients with preoperative CTC

counts >4 and CEA levels >5 ng/mL had poorer progression-free

survival (PFS) compared to others (105). Microfluidic technology,

as a biophysical isolation method, exploits the intrinsic physical

properties of CTCs and blood cells. It enables the capture of

EpCAM‐negative CTCs, which often exhibit greater invasiveness

and metastatic potential, while bypassing the labor‐intensive,

multi‐step analyses required by biochemical isolation and

thereby significantly shortening enrichment time—making it well

suited for real‐time intraoperative monitoring (106). However,

megakaryocytes or activated leukocytes of similar size may be

misclassified as CTCs. Issues related to false positives (specificity)

and false negatives (sensitivity) remain major challenges for

immunomagnetic detection technologies in CTC isolation (107).

5.2.3 Application of molecular aptamers in CTC
detection

W3 is an aptamer that has long been regarded as a predictive

factor for colorectal cancer (CRC) metastasis. A molecular beacon

based on W3 (MAB-W3-3G) can act as a molecular probe,

specifically capturing CTCs in the bloodstream (108). The

molecular aptamer beacon combines the advantages of both

aptamers and molecular beacons, offering not only the specificity

of aptamers in detecting targets but also the convenience of

molecular beacons in operationally detecting those targets (109).

Lu et al. (2023) used SELEX technology to obtain the aptamer W3

from CRC cells and employed W3 as a specific recognition probe

for the molecular beacon (MAB). In the stem region of MAB, some

base sequences were modified to maintain stability, and the shortest

sequence out of four variants was selected, named W3-3. This was

further used to construct a monoclonal antibody, MAB-W3-3G. In

a real blood sample validation using 14 healthy blood donors and 28

CRC patients, no positive cells were detected in the blood samples

from healthy donors. In 28 CRC patient samples, 75% of the

patients tested positive for CTCs (21/28), indicating that MAB-

W3-3G-based imaging can specifically detect cancer cells in whole

blood. Notably, the number of CTCs in metastatic patients was

significantly higher than in non-metastatic patients (6.4 ± 2.0, n = 8

vs 2.3 ± 0.5, n = 20) (110). The W3 aptamer can be conjugated to

either quantum-dot probes or molecular beacons (MAB-W3-3G) to

enable one-step capture and quantification of metastatic CTCs in

patient blood, and it also selectively recognizes EphA2‐bearing

exosomes, achieving a detection sensitivity of 8.4×106 particles/

ml. Moreover, W3 exhibits excellent stability in both plasma and

culture medium—retaining full activity over a 3-hour period—and

is compatible with live‐cell imaging and microplate‐based

fluorescence assays, offering operational simplicity and reduced

sample loss (111). However, as it targets only a single EphA2
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marker, it is prone to interference from tumor cell expression

heterogeneity and nonspecific adsorption in whole blood (108).

Additionally, MAB-W3-3G shows elevated background signals at

37 °C, indicating that further probe optimization is required. Its

performance has thus far been validated only in a small cohort,

underscoring the need for larger, multicenter clinical trials to assess

diagnostic concordance and prognostic value (110).

5.2.4 Applications of nanomaterials in
biomedicine

Nanomaterials are widely used in the biomedical field due to

their unique physicochemical properties, such as high surface area

and good biocompatibility (112). Common nanomaterials include

gold, magnetic, and silica-based materials, which typically exist in

the form of nanoparticles, nanostructures, or nanowires (113). Gold

nanomaterials, owing to their excellent conductivity, stability, and

increased surface area, are able to effectively interact with various

biomolecules. They are commonly used in molecular detection and

imaging applications, such as fluorescence imaging and Raman

spectroscopy. Furthermore, the high biocompatibility of gold

nanoparticles allows them to enter the body and be used for the

separation and detection of CTCs (circulating tumor cells) and

CCSCs (cancer stem cells) (114). In related studies, gold nanorods,

when combined with targeted antibodies like EpCAM, CD44, etc.,

utilize surface-enhanced Raman scattering (SERS) technology to

achieve highly sensitive and multiplexed detection of CTCs from

blood samples (115). Silica-based nanomaterials are widely used in

CTC detection platforms due to their excellent chemical stability

and biocompatibility (116). The nanoparticles or nanostructures of

silica materials enhance interactions with cells, improving the

efficiency of CTC capture. They can also be integrated with

optical detection technologies and microfluidic devices to provide

higher sensitivity and specificity (117).

Despite the development of various commercial CTC

detection systems, which have made progress in laboratory

settings, these methods have not been widely adopted in clinical

practice due to certain limitations. Future clinical studies should

address how to improve CTC capture efficiency, simplify

identification methods, reduce cell loss, and optimize the clinical

applicability of nanotechnology to enhance the practical value of

CTC detection in early cancer diagnosis, monitoring, and therapy

(Table 3) (118).
6 Current status and challenges

Liquid biopsy, particularly the detection of circulating tumor

cells (CTCs), has shown tremendous potential in the

immunotherapy of colorectal cancer (CRC). However, challenges

remain in improving the sensitivity and specificity of screening due

to the short half-life of CTCs in circulation and the significantly

higher concentrations of CTCs in the portal vein/mesenteric vein

blood compared to central venous blood (119, 120). Furthermore,

the tumor heterogeneity of CRC further complicates CTC detection
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(121). CRC exhibits significant intra-tumoral and inter-tumoral

heterogeneity, with phenotypic and genotypic differences between

metastatic and primary lesions. This makes CTC capture and

analysis more complex. Such heterogeneity not only affects the

efficiency of CTC detection but also limits their utility as prognostic

and predictive biomarkers (122). For example, the metastatic routes

and hemodynamic changes in tumors may lead to different

biological characteristics of CTCs, increasing the technical

difficulty of detecting them (123). Additionally, current methods

for CTC isolation and characterization are still immature, and
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there is a lack of standardized operating procedures (SOPs).

Differences in reagents, equipment, and operational procedures

used in different laboratories make the reproducibility and

comparability of research results difficult. Therefore, developing

standardized operating procedures (SOPs) and validation methods

is crucial for the widespread application of liquid biopsy

technologies (124).

To overcome these challenges, scientists are developing liquid

biopsy technologies with higher sensitivity and specificity. One of

the current focuses of research is the improvement of CTC

separation techniques and the use of multi-biomarker combined

analysis. Traditional CTC capture methods typically rely on surface

markers, such as epithelial cell adhesion molecule (EpCAM).

However, these methods are prone to selective bias. As a result,

researchers are exploring multi-molecular marker-based combined

analyses to enhance the comprehensiveness and accuracy of CTC

capture (125–127). Multi-marker strategies not only improve CTC

capture efficiency but also address the limitations of relying on a

single marker, which may miss specific types of CTCs (128). Yu

et al. noted that the integration of genomics, transcriptomics,

proteomics, and metabolomics enables the construction of

comprehensive molecular profiles for early tumor detection and

therapeutic intervention. These approaches—particularly when

coupled with artificial intelligence (AI) and machine learning

(ML)–driven data analysis—enhance biomarker discovery by

detecting subtle patterns within heterogeneous datasets, thereby

facilitating real-time monitoring of treatment response and disease

progression (129). The integration of AI and ML technologies

provides new insights into the analysis of liquid biopsy data.

These technologies are capable of efficiently processing complex

multidimensional data, enabling researchers to extract valuable

clinical information from liquid biopsies (130, 131). For example,

AI algorithms can be used to analyze the morphological features of

CTCs, their gene expression profiles, and their relationship with

tumor progression, thereby improving the accuracy of liquid

biopsies in tumor diagnosis, prognosis evaluation, and monitoring

treatment responses (132).

In addition to technical advancements, conducting multicenter,

large-scale clinical studies and fostering multidisciplinary

collaboration are essential for transitioning liquid biopsy

technologies from research to clinical practice (133, 134).

Currently, the clinical application of liquid biopsy in colorectal

cancer is still in its early stages. Although some clinical studies

have shown that liquid biopsy has potential for early screening,

treatment response prediction, and prognosis evaluation of CRC, its

diagnostic accuracy and sensitivity still face many challenges (135).

For example, liquid biopsy may struggle with detecting mutations

with low allele frequencies, such as microsatellite instability (MSI),

due to insufficient sensitivity when mutation frequencies are too low,

especially in early-stage tumors or localized cancers (low tumor

mutational burden, TMB). Additionally, current liquid biopsy

technologies, particularly CTC detection based on next-generation

sequencing (NGS), are limited by low signal-to-noise ratios and

sample contamination (e.g., non-tumor cells such as immune and
TABLE 3 comparison of CTC detection technologies.

Method Advantages Disadvantages Reference

CellSearch

1.FDA-approved,
standardized
method for CTC
enumeration.
2.High specificity
via EpCAM-based
immunomagnetic
capture.
3.Validated
prognostic utility
in
multiple cancers.

1.Low sensitivity for
EpCAM-negative
CTCs.
2.Limited ability to
capture mesenchymal
or hybrid CTCs.
3.High cost and
technical complexity.

(99–101)

Microfluidic

1.Label-free
isolation based on
physical
properties (size,
deformability).
2.Captures
EpCAM-negative
CTCs.
3.Rapid
processing,
suitable for
intraoperative
monitoring.

Risk of false positives
due to
leukocyte
contamination.

(102–107)

Molecular
Aptamer

1.High specificity
and affinity for
target biomarkers
(e.g., EphA2).
2.Simple
operation and
reduced
sample loss

1.Targeting a single
marker (e.g., EphA2) is
susceptible to
heterogeneity and non
−specific adsorption.
2.Elevated background
signal at physiological
temperature (37 °C)
requires probe
optimization-.
3.Validation limited to
small cohorts; lacks
large multicenter data

(108–111)

Nanomaterials

1.High surface
area enhances
capture efficiency.
2.Multifunctional
integration (e.g.,
SERS,
fluorescence).
3.Customizable
surface
modifications for
targeted capture.

1.Potential cytotoxicity
and biocompatibility
concerns.
2.Challenges in
complex synthesis and
standardization.
3.Signal interference
within whole
blood environments.

(114,
115, 118)
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hematopoietic cells in the blood) (136–138). Furthermore, combining

liquid biopsy with other components, such as circulating tumor DNA

(ctDNA), may significantly enhance the sensitivity and specificity of

early colorectal cancer detection (139). This approach could further

help identify advanced colorectal cancer patients who are suitable for

immunotherapy or surgical resection (140).
7 Conclusion and future prospects

This article summarizes the clinical significance of circulating

tumor cells (CTC) in the immune treatment of colorectal cancer

(CRC), particularly in the roles of prognosis assessment, immune

escape, drug resistance mechanisms, and tumor microenvironment

(TME) interactions. Research shows that CTCs have significant

potential in treatment monitoring and immunotherapy in CRC

patients. MSI-H patients often exhibit higher CTC counts, which

may suggest better prognoses in response to immunotherapy.

Additionally, the role of PD-L1 positive CTCs in immune resistance

further validates the potential of CTCs as predictors of drug response.

Looking forward, the use of CTCs as a liquid biopsy tool for

CRC, particularly in personalized treatment and early screening,

still holds vast developmental potential. With the discovery of new

genetic markers and advancements in screening technologies, CTCs

could provide more precise prognosis predictions and treatment

response evaluations for CRC patients.
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