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The dual regulatory effects of
intestinal microorganisms and
their metabolites in gouty
arthritis pathogenesis: a
balance between promotion
and inhibition
Peng Qi1, Longcan Li1, Jianrong Zhang1, Ling Ren1

and Xingwen Xie2*

1Gansu University of Traditional Chinese Medicine, Lanzhou, China, 2Affiliated Hospital of Gansu
University of Traditional Chinese Medicine, Lanzhou, China
Gout is an arthritis characterized by the deposition of urate crystals, often

accompanied by robust inflammatory responses. The gut microbiome

profoundly influences gout pathogenesis, progression, and management by

affecting uric acid metabolism, immune responses, and intestinal barrier

function. Studies reveal that gut microorganisms exert a dual role in gout

development. Gout patients typically exhibit increased harmful bacterial

abundance and reduced beneficial species. Harmful bacteria and associated

metabolites can influence systemic uric acid levels by regulating excretion and

synthesis, thereby promoting gout manifestations. Conversely, beneficial

bacteria interact with the host immune system to inhibit inflammation and

modulate the inflammatory state of joints. Furthermore, the gut microbiome

can significantly impact gout treatment efficacy through its influence on drug

metabolism and absorption. Research highlighting the gut-joint-inflammation

axis offers novel therapeutic strategies for gout, suggesting that future

approaches may involve microbiome modulation to enhance clinical outcomes.
KEYWORDS
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1 Introduction

Gouty arthritis (GA), a metabolic disorder arising from dysregulated purine

metabolism culminating in elevated serum uric acid (UA) concentrations, constitutes a

prevalent inflammatory arthritis form, characterized by tissue and organ-damaging

modifications (1). Global GA prevalence is estimated at approximately 2-4%, with higher

incidence in men over 40 years of age, frequently co-occurring with comorbidities, such as

obesity, coronary artery disease, hypertension, and diabetes mellitus (1). GA originates
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from aberrant purine metabolism or diminished UA excretion,

leading to monosodium urate (MSU) crystal deposition intra- and

peri-articularly. Clinical manifestations encompass inflammatory

symptomatology, including erythema, edema, calor, and dolor in

joint soft tissues (2). Initial onset site is typically the first

metatarsophalangeal joint, but it can extend to larger joints and

instigate systemic acute inflammatory sequelae (3).

The human microbiome represents a critical ecosystem for

sustaining health and mediating disease development (4–8).

Gastrointestinal microorganisms constitute approximately 70% of

the total microbial population within this ecosystem (9). The

human gut microbiome is predominantly composed of

Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacteria phyla

(10), participating in diverse physiological processes, such as

nutrient metabolism, xenobiotic detoxification, immune

modulation, and intestinal barrier integrity maintenance (11).

Investigations indicate that the gut microbiota influences various

autoimmune disease pathogenesis by modulating the host immune

system (12). Upon gut microbiota dysbiosis, detrimental bacterial

taxa proliferate excessively, and elaborated metabolites, such as

polyphenols, vitamins, and tryptophan, may trigger GA onset (13).

Furthermore, gut microorganism and metabolite alterations not

only impact GA therapeutic efficacy but may also affect

pharmacological agent toxic side effects. In-depth exploration of

gut microorganism and GA interplay is of paramount significance

for elucidating disease mechanisms, enhancing diagnostic precision,

and optimizing therapeutic strategies.
2 The association of gut microbiome
with GA

The gastrointestinal tract, the most microbial-rich human

habitat, encompasses a 250–400 square meter surface area and

harbors approximately 1014 microorganisms (14). Given that

roughly 30% of UA is excreted via the gastrointestinal tract, the

gut microbiome-GA relationship is receiving escalating attention.

Gut microbiota dysbiosis is implicated in various diseases (15),

encompassing hyperuricemia and GA. Gut microbes participate in

purine and UA metabolism via diverse pathways: Escherichia coli

and Proteus spp. secrete xanthine dehydrogenase, fostering purine

conversion to UA (16, 17); Lactobacillus spp. inhibit intestinal

purine absorption, preventing serum UA level elevations;

Pseudomonas spp. synthesize uricase, participating in UA

catabolism (18); a multitude of gut microorganisms secrete UA

transporters, influencing UA excretion (19).

The gut microbiome in gout patients exhibits characteristic

alterations: augmented Prevotella, Clostridium, Bacteroides,

Megamonas, and Xylanibacter abundance, and diminished

Enterobacteriaceae, butyrate-producing bacteria, Coprococcus, and
Abbreviations: GA, Gouty arthritis; SCFAs, short-chain fatty acids; FMT, fecal

microbiota transplantation; XOD, Xanthine oxidase; LPS, Lipopolysaccharide;

UA, Uric Acid; MSU, Monosodium Urate; NLRP3, NLR family pyrin domain

Containing 3.
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Bifidobacteria abundance (20). Functional genomic analysis reveals

increased fructose, mannose metabolism, and lipid A biosynthesis

gene abundance in gout patients, and reduced UA degradation and

short-chain fatty acids (SCFAs) production gene abundance (20).

Diminished Enterobacteriaceae species abundance correlates with

reduced amino acid metabolism and environmental sensing,

collectively contributing to elevated serum UA and C-reactive

protein concentrations (21). Liu et al., utilizing stable isotope

tracing technology in a human intestinal bacterial library, identified

46 UA-degrading bacterial taxa, belonging to Actinobacteria,

Firmicutes, Clostridia, and Proteobacteria phyla (22). These strains

metabolize UA into xanthine or SCFAs (22). Transcriptomic analysis

unveiled a highly conserved gene cluster (ygeX, ygeY, ygeW, ygfK, and

ssnA) encoding pivotal UA degradation enzymes (23). Uricase-

deficient murine model studies have confirmed that gut microbiota

depletion exacerbates hyperuricemia, whereas UA-degrading bacteria

colonization attenuates UA levels. Recent research indicates

Phascolarctobacterium and Bacteroides enrichment in gout patients,

forming a distinctive core microbiome encompassing three

Bacteroides genera (24). Researchers have subsequently developed a

17 gout-associated bacteria diagnostic model based on these

characteristics, providing novel biomarkers for gout early diagnosis

and prognostic assessment (25). Table 1 shows the correlation

between intestinal microorganisms and metabolites and GA.
3 Mechanisms of gut microbiota and
metabolite promotion of GA
development

The gut microbiota participates in GA pathogenesis via multiple

regulatory mechanisms (26, 27). The abundance of specific bacteria,

including Prevotella, Bacteroides fragilis, and Xylan-degrading

Bacteroides, is significantly increased in patients with gout. This

dysbiosis, marked by an expansion of pathogenic microbes,

contributes to the development of GA through its impact on gut

barrier integrity, metabolic regulation, and immune system function.

Figure 1 schematically illustrates gut microbiota and metabolite

promotion of gout development. In innate immunity, gut

microbiota dysbiosis leads to aberrant pattern recognition receptor

activation, pro-inflammatory mediator expression upregulation, and

anti-inflammatory mediator level downregulation, disrupting local

immune homeostasis (28). At the adaptive immunity level, dysbiotic

microbiota mediates autoimmune responses by modulating antigen-

presenting cell function, T cell subset differentiation, and B cell

activation. Microbiota dysbiosis-elicited inflammatory responses

impair tight junctions between intestinal epithelial cells,

augmenting intestinal permeability. Increased permeability

facilitates microorganism and metabolite entry, and antigenic

components, into the circulatory system, triggering systemic

immune responses. These mechanisms establish a positive feedback

loop: immune dysfunction exacerbates barrier functional

impairment, and barrier functional damage, in turn, potentiates

immunostimulatory molecule release, further amplifying immune

abnormalities and leading to sustained GA progression.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1591369
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qi et al. 10.3389/fimmu.2025.1591369
3.1 Immunomicroenvironmental regulation

The gut microbiota orchestrates GA progression via the

immune network. At the innate immunity level, gut-associated

lymphoid tissue immune cells engage in signaling crosstalk with

the microbiota, establishing an immune defense barrier (29). Gut

microbiota dysbiosis precipitates aberrant innate immune cell

activation, pro-inflammatory mediator upregulation, such as

Interleukin-6, tumor necrosis factor-alpha, Interleukin-1b,
Interleukin-12, and Interleukin-23, and anti-inflammatory

mediator level downregulation, such as transforming growth

factor-beta and Interleukin-10 (27, 30). In adaptive immune

modulation, microbial antigens are recognized by dendritic cells

and macrophages and presented to CD4+ T cells, inducing their

differentiation (31, 32). Gut microbiota imbalance can augment

intestinal permeability, leading to LPS translocation into the

circulatory system, precipitating metabolic endotoxemia and

inflammation (33). Elevated xanthine oxidase (XOD) activity is

associated with increased serum LPS concentrations and chronic

inflammation (34). Uox-KO mice exhibit significantly elevated

inflammatory cytokine, LPS, and XOD activity levels (35).

Compared with normouricemic mice, hyperuricemic murine
Frontiers in Immunology 03
models demonstrate diminished Bifidobacterium and Lactobacillus

abundance in fecal samples, accompanied by elevated UA, XOD

activity, and LPS levels (36), thereby accelerating GA pathogenesis

and progression.
3.2 Metabolic Modulation

The gut microbiota and its metabolites play a crucial role in

gout pathogenesis and progression by modulating UA metabolism.

UA transporters in intestinal epithelial cells transport UA from the

bloodstream to the intestinal lumen (37). The microbiota influences

UA metabolism by modulating UA transporter expression, such as

ABCG2 and SLC2A9 (38, 39). Purine, a precursor of uric acid, can

accumulate during its metabolic processes, leading to excessive uric

acid production. Escherichia coli and Proteus species are capable of

secreting xanthine dehydrogenase, which catalyzes the conversion

of purines to uric acid, thereby directly enhancing the host’s

capacity for uric acid synthesis. This process further aggravates

hyperuricemia and the development of GA. Amino acid

metabolism plays a significant role in gout development. Amino

acids, such as aspartic acid and glycine, participate in purine
TABLE 1 Correlation between intestinal microbiota and metabolites and GA.

Microorganism Effect on tumors Mechanism

Prevotella,

Promote

Activate T cells, release LPS, induce metabolic endotoxemia,
promote inflammation

Bacteroides

Xylan-
degrading Bacteroides

Escherichia coli
Secrete xanthine oxidase, increase uric acid production from purines

Proteus

Aspartic acid
Promote purine synthesis, increase uric acid production

glycine

LPS Increase intestinal permeability

Bifidobacterium

Inhibits

Suppress inflammation

Faecalibacterium

Blautia

Ruminococcus

Lactobacillus

Butyrate,
propionate, acetate

5-HIAA
suppress synovial cell proliferation

kynurenic acid

Lactobacillus plantarum

Degrade uric acid or inhibit purine absorption

L. gasseri

Pseudomonas

Bacillus

engineered E. coli
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biosynthesis, augmenting UA production. Aberrant amino acid

metabolism can diminish UA excretion. Furthermore, amino acid

metabolites promote UA crystal deposition and exacerbate gout

symptomatology by modulating immune and inflammatory

responses. Gut microbiota dysbiosis may also accelerate gout

onset by altering amino acid metabolism (38, 40). The gut

microbiota promotes gout pathogenesis by influencing amino acid

metabolism. The high-gout cluster microbiota manifests increased

D/L-alanine and branched-chain amino acid metabolism,

modulating UA biosynthesis (41). The abnormal accumulation of

these metabolites may regulate uric acid production and levels

through modulation of the purine synthesis pathway or by

indirectly affecting uric acid excretion. Furthermore, amino acid

metabolites may contribute to the deposition of urate crystals by

modulating immune responses and inflammatory pathways,

thereby aggravating the clinical manifestations of gout.
3.3 Intestinal barrier impairment

The intestinal barrier constitutes a multi-layered defense system,

composed of the gut microbiota, mucus layer, epithelial cell

monolayer, and lamina propria immune cells (42). Within the
Frontiers in Immunology 04
epithelial barrier, intercellular tight junction proteins play a pivotal

role in maintaining barrier integrity by regulating transepithelial

permeability and cellular mechanical junctions (43, 44). Increased

intestinal permeability, resulting from diminished epithelial tight

junction protein occludin and claudin-1 expression, exhibits a

positive correlation with serum UA levels (45) (46) (47). Intestinal

barrier impairment precipitates gut microbiota dysbiosis. Metabolites

elaborated from gut microbiota dysbiosis, such as hydrogen sulfide,

reactive oxygen species, and reactive nitrogen species, exert direct

damage to intestinal epithelial cell structure and function (48),

augmenting intestinal permeability, subsequently leading to

bacterial translocation and increasing inflammation and gout

incidence. LPS constitutes the principal Gram-negative bacteria cell

wall component. Gut micro-ecological imbalance can markedly

inhibit Gram-negative bacteria physiological activity, leading to

increased LPS elaboration. Excessive LPS can induce pro-

inflammatory cytokine production and augment intestinal barrier

permeability, precipitating metabolic endotoxemia (49). In gout

pathogenesis, gut microbiota dysbiosis promotes LPS translocation

into the bloodstream by impairing intestinal barrier function, leading

to metabolic endotoxemia. This process not only escalates the

systemic inflammatory burden but can also exacerbate UA

accumulation and gout onset by affecting renal function (50).
FIGURE 1

A schematic representation illustrating how gut microbiota and its metabolites contribute to the initiation and progression of gout. In the context of
dysbiosis, an increase in pathogenic bacteria activates T cells, leading to the secretion of lipopolysaccharides (LPS), which triggers metabolic
endotoxemia and induces systemic inflammation, thereby exacerbating gout flare-ups. Moreover, dysbiosis alters the expression of urate
transporters, impeding uric acid excretion and elevating serum uric acid levels. Compromised barrier integrity facilitates the translocation of bacteria
and their metabolites into the bloodstream, further amplifying inflammation and promoting the deposition of urate crystals, which increases the
risk of GA.
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4 Gut microbiota and metabolite
mechanisms inhibiting GA
development

Gut microbiota dysbiosis exerts a dual regulatory role in GA

pathological progression. Beneficial bacterial communities play a

protective role by modulating immune responses and maintaining

intestinal barrier integrity. Investigations have revealed significantly

reduced Faecalibacterium and Bifidobacterium catenulatum

abundance in gout patients (21). Metagenomic analysis has

corroborated decreased Enterobacteriaceae bacteria and butyrate-

producing bacteria numbers within gout patient intestines (38). In a

hyperuricemic nephropathy rat model, beneficial bacterial taxa,

such as SCFA-producing Blautia and Ruminococcus genera, were

markedly diminished. Figure 2 schematically illustrates gut

microbiota and metabolite inhibition of gout development.
4.1 Immunosuppressive regulatory
mechanisms

Gut microbiota and their metabolites inhibit GA pathogenesis

and progression by modulating immune cell function and
Frontiers in Immunology 05
inflammatory cytokine expression. The NLR family pyrin domain

Containing 3 (NLRP3) inflammasome, functioning as a metabolic

stress sensor, participates in gout development (51–53). Lactobacillus

spp. inhibit NLRP3 activation by restoring mitochondrial membrane

potential, and Bifidobacterium longum and Bacteroides fragilis

suppress NLRP3 activation via inflammatory signaling pathway

inhibition (54–56). Lactobacillus casei elicits anti-inflammatory

responses by interleukin-10 expression upregulation and

Interleukin-6 and tumor necrosis factor-a level downregulation.

Lactobacillus rhamnosus mediates immunosuppression by

modulating Interleukin-1 expression. Phascolarctobacterium

praecalvibacter reduces pro-inflammatory mediator concentrations,

Interleukin-17, Interleukin-1b, and tumor necrosis factor-a, while
concurrently promoting symbiotic microbiota proliferation, such as

Akkermansia and Bifidobacteria (57, 58). Microbial metabolites play a

crucial role in immunomodulation. Butyrate, a SCFA, promotes

follicular regulatory T cell differentiation (59). Parabacteroides

distasonis-produced bile acid metabolites induce macrophage M2

polarization and inhibit Th17 cell differentiation via TGR5 receptors

(60). The tryptophan metabolic network plays a salient role in GA

immunomodulation: 5-hydroxyindoleacetic acid induces regulatory

T cell differentiation via aromatic hydrocarbon receptors (61);

kynurequinolic acid inhibits synovial cell proliferation (62); 3-

hydroxyanthranilic acid suppresses inflammatory responses by
FIGURE 2

A schematic representation illustrating how gut microbiota and its metabolites suppress the onset and progression of gout. Beneficial bacteria and
their metabolites mitigate inflammation through immune modulation mediated by TGR5, while uricase reduces systemic uric acid accumulation.
Nutritional factors, such as dietary fiber, enhance microbiota composition, preserve gut barrier integrity, and decrease the permeability to harmful
substances. These mechanisms work in concert to inhibit the development and recurrence of GA.
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blocking the NF-kB signaling pathway (63). Blautia- and Roseburia-

elaborated butyrate attenuates GA flares by inhibiting MSU crystal-

induced Interleukin-1b, Interleukin-6, and Interleukin-8 production.

4.2 Metabolic regulation

Gut microorganisms regulate UA metabolism via multiple

enzymatic systems, and certain beneficial bacterial taxa exhibit

UA oxidase and xanthine dehydrogenase inhibitory activities.

Lactobacillus and Pseudomonas spp. promote UA catabolism and

excretion by producing SCFAs (64). The Lactobacillus genus

catabolizes inosine and guanosine to inhibit UA biosynthesis (65–

67). Lactobacillus OL-5, Lactobacillus plantarum Mut-7, and

Lactobacillus plantarum Dad-13 exhibit elevated uricase activity

and can degrade UA via uricase, thereby reducing in vivo UA

accumulation (37). Lactobacillus gallinarum reduces intestinal

purine concentrations (68). Lactobacillus gasseri diminishes

purine absorption (18). Propionate and butyrate promote UA

excretion by supplying adenosine triphosphate (69, 70). Bacillus,

Proteus mirabil is , Escherichia coli , and various other

microorganisms can degrade UA via uricase, thereby reducing in

vivo UA accumulation (71) (72), consequently inhibiting

GA development.
4.3 Intestinal mucosal barrier restoration

Aberrant intestinal barrier function is intimately associated

with autoimmune disorders. Nutritional factors participate in

barrier repair by modulating microbial composition and

metabolic pathways. Dietary fiber maintains barrier integrity by

reducing serum Zonulin and calprotectin levels (73) (74). Vitamin

D modulates epithelial cell tight junctions and apoptosis (75).

Vitamin E promotes butyrate-producing bacteria proliferation

(76). Glutamine and tryptophan deficiency result in barrier

function impairment (77, 78). Plant polyphenols confer barrier

function protection by enhancing transepithelial electrical

resistance and ZO-1 and claudin-1 expression upregulation (79).

Butyrate repairs intestinal epithelial cells and stabilizes the epithelial

mucosal barrier (72). Acetate provides energy substrates for

intestinal epithelial cells and promotes UA transport (72).

Bifidobacteria ameliorate mucosal barrier function by inhibiting

detrimental strain proliferation (80), and SCFAs mediate mucosal

barrier repair (81), thereby inhibiting GA progression.
5 Translational gut microbiome
applications in GA diagnosis and
therapeutics

Gut microbiota composition and diversity alterations participate

in GA pathogenesis and progression via immune system modulation

(82). Gut microbiome-based intervention strategies have

demonstrated preliminary therapeutic efficacy in GA clinical

investigations. Animal studies have substantiated that probiotic

supplementation and intestinal barrier stability maintenance,

among other measures, possess potential therapeutic value for GA
Frontiers in Immunology 06
(83), suggesting that precision microbiome composition modulation

may facilitate novel diagnostic biomarker and personalized

therapeutic regimen development.
5.1 Diagnostic biomarkers

Predicated on the gut microbiome-gout development

correlation, gout-specific microbiota may serve as potential

diagnostic biomarkers. Lin et al., based on bacterial genera

exhibiting significant disparities between healthy individuals and

gout patients, constructed a classification model with an area under

the receiver operating characteristic curve reaching 0.973 (84).

Another cohort study established a 17 gout-associated bacteria

diagnostic model, achieving 88.9% accuracy (20). Chu et al., via

metagenomic analysis, identified three genes significantly enriched

in the gout cohort, with development and validation cohort area

under the receiver operating characteristic curve of 0.91 and 0.80,

respectively (21). Gout-characteristic gut microbiota imbalance

may serve as a non-invasive diagnostic tool for gout and

asymptomatic hyperuricemia, providing novel prevention and

intervention targets. The significance of gut microbiota

characteristics extends beyond current diagnostic applications,

with dynamic changes also being explored as potential prognostic

indicators for disease progression and treatment response.

Monitoring shifts in the gut microbiota structure and function in

gout patients undergoing urate-lowering therapy or probiotic

interventions can provide valuable insights into treatment

efficacy, while also offering the potential to predict disease

progression and relapse risk. To more deeply investigate the

complex interplay between gut microbiota and the immune-

pathological processes of gout, advanced technologies are

increasingly being applied to identify relevant biomarkers (85).

Spatial transcriptomics and spatial proteomics offer the ability to

perform high-resolution analyses of local microenvironments—

such as synovial and renal tissues—while preserving spatial

context, allowing for precise mapping of microbial components,

immune cell populations, inflammatory mediators, and urate

crystal distribution, along with their interactions. By correlating

this localized microenvironmental data with global gut microbiota

profiles obtained via high-throughput sequencing, we can uncover

how distal gut microbial signals impact local joint inflammation or

renal damage, thereby identifying spatial biomarkers more tightly

associated with gout onset, progression, and prognosis (86). These

integrative approaches offer novel insights into how gut microbiota

modulate host immunity and regulate local microenvironments in

the context of gout, paving the way for the discovery of

mechanistically targeted biomarkers with potential clinical

diagnostic, prognostic, and predictive applications.
5.2 Gut Microbiota and Metabolite-Based
GA Therapies

Non-steroidal anti-inflammatory drugs, glucocorticoids, and

colchicine constitute first-line pharmacological agents for acute
frontiersin.org
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gout management (87). XOD inhibitors and uricosuric agents serve

as first- and second-line choices, respectively, for UA-lowering

therapy (88). Gut microbiota dysbiosis can impact therapeutic

outcomes (89): GA patient gut microbiota composition undergoes

post-treatment alterations, promoting SCFA and acetate

production (90).

5.2.1 Post-traditional pharmacotherapy gut
microecology alterations

Non-steroidal anti-inflammatory drugs can disrupt gut microbiota

equilibrium, fostering Gram-negative bacteria proliferation and

inhibiting Gram-positive bacteria growth. Microbiota dysbiosis

activates inflammatory responses via the TLR4 pathway and

augments intestinal permeability (91, 92). Colchicine blocks

microtubule protein polymerization, precluding inflammasome

activation (93). However, colchicine demonstrably impacts

gastrointestinal architecture, altering gut microbiota diversity and

composition, resulting in pro-inflammatory mediator downregulation

and intestinal barrier impairment (94). Allopurinol therapy can

augment Bifidobacteria abundance and reduce anaerobic bacteria

numbers (89). Bilophila genera, as the sole reducing genus, can

induce systemic inflammation (95). Benzbromarone reduces UA

concentrations by blocking URAT-1 (96), while concurrently

modifying gut microbiota composition, increasing Bifidobacteria and

reducing butyrate-producing bacteria (89). Febuxostat inhibits XOD
Frontiers in Immunology 07
activity and can partially restore gut microbiota diversity in gout

patients (66). Functional analysis reveals enhanced purine

metabolism potential of gut microorganisms in post-treatment

patients (84), and micro-inflammation suppression (97).

5.2.2 Microbiome-mediated therapeutic efficacy
modulation mechanisms

Novel therapeutic modalities, such as natural products,

probiotics, and fecal microbiota transplantation (FMT), regulate

gout pathogenesis and progression via multiple mechanisms (98–

100). Figure 3 schematically illustrates microbiome-mediated

therapeutic approaches. These modalities inhibit purine

metabolism and inflammasome activation, regulate transporter

protein expression, and maintain intestinal barrier integrity.

Concurrently, they can augment SCFA-producing bacteria

abundance, thereby inhibiting XOD activity and achieving UA-

lowering effects (101). These interventions provide novel paradigms

and potential targets for gout therapy.

(1) Probiotics

Probiotics, such as Bifidobacteria and Lactobacillus genera,

ameliorate gout symptomatology by modulating gut microbiota

structure and function (102). Novel probiotics, including

Faecalibacterium prausnitzii, Akkermansia muciniphila, and

Clostridium spp., also demonstrate therapeutic potential (103).

Lactobacillus fermentum JL-3 can rectify gut microbiota dysbiosis
FIGURE 3

Schematically illustrates microbiome-mediated therapeutic approaches. Microbiome-mediated therapies encompass probiotic modulation, microbial
combination with natural products, FMT, bioactive peptides, and other modalities. Among these, probiotics regulate gut microbiota structure and
function to ameliorate gout symptomatology. Microbial combination with natural products, FMT, bioactive peptides, and other therapeutic
interventions can effectively reduce serum UA levels, attenuate inflammatory responses, and inhibit GA pathogenesis and progression, providing
novel paradigms for GA treatment.
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associated with hyperuricemia (99). Probiotic strain DM9218

diminishes serum UA concentrations and hepatic XOD activity

(104). Uricase-elaborating bacteria-containing probiotics can

improve hyperuricemia and confer renal function protection

(105). Prebiotics, functioning as selective substrates for host

microorganisms (106), can augment Lactobacil lus and

Bifidobacteria abundance and foster butyrate and propionate

production (107), providing novel therapeutic avenues for gout.

In a diet-induced hyperuricemic murine model, EH-JAP and EH-

LEU improved hyperuricemia and GA by inhibiting UA

biosynthesis and promoting UA excretion. Concurrently, these

two therapeutic regimens improved gut microbiota functionality

by increasing beneficial Lactobacillus and SCFA-producing bacteria

abundance and reducing opportunistic pathogen numbers (37).

(2)Microbial combination with natural products

Microbial combination with natural products can effectively

diminish serum UA levels and inhibit GA pathogenesis and

progression. Luteolin attenuates serum UA concentrations in GA

mice by modulating gut microbiota composition, reversing

Bacteroidetes and Firmicutes phyla dysbiosis. Investigations

suggest that luteolin also ameliorates renal function in GA-

induced chronic kidney disease mice by modulating gut

microbiota-mediated tryptophan metabolism (108). Metabolomic

analysis indicates that nuciferine can inhibit hyperuricemia

development by modulating impaired metabolic pathways and

gut microbiota composition (109). Ulva pertusa polysaccharide,

the most prevalent nuciferine family green algae extract, not only

reduces serum UA levels but also significantly enhances gut

microbiota diversity, particularly increasing Alistipes and

Parasutterella genera abundance. Correlation analysis reveals

Parasutterella content exhibiting a negative correlation with UA

levels (110). Therefore, microbial combination with natural

products offers novel gout therapy strategies.

(3) Fecal microbiota transplantation

FMT can reduce serum UA concentrations in gout patients and

diminish acute gout flare frequency and duration (37).

Simultaneously, FMT can reduce diamine oxidase and endotoxin

levels and ameliorate impaired intestinal barrier function (100).

Animal experiments further substantiate FMT potential value in

hyperuricemia therapy. Furthermore, FMT effectively alleviates

hyperuricemia in mice by selectively modulating AJOP-related

metabolic pathways, suggesting AJOP protective effect partially

contingent upon microbiota modulation (111). Goose essence-

treated mice FMT also demonstrates significant anti-hyperuricemic

effects, with mechanisms encompassing gut microbiota equilibrium

restoration, intestinal epithelial barrier repair, and SCFA production

promotion (112). Although FMT long-term human health effects

necessitate further clinical validation, it offers a novel gout treatment

option and possesses significant clinical application prospects.

(4)Bioactive peptides

Bioactive peptides constitute a key research domain in food,

health products, and specialized medical foods. These polypeptides

are not only elaborated from intestinal microbial proteases acting

on dietary proteins but also significantly modulate gut microbiota

structure, consequently impacting host health. Tuna oligopeptides
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ameliorate hyperuricemia and GA by reprogramming UA

metabolic pathways, inhibiting NLRP3 inflammasome and TLR4/

myeloid differentiation primary response 88/nuclear factor-kappa

beta signaling pathway activation, and p65-nuclear factor-kappa

beta phosphorylation. Concurrently, tuna oligopeptides repair the

intestinal epithelial barrier, rectify gut microbiota dysbiosis, and

promote SCFA production (113). Investigations reveal that

hexapeptides GPAGPR and GPSGRP, as potential microbiota

modulators, reduce serum UA levels by inhibiting UA

biosynthesis and reabsorption, and attenuate renal inflammation

by inhibiting NLRP3 inflammasome activation. These two peptides

also diminish gut microbiota richness and diversity, altering

phylum and genus level microbiota composition (114). Sea

cucumber oligopeptides significantly alleviate hyperuricemia, with

action mechanisms encompassing UA metabolism modulation,

NLRP3 inflammasome and nuclear factor-kappa beta-related

signaling pathway activation inhibition, and m6A methylation

level restoration (111).
6 Conclusion

GA is a complex autoimmune disorder with multifactorial

pathogenesis, wherein gut micro-ecological imbalance plays a

pivotal role in disease progression. GA patients exhibit

characteristic alterations, including detrimental bacteria increase

and beneficial bacteria decrease. Gut microbiota and metabolites

participate in GA regulation through multiple pathways: detrimental

bacteria promote GA pathogenesis and progression by fostering

inflammation and disrupting the intestinal barrier, whereas

beneficial bacteria inhibit GA pathogenesis and progression via

inflammation suppression and intestinal barrier repair. Gut

microbiota and metabolites possess potential applicability in GA

diagnosis and therapy. Microbiota composition analysis can predict

GA susceptibility and has emerged as an efficacious methodology

for morbidity prediction and control. Furthermore, gut microbiota

and enzymatic products can directly or indirectly influence

pharmaceutical agent bioavailability, clinical efficacy, and toxicity,

while therapeutic drugs and active compounds can also modulate

immune cell function by normalizing gut microbiota composition.

While therapeutic strategies targeting the gut microbiome have

demonstrated potential for modulating the immune system, current

research faces several limitations. The molecular mechanisms by

which specific microbial communities or metabolites regulate host

immune responses and drive the pathogenesis of GA remain

elusive. Precise mechanisms linking gut microbiota dysbiosis and

impaired intestinal barrier function to the induction of systemic

inflammatory responses also warrant further investigation.

Moreover, applying microbiota modulation strategies for GA

therapy is challenging, primarily due to significant inter-

individual variations in gut microbial composition, immune

responses, and therapeutic efficacy, which can substantially

impact intervention outcomes. However, leveraging continuous

advancements in genomics, microbiology, and immunology,

coupled with multidisciplinary integrated analyses, the
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development of personalized microbiome-based interventions

holds promise for enhancing the precision and effectiveness of

GA therapy. Future efforts must prioritize exploring the intricate

microbiota-immune interactions to facilitate the development of

truly personalized therapies. Rigorous systematic clinical studies

and robust experimental data are essential to fully realize the

potential of microbiota modulation as a novel therapeutic strategy

for GA.
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