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Single-cell atlas of human
skin implicates APOE pro-
inflammatory signaling in
diabetic foot ulcers
Yating Yin1,2†, Li Li1†, Mingen Liu1 and Bin Wang1*

1Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao
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Shanghai University of Traditional Chinese Medicine, Shanghai, China
Background: Diabetic foot ulcers (DFU) are a major global complication of

diabetes mellitus, yet their underlying mechanisms remain incompletely

understood. Fibroblasts are key regulators in the finely tuned process of

wound healing.

Methods: Single-cell RNA sequencing was performed on human skin tissues to

delineate cellular composition and transcriptional profiles.

Results: We identified a distinct fibroblast population overexpressing

Apolipoprotein E (APOE) in DFU patients with non-healing wounds. APOE+

fibroblasts were predominantly enriched in DFU patients, and exhibited strong

associations with fat cell differentiation and the regulation of epithelial cell

proliferation. Metabolic pathway analysis indicated that APOE+ fibroblasts

might play a role in the onset and progression of diabetes through the Drug

Metabolism-Cytochrome P450 pathway. Pseudotime analysis suggested that

APOE+ fibroblasts are in an intermediate differentiation state. CellChat analysis

highlighted the significant role of the FGF signaling pathway in DFU.

Immunohistochemical staining confirmed upregulated APOE expression in

DFU tissues. Ex vivo experiments demonstrated that soluble APOE accelerated

fibrosis and inflammation in human fibroblasts, suggesting its detrimental role.

Furthermore, high glucose elevated APOE expression and induced a profibrotic

and inflammatory phenotype in human fibroblasts.

Conclusions: This study provides critical insights into the differences between

healthy and DFU fibroblasts, identifying specific cell populations that may

influence DFU healing. These findings may contribute to future therapeutic

development for DFU.
KEYWORDS

single-cell RNA sequencing, diabetic foot ulcers, apolipoprotein E, human skin
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1 Introduction

Diabetic foot ulcers (DFU) are a severe complication of diabetes

mellitus (DM), leading to functional decline, increased infection

risk, hospitalization, lower-extremity amputation, and mortality

(1). Globally, an estimated 9.1 to 26.1 million individuals with

diabetes develop foot ulcers annually (2). Patients with DFU face a

five-year mortality risk 2.5 times higher than those without ulcers

(3). Notably, over 50% of patients undergoing amputation due to

DFU die within five years, a mortality rate exceeding that of many

cancers (4). The direct costs of treating DFU surpass those of several

common cancers (5). As the prevalence of DM rises, DFU will

impose an escalating financial burden on global healthcare systems,

potentially becoming one of the most expensive diabetes-related

complications (6).

The pathophysiology of DFU involves a complex interplay of

multiple factors, primarily including peripheral neuropathy, peripheral

arterial disease, and impaired wound healing. In diabetic patients,

impaired wound healing often results in chronic foot wounds,

especially when neuropathy and/or vascular disease are present (2).

Effective wound healing requires a tightly regulated process involving

diverse cells and mediators, including platelets, coagulation factors,

immune cells, and structural cells (7). Fibroblasts, stromal cells

distributed throughout nearly all organs and tissues, exhibit multiple

cell clusters and heightened inflammation in the dorsal skin of DM and

DFU patients, likely due to diabetes-associated low-grade chronic

inflammation (8). Recent studies emphasize their phenotypic

plasticity in response to tissue injury and their dynamic role in

maintaining tissue homeostasis and integrity (9). However, their

specific contributions to impaired healing in DFU remain poorly

understood. Comparing cellular differences between DFU patients

with healing versus non-healing ulcers, as well as between DM

patients and non-DM healthy controls, may provide new insights

into DFU pathogenesis.

Single-cell RNA sequencing (scRNA-seq) is a powerful tool for

exploring cell function and disease mechanisms by profiling the

transcriptomes of individual cells within heterogeneous tissues (10).

In this study, we focused on comparing DFU patients with healthy

donors, hypothesizing that diabetic patients with impaired wound

healing exhibit aberrant gene and protein expression profiles driving

fibrosis and inflammation. To investigate this, we conducted scRNA-
Abbreviations: APOE, Apolipoprotein E; DFU, Diabetic foot ulcers; JAK, Janus

kinase; STAT3, signal transducer and activator of transcription 3; NF-kB, nuclear

factor kappa-B; ECM, extracellular matrix; TLR4:Toll-like receptor 4; TNFa,

tumor necrosis factor-alpha; IL-6, interleukin-6; a-SMA, a-smooth muscle actin;

LDLR, low-density lipoprotein receptor; OA, osteoarthritis; IPFP, infrapatellar fat

pad; HG, high glucose; ROS, reactive oxygen species; mtDNA, mitochondrial

DNA; HE, Hematoxylin and eosin; scRNA-seq, Single-cell RNA Sequencing;

GEO, Gene Expression Omnibus; PCA, principal component analysis; UMAP,

Uniform Manifold Approximation and Projection; GO, Gene Ontology; DEGs,

differentially expressed genes; GSEA, Gene Set Enrichment Analysis; FDR, false

discovery rate; DMEM, Dulbecco’s modified Eagle’s medium; FBS, fetal bovine

serum; BSA, Bovine Serum Albumin; DAB, diaminobenzidine; RT-qPCR,

Realtime fluorescence quantitative PCR.
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seq analysis of DFU and healthy skin biopsies to identify molecular

changes.We also conducted immunostaining onDFU and healthy skin

samples and validated key findings through ex vivo experiments. These

results provide a valuable resource for understanding fibroblast roles in

DFU and offer insights into developing pro-inflammatory fibroblast-

based immunotherapies.
2 Results

2.1 ScRNA sequencing reveals major cell
types during DFU progression

To investigate cellular heterogeneity in diabetic foot, we

analysed the scRNA-seq data of skin tissue samples of 7 DFU

patients, 12 recovered DFU patients, 15 healthy individuals, and 10

diabetic patients without DFU. After applying quality control and

filtering, the gene expression of 162,619 individual cells was

analyzed. Dimensionality reduction and clustering identified

twelve distinct cell types (Figure 1A): fibroblasts (n=31,651);

macrophages (n=17,487); smooth muscle cells (SMCs, n=26,343);

T-NK cells (n=30,906); keratinocytes (n=27,479); endothelial cells

(ECs, n=11,671); B-plasma cells (n=6,818); cDC2 (n=5,196);

proliferating cells (n=2,112); mast cells (MCs, n=1,237);

melanocytes (n=1,129); schwann cells (n=590). Cell origins

included 48,835 from recovered DFU patients, 30,709 from DFU

patients, 22,631 from diabetic patients without DFU, and 60,444

from healthy controls (Figure 1B, right). Cell cycle analysis revealed

distributions in S phase (n=57,962), G1 phase (n=72,545), and G2M

phase (n=32,112) (Figure 1B, left). UMAP and bar plots visualized

several key parameters for all cells, including the PMT scores,

AUCell scores, nFeature RNA, nCount RNA, G2M scores, and S

scores (Figures 1C-E). Fibroblast subpopulations were detected in

all four groups (Figure 1F). Furthermore, distribution analysis

showed fibroblast proportions were significantly lower in DFU

patients compared to other groups (Figure 1G, Supplementary

Figure S1). Finally, GSEA enrichment analysis highlighted

fibroblast involvement in extracellular matrix organization,

encapsulating structure organization, collagen fibril organization,

and extracellular structure organization (Figure 1H).
2.2 DFU healing is significantly associated
with a specific subset of fibroblasts.

After excluding data from healthy controls, we applied the

inferCNV algorithm to perform sub-clustering analysis of

fibroblasts in tissue samples from diabetic patients, recovered

DFU patients, and diabetic patients without DFU, identifying five

distinct fibroblast subpopulations. Fibroblasts were classified

primarily based on their marker genes: C0 APOE+ fibroblasts; C1

AQP1+ fibroblasts; C2 TNC+ fibroblasts; C3 NR2F2+ fibroblasts;

C4 TNN+ fibroblasts (Figure 2A). A bubble chart visualized marker

gene expression for each subcluster (Figure 2B). Subsequently, we

used volcano plots to depict distinct gene expression patterns across
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FIGURE 1

ScRNA sequencing revealed major cell types during DFU progression. (A) UMAP plots depicting all cellular subpopulations across four groups:
diabetic foot patients, diabetic foot recovery patients, diabetic patients without foot ulcers, and healthy individuals, highlighting differences in cellular
composition during disease progression. (B) UMAP plots showing the distribution of cell subpopulations according to different cell cycle stages and
tissue sources, demonstrating variability in proliferation status across origins. (C) UMAP plots illustrating AUCell scores for all subpopulations,
representing gene set activity in individual cells. (D) Violin plots displaying AUCell scores across all subpopulations, enabling comparison of pathway
or gene set activity. (E) Heatmap highlighting the top expressed genes in each subpopulation, identifying characteristic gene expression patterns. (F)
Proportional composition of cell subtypes across four sample groups: nonDiabetic, nonDFUDiabetic, DFUHealer, and DFUnonHealer. Each stacked
bar represented the relative abundance of identified cell subpopulations within each group. Statistical comparisons of cell-type proportions between
groups were performed using Chi-square test. p < 0.05 was considered statistically significant. (G) Proportions of cell types in different groups (mean
± SD). Statistical significance between groups was determined by the chi-square test, with all pairwise comparisons showing significant differences
(p<0.0001). (H) GSEA analysis results for fibroblast subpopulations, indicating enriched biological functions and pathways.
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the five subclusters. We found that the differentially expressed genes

significantly upregulated in the C0 subcluster include APOE, A2M,

C3, IGFBP, and EGNRB (Figure 2C). Bar charts illustrated the

distribution of fibroblast subclusters across tissue origins and

differentiation stages. C0 was predominantly expressed in diabetic

foot patients, C1 was highly expressed in both diabetic foot and

diabetic patients without diabetic foot, C2 was primarily expressed

in recovered diabetic foot patients, and C3 and C4 showed lower

expression levels (Figures 2D, E). Ro/e analysis (Figure 2F) and

UMAP plots (Figure 2G) further visualized the distribution of these

subpopulations, revealing that C2 was most highly expressed in

recovered diabetic foot patients (DFUHealer), while C4 was most

highly expressed in diabetic patients without diabetic foot

(nonDFUDiabetic). We then conducted metabolic pathway

analysis for the C0 subpopulation, which showed strong

associations with oxidative phosphorylation, Glutathione

metabolism and Glycolysis / Gluconeogenesis (Figure 2H). We

also presented violin plots describing the nFeature-RNA and

nCount-RNA values for the five fibroblast subpopulations

(Figure 2I) and depicted the cellular activities associated with

these subpopulations (Figure 2J). Notably, the C0 subpopulation

exhibited close associations with fat cell differentiation, epithelial

cell proliferation, and regulation of epithelial cell proliferation.
2.3 APOE+ fibroblasts influence the onset
and progression of diabetes through the
Drug Metabolism–Cytochrome P450
pathway

Next, we explored metabolism-related signaling pathways. We first

presented the top five metabolic pathways in the fibroblast

subpopulations (Figure 3A) and focused on three metabolic

pathways more closely related to the C0 subpopulation: Glutathione

Metabolism and Pyruvate. We displayed the expression levels of these

pathways in the five fibroblast subpopulations (Figures 3B-D) and

compared the metabolic expression levels across different tissue sources

(Figures 3E, F). We observed that the Drug Metabolism–Cytochrome

P450 pathway was lower in tissue samples from recovered diabetic foot

patients compared to the disease group, suggesting that the C0 and C1

subpopulation might influence the onset and progression of diabetes

through this metabolic pathway. Studies have also shown a connection

between APOE and the cytochrome P450 pathway, which is consistent

with our findings (11).
2.4 APOE+ fibroblasts in DFU influence the
differentiation process and exhibited
significant importance in the FGF signaling
pathway

To infer the dynamic changes and potential differentiation

trajectories of cells during development, we employed two widely

used trajectory inference tools: CytoTRACE and Slingshot.

CytoTRACE is based on the principle of transcriptional diversity in
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single cells, operating under the assumption that cells with higher

transcriptional diversity are more likely to reside in an earlier

developmental state. This method does not rely on prior temporal

information, making it particularly suitable for identifying stem-like

cells or potential differentiation origins. Slingshot, on the other hand,

constructs potential lineage trajectories by combining unsupervised

clustering with low-dimensional embeddings (e.g., UMAP), and infers

developmental paths using aminimum spanning tree (MST) algorithm

followed by pseudotime scoring for individual cells. These twomethods

are conceptually complementary. We utilized both to cross-validate the

inferred lineage trajectories, thereby increasing the robustness and

reliability of our developmental inference. The results from

Slingshotreveal two main lineages. The first lineage progressed from

C3→ C0→ C4 → C1, and the second lineage from C3→ C0 → C4

→ C2 (Figure 4A). We further illustrated the expression of marker

genes for the five fibroblast subpopulations during pseudotime, finding

that the C0 subpopulation marker gene APOE+ was expressed at

higher levels in the later stages (Figures 4B-D). Cytotrace analysis

(Figures 4E, F) revealed that the C2 subpopulation exhibited high

cellular pluripotency, while the C0 subpopulation was in an

intermediate state of differentiation, suggesting that C0 may influence

the differentiation process of fibroblasts. Finally, we analyzed the top

five genes for each subpopulation (Figure 4G), finding that C0 highly

expressed APOE, CXCL12, APOD, C3, IGF1, and FTH1, which we

visualized using UMAP plots (Figure 4H).

To systematically explore complex cellular responses, we

investigated intercellular relationships and ligand-receptor

communication networks using CellChat analysis. We constructed

an initial communication network among cell types, including B

lymphocytes, T cells, cDCs, and others, quantifying interaction

frequency (represented by line thickness) and intensity (represented

by line count) (Figure 4I). To identify key incoming and outgoing

signals for the five fibroblast subpopulations, we applied CellChat’s

pattern recognition method to evaluate ligand-receptor networks. In

diabetic foot, cells act as both signal senders (releasing cytokines/

ligands) and receivers (responding to ligands), with intercellular

communication likely driving disease progression. We visualized the

FGF signaling pathway (Figure 4J) and analyzed the FGF signaling

pathway (Figure 4K), highlighting the prominence of the C0 APOE+

fibroblast subpopulation. Centrality metrics identified the C0 APOE+

fibroblast subpopulation as a key mediator and influencer in the FGF

signaling pathway. Interaction hierarchy maps revealed fibroblast

subpopulations targeting smooth muscle cells (SMCs), and strong

fibroblast-keratinocyte interactions (Figure 4L). These findings

suggest that all fibroblast subtypes may participate in the FGF

signaling pathway, with the C0 APOE+ fibroblast subpopulation

playing the most significant role (Figure 4M).
2.5 APOE+ fibroblast subpopulation is
more closely associated with the
pathogenesis of DFU

Finally, we employed UMAP plots to illustrate the expression

profiles of different fibroblast subpopulations and their tissue
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FIGURE 2

Visualization of DFU patient fibroblasts subpoplulations. (A) The UMAP plots illustrate the distribution of cells from different tissue sources—including
DFU recovery patients, non-recovered DFU patients, and non-DFU diabetic patients (top left); cell cycle phase distribution (top right); and the
distribution of fibroblast subpopulations (center), collectively revealing dynamic changes in subpopulation composition across different conditions.
(B) Bubble plot showcasing marker gene expression across subpopulations and tissue origins, with bubble size indicating expression percentage and
color indicating Zscore. (C) Volcano plots displaying differentially expressed genes in five fibroblast subpopulations, identifying subgroup-specific
signatures. (D) This bar charts compares the distribution of fibroblast subsets under different treatment conditions. Statistical significance between
groups was determined by the chi-square test, with all pairwise comparisons showing significant differences (p<0.0001). (E) Bar charts depicting
fibroblast subpopulation expression levels by cell cycle stage and tissue origin. Statistical significance between groups was determined by the chi-
square test, with all pairwise comparisons showing significant differences (p<0.0001). (F) Role analysis plots further detailing fibroblast subpopulation
expression across tissue origins. (G) UMAP plots showing marker gene expression in fibroblast subpopulations. (H) Top five metabolism-related
activities in the C0 fibroblast subpopulation. (I) Violin plots illustrating RNA expression across fibroblast cell subpopulations. (J) Dot-line graphs
presenting metabolic activities across different cellular subpopulations.
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origins (Figure 5A). Subsequently, we performed clustering analysis

using non-negative matrix factorization (NMF), identifying three

distinct clusters (Figure 5B). The NMF clustering analysis was

conducted to identify distinct gene regulatory modules within the

fibroblast populations. The M1, M2, and M3 clusters were defined

based on the activity scores of regulons derived from transcription

factor analysis, with each cluster representing a set of co-regulated

genes showing distinct expression patterns. The selection of these

clusters was driven by clear differences in regulon activity profiles

observed in the data. Using bar and scatter plots, we visualized the

expression patterns of various fibroblast subpopulations within M1,
Frontiers in Immunology 06
M2, and M3 modules (Figures 5C, D). Notably, the C0

subpopulation exhibited relatively high expression of genes

associated with the M2 cluster, consistent with increased

expression observed in diabetic foot samples. However, we

acknowledge that Figure 5D shows the C2 subpopulation has the

highest M2 regulon activity score. Despite this, APOE expression is

particularly enriched in C0 cells and has been functionally validated

to play a critical role in diabetic foot pathogenesis, supporting its

importance as a key gene within this subpopulation.

Next, we generated a heatmap to depict the top five

transcription factors in each fibroblast subpopulation (Figure 5E)
FIGURE 3

Activity of metabolism-related pathways in DFU cells (A) Heatmaps showing the top five enriched metabolism-related pathways in fibroblast
subpopulations (C0-C4), highlighting the metabolic heterogeneity across subpopulations. (B) Bar charts comparing the relative activity levels of the
top five metabolism-related pathways in C0-C4 fibroblasts, highlighting the distinct metabolic programs characteristic of each subpopulation.
Statistical significance between groups was assessed by chi-square test (p<0.0001, ns = not significant). (C) Violin plots further illustrate the
expression distribution of genes involved in representative metabolic pathways across fibroblast subpopulations. (D) Bubble plots presenting pathway
activity scores for each fibroblast subpopulation, (E) Bar charts showing differential enrichment of the top metabolic pathways in fibroblast
subpopulations across tissue origins, suggesting environmental influence on metabolism. (F) UMAP plots demonstrating spatial expression patterns
of key metabolic genes from top enriched pathways in fibroblast subpopulations, indicating cellular-level metabolic specialization.
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FIGURE 4

Visualization of pseudotime analysis and cellchat analysis among cells. (A) Pseudotime analysis using slingshot demonstrates the inferred
differentiation trajectory of fibroblast subpopulations (C0–C4), revealing potential lineage relationships and transition states. (B) Pseudotime
trajectories of fibroblast subpopulations specifically in diabetic foot patients illustrate their developmental progression within the disease context. (C)
Ridge plots show the distribution of pseudotime scores among C0–C4 fibroblasts in DFU samples, identifying C0 cells as an early-stage population.
(D) Detailed Monocle trajectory plot displaying branch points and transcriptional bifurcation events in fibroblast subpopulations, suggesting
functional divergence. (E) Violin plots of CytoTRACE scores depict differentiation potential of fibroblast subpopulations, with higher scores indicating
less differentiation. (F) Boxplots comparing CytoTRACE scores among fibroblast subpopulations confirm C0 as a progenitor-like population. (G)
Bubble plots present the top five marker genes for each fibroblast subpopulation, reflecting their molecular identity. (H) UMAP plots visualizing the
expression of these marker genes in spatial context. (I) Circular plots generated by CellChat reveal the strength and frequency of communication
signals sent by each fibroblast subpopulation. (J) Heatmap illustrating fibroblast involvement in the FGF signaling pathway, which is known to
promote angiogenesis and wound healing. (K) Network centrality scores show the dominant signaling hubs within the fibroblast population in the
FGF pathway. (L) Hierarchical diagram summarizing the receiver strength of each subpopulation within the FGF signaling cascade. (M) Circular plots
showing fibroblast subpopulations as FGF signal receivers, emphasizing the role of APOE+ fibroblasts (C0) in FGF-mediated communication.
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FIGURE 5

Visualization of expression level of transcription factors of diabetic foot cells. (A) UMAP plots showing the distribution of fibroblast subpopulations
and the relative expression of transcription factors across tissue origins. (B) Non-negative matrix factorization (NMF) clustering identifies three co-
expression modules (M1, M2, M3) among fibroblast subpopulations. (C) Bar plots illustrate expression levels of M1–M3 modules across fibroblast
subpopulations, suggesting functional divergence. (D) Regulon activity scores of six fibroblast subpopulations across functional modules M1-M3. (E)
Heatmaps of these top marker genes demonstrate their co-regulated patterns and distinguish functional identities of each module. (F) Scatter plots
further show how marker gene expression differs by tissue origin, highlighting environmental effects on transcriptional programs. (G) Bar charts
comparing the expression of top five transcription factors in C0 fibroblasts with other subpopulations. (H) UMAP plots visualize the expression of
these transcription factors across fibroblast subpopulations, indicating their spatial regulation.
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and utilized scatter plots to present the top five transcription factors

of fibroblast subpopulations based on tissue origin (Figure 5F).

Finally, bar charts and UMAP plots were utilized to describe the

expression of the top five transcription factors of the C0 subcluster

across different fibroblast subclusters (Figures 5G, H).
2.6 APOE+ fibroblasts promote fibrosis and
inflammation in DFU

To investigate fibroblast-related pathological changes, we

analyzed biospecimens from healthy donors (HD) and DFU

patients. Hematoxylin and eosin (HE) staining revealed disrupted

skin tissue structure and significant inflammatory cell infiltration in

DFU samples compared to HD. Immunohistochemical staining

confirmed increased APOE expression in DFU samples compared

to HD controls (Figure 6A), further supported by elevated APOE

protein levels in Western blot analysis (Figure 6B). Fibrosis, a

hallmark of DFU, was evidenced by upregulation of fibrosis-

related genes (a-SMA, COL1A1, and COL3A1) in DFU skin

samples (Figure 6C). To strengthen our fibrosis analysis, we

conducted Masson’s trichrome staining and Picrosirius red

staining. These results corroborate our gene expression data,

showing increased collagen deposition and disorganized fiber

structure in DFU skin tissues compared to HD controls

(Supplementary Figure S2A). Quantitative analysis of collagen

content via hydroxyproline assay showed increased collagen levels

in DFU skin tissues compared to HD controls (Supplementary

Figure S2B). Additionally, inflammation-related signaling

pathways, including JAK/STAT3 and NF-kB, were activated in

DFU tissues, suggesting their involvement in DFU-associated

inflammation (Figure 6D). Pro-inflammatory cytokines including

TNF-a, IL-6, IL-1b, showed significant elevation in DFU skin

tissues compared to HD controls (Supplementary Figure S3). To

assess APOE’s role in DFU inflammation, human fibroblasts were

treated with recombinant APOE3 and analyzed by Western blot.

APOE3 activated NF-kB and JAK/STAT3 signaling in dose- and

time-dependent manners (Figures 6E, F). These findings highlight

APOE+ fibroblasts as key contributors to fibrosis and inflammation

in DFU.
2.7 Human fibroblasts exhibit elevated
APOE expression, fibrosis and inflammation
under high glucose conditions.

To explore APOE as a potential therapeutic target for DFU, we

established a high glucose-induced cell model, a well-characterized

system for studying diabetic wounds. High glucose significantly

inhibited fibroblast proliferation, as shown by the cell growth curve

(Figure 7A). Additionally, Annexin V-FITC/PI staining revealed

comparable apoptosis rates between control and high glucose-

treated fibroblasts at day 1, day 3 and day 5 (Supplementary

Figure S4), demonstrating that high glucose inhibits fibroblast

proliferation without cytotoxic effects. Scratch assays revealed
Frontiers in Immunology 09
reduced fibroblast migration under high glucose conditions

(Figure 7B). Flow cytometry analysis demonstrated cell cycle

arrest in fibroblasts exposed to high glucose (Figure 7C). RT-

qPCR and Western blot confirmed elevated APOE expression in

fibroblasts under high glucose conditions (Figures 7D, E).

Additionally, high glucose induced fibrosis and inflammation in

fibroblasts (Figures 7F, G). These findings indicate that high glucose

upregulates APOE expression and promotes fibrosis and

inflammation in fibroblasts, suggesting that APOE overexpression

may drive DFU progression. Knockdown of APOE expression using

siRNAs in high glucose-treated fibroblasts attenuated the activation

of NF-kB and JAK/STAT3 signaling pathways and downregulated

fibrosis-related genes (a-SMA, COL1A1, and COL3A1) induced by

high glucose (Figures 7H, I). These results demonstrate that APOE

mediates high glucose-induced pro-fibrotic and inflammatory

responses in fibroblasts.
3 Discussion

Diabetic foot ulcers (DFU) are a prevalent and severe

complication of long-term, poorly managed diabetes. DFU is

defined as a break in the epidermis and part of the dermis in

individuals with diabetes. Tissue inflammation and fibrosis play

critical roles in the development and progression of DFU (12).

However, the precise cellular and molecular mechanisms driving

these processes remain unclear.

Recent studies have enhanced our understanding of fibroblasts

as a morphologically and functionally heterogeneous cell

population (13). Here, we analyzed scRNA-Seq data from tissue

samples of DFU patients, recovered DFU patients, healthy

individuals, and diabetic patients without DFU to explore cellular

heterogeneity in DFU. We identified twelve distinct cell clusters:

fibroblasts, macrophages, smooth muscle cells, T-NK cells,

keratinocytes, endothelial cells, B-plasma cells, cDC2, proliferating

cells, mast Cells, melanocytes, and schwann cells. GO-GSEA

enrichment analysis revealed significant clustering of fibroblast

subpopulations in extracellular matrix organization, encapsulating

structure organization, collagen fibril organization, and

extracellular structure organization, suggesting their active

involvement in these processes.

Dermal fibroblasts were identified as a highly diverse and

heterogeneous population with distinct functional roles in

diabetic wound healing (14, 15). Based on marker genes, we

classified fibroblasts primarily based on their marker genes into

the following categories: C0 APOE+ fibroblasts; C1 AQP1+

fibroblasts; C2 TNC+ fibroblasts; C3 NR2F2+ fibroblasts; C4

TNN+ fibroblasts. These marker genes suggest diverse biological

functions relevant to wound healing and diabetic foot ulcer

(DFU) pathology.

For instance, the APOE-high subgroup may be involved in lipid

metabolism and immune modulation, influencing local

inflammatory responses (16). The AQP1-expressing fibroblasts

likely contribute to water transport and tissue hydration (17),

crucial for maintaining wound microenvironment. TNC (18) and
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FIGURE 6

APOE+ fibroblasts promote fibrosis and inflammation in DFU. (A) Representative images showing histological differences between human healthy
donor (HD) and diabetic foot ulcer (DFU) skin tissues assessed by HE staining (left) and APOE expression visualized by IHC (right). Insets display
magnifications of different regions in the skin. Scale bar in the original images: 500 mm, 2000 mm. Scale bar in the magnified images: 50 mm. Upper:
Cellular infiltration was quantified in HE-stained sections by measuring the percentage of infiltrated area. Lower: APOE expression was quantified
through positive area percentage analysis of IHC staining. (B) Western blot analysis and quantitative comparison of APOE protein in human HD and
DFU skin tissues. (C) RT-qPCR analysis of mRNA levels of a-SMA, COL1A1 and COL3A1 in human HD and DFU skin tissues. (D) Western blot analysis
and quantitative comparison of the NF-kB and JAK1/Stat3 signaling pathways in human HD and DFU skin tissues. (E) Western blot analysis and
quantitative comparison of the NF-kB and JAK1/Stat3 signaling pathways in human fibroblasts treated with APOE3 at concentrations of 10 ng/mL or
25 ng/mL. (F) Western blot analysis and quantitative comparison of the NF-kB and JAK1/Stat3 signaling pathways in human fibroblasts treated with
APOE3 at a concentration of 10 ng/mL for 6 h, 12 h or 24 h. Data are presented as mean ± SD from three independent biological replicates (n = 3).
*p< 0.05, ***p < 0.001.
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FIGURE 7

Human fibroblasts exhibit elevated APOE expression, fibrosis and inflammation under high glucose conditions. (A) Growth curve of human
fibroblasts treated with high glucose. (B) Representative images and quantitative assessment of scratch wounds of human fibroblasts treated with or
without high glucose at 0h and 24 h. (C) Flow cytometry analysis and quantitative assessment of cell cycle in human fibroblasts treated with or
without high glucose. (D) RT-qPCR analysis of APOE mRNA level in human fibroblasts treated with or without high glucose. (E) Western blot analysis
and quantitative comparison of APOE protein in human fibroblasts treated with or without high glucose. (F) RT-qPCR analysis of mRNA levels of a-
SMA, COL1A1 and COL3A1 in human fibroblasts treated with or without high glucose. (G) Western blot analysis and quantitative comparison of the
NF-kB and JAK1/Stat3 signaling pathways in human fibroblasts treated with or without high glucose. (H) Western blot analysis and quantitative
comparison of the NF-kB and JAK1/Stat3 signaling pathways in human fibroblasts treated with control siRNA (siNC) or target siRNAs (siAPOE-1,
siAPOE-2) under high glucose conditions. (I) RT-qPCR analysis of mRNA levels of APOE, a-SMA, COL1A1 and COL3A1 in human fibroblasts treated
with control siRNA (siNC) or target siRNAs (siAPOE-1, siAPOE-2) under high glucose conditions. Data are presented as mean ± SD from three
independent biological replicates (n = 3). *p < 0.05, **p < 0.01, ***p < 0.001.
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TNN (19) both extracellular matrix-related genes, imply roles in

matrix remodeling and structural integrity. NR2F2, a transcription

factor, may regulate fibroblast differentiation and vascular

interactions, affecting tissue repair dynamics (20).

Together, these marker gene profiles reflect the functional

heterogeneity of fibroblasts in DFU wounds. Understanding how

these subpopulations interact and contribute to processes like

inflammation, matrix deposition, and regeneration can provide

novel insights for targeted therapeutic strategies. The

transcription factor analysis revealed that the C0 fibroblast

subpopulation is closely associated with the M2 regulon cluster,

which is significantly enriched in DFU samples. Many of the

transcription factors identified have been reported to regulate key

cellular processes including proliferation, migration, and

differentiation of fibroblasts. For example, NR2F2 has been shown

to modulate fibroblast activation and extracellular matrix

remodeling, which are critical steps in wound healing (21).

In the context of DFU, dysregulation of these transcription

factors may impair normal fibroblast function, contributing to

chronic wound persistence. They may affect fibroblast

proliferation by regulating cell cycle genes, influence migration by

modulating cytoskeletal and adhesion molecule expression, and

alter differentiation by controlling lineage-specific gene expression.

Further experimental validation is required to elucidate the precise

mechanisms through which these transcription factors regulate

fibroblast behavior in diabetic wounds. Validation at protein

levels confirmed elevated APOE+ fibroblast expression in DFU

skin tissues compared to HD skin tissues. APOE, a major

cholesterol carrier that facilitates lipid transport and injury repair

(22), was further analyzed for metabolic pathway analysis. We

found that APOE+ subpopulation showed strong associations

with fat cell differentiation and regulation of epithelial cell

proliferation. In addition, pseudotime analysis indicated an

intermediate differentiation state of APOE+ fibroblasts.

The Drug Metabolism–Cytochrome P450 pathway was

downregulated in tissue samples from recovered diabetic foot

patients compared to those from the disease group, suggesting

that the APOE+ subpopulation might influence the onset and

progression of diabetes through this metabolic pathway. The

Drug Metabolism-Cytochrome P450 enzyme family plays a

critical role in the metabolism of endogenous and exogenous

compounds, including drugs, lipids, and toxins. Dysregulation of

this pathway may contribute to impaired detoxification, increased

oxidative stress, and altered cellular metabolism, which are known

to exacerbate tissue damage and delay wound healing in diabetic

patients. Moreover, altered Drug Metabolism-Cytochrome P450

activity has been reported to affect inflammatory responses and

angiogenesis, both crucial processes in ulcer development and

repair (18). Besides the Drug Metabolism-Cytochrome P450

pathway, two other metabolic pathways identified in this study

are closely associated with the chronic inflammation and metabolic

dysregulation observed in diabetic foot ulcers (DFUs), indicating

their potential involvement in disease progression. Firstly,

glutathione metabolism was found to be upregulated in multiple
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cell types, especially in macrophages and fibroblasts. Glutathione is

a key intracellular antioxidant that helps neutralize reactive oxygen

species (ROS) and maintain redox homeostasis. Its activation may

reflect a protective adaptation to the persistent oxidative stress

present in chronic DFU wounds (23). Oxidative stress is a

recognized contributor to impaired wound healing in diabetes.

Secondly, the upregulation of pyruvate metabolism in immune

cells suggests a metabolic shift toward aerobic glycolysis, a

hallmark of chronic inflammatory conditions and cancer (24).

This reprogramming may impair energy efficiency and amplify

inflammatory cytokine production, thereby contributing to delayed

tissue repair and chronic non-healing phenotypes. These metabolic

alterations may collectively disrupt cellular energy homeostasis and

biosynthesis, further impairing fibroblast function and wound

healing capacity. Future studies focusing on the integration of

these metabolic changes may provide deeper insight into DFU

pathogenesis and reveal novel therapeutic targets.

In DFU, cells act as both signal senders (releasing cytokines/

ligands) and receivers (responding to ligands) (25, 26). In this study,

we identified the C0 fibroblast subpopulation as playing a key role

in fibroblast differentiation. Based on the CellChat analysis, we

further explored the interactions between the C0 subpopulation and

other cell types in the diabetic foot ulcer microenvironment,

especially endothelial cells and smooth muscle cells. The C0

subpopulation may regulate local angiogenesis, immune

responses, and extracellular matrix remodeling through multiple

cell-cell communication signaling pathways, thereby promoting

wound healing and tissue repair. Previous studies have shown

that interactions between fibroblasts and endothelial cells are

crucial for angiogenesis and wound healing (27), while smooth

muscle cells also contribute to vascular stability and tissue repair

processes (28). Therefore, a deeper investigation into the cell

communication mechanisms of the C0 subpopulation could

provide valuable insights into the pathophysiology of the diabetic

foot ulcer microenvironment and offer potential targets for

therapeutic intervention. Fibroblast interactions with monocytes/

macrophages in inflammation and wound healing (29, 30), as well

as strong signaling between fibroblasts and endothelial cells during

diabetic wound healing (31), highlight the importance of

intercellular communication in DFU progression. Our findings

suggest that APOE+ fibroblasts exhibit strong interactions with

keratinocytes, and may play a significant role in the FGF signaling

pathway, which promotes angiogenesis and accelerates wound

healing (32). Collectively, these data implicate APOE+ fibroblasts

as critical contributors to DFU healing.

Fibrosis, characterized by excessive deposition of extracellular

matrix (ECM) proteins, is a key pathological feature of diabetic

wounds (15). Fibroblasts play a critical role in diabetes and its

complications, with fibrotic mechanisms potentially involving

direct activation of permanent fibroblasts (33). Recent studies

highlight pro-inflammatory fibroblasts as key contributors to DFU

progression, expressing various inflammatory mediators (34).

Chronic inflammation and hyperglycemia in diabetic skin drive

injury-related gene expression in fibroblasts, including a COL7A1-
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expressing subpopulation (8). NF-kB, activated by cytokine receptors
and Toll-like receptor 4 (TLR4), regulates inflammation-related genes

such as TNFa and IL-6 (35). The JAK/STAT pathway, a major

signaling route for cytokines and growth factors, is crucial for

inflammation-related gene transcription (36). NF-kB and STAT3

interactions are vital in mediating communication between cancer

and inflammatory cells (37). In this study, upregulation of NF-kB and

JAK/STAT3 was revealed in DFU fibroblasts compared to normal

fibroblasts. Additionally, fibrosis-related genes and pathways,

including a-SMA, COL1A1, and COL3A1 (38), were significantly

elevated in DFU fibroblasts. These findings suggest that APOE+

fibroblasts exhibit enhanced activation of fibrosis- and inflammation-

related signaling pathways, underscoring their potential role in

DFU progression.

APOE, a classic component of lipoprotein complexes, is

traditionally known for its role in lipid metabolism through

binding to LDLR family members, including LDLR and LDLR-

related protein 1 (LRP1) (39). Improving the lipidated state of

APOE can mitigate APOE-associated central nervous system

impairments (40). APOE reduces inflammation by neutralizing

LPS (41) and regulating NF-kB signaling (42) in macrophages,

thereby limiting inflammatory cytokine production and

atherosclerosis. Elevated APOE expression in fibroblasts and

macrophages promotes cartilage degeneration in osteoarthritis

(OA), while APOE inhibition alleviates OA progression (43).

Despite these advances, the role of APOE in human skin

fibroblasts remains poorly understood. Our findings suggest that

APOE promotes fibrosis and inflammation in human fibroblasts,

potentially via NF-kB and JAK/STAT3 signaling pathways.

Previous studies indicate that high glucose (HG) induces

fibroblast senescence in diabetic wounds (44). In HG

environments, excessive reactive oxygen species (ROS) activate

STING signaling by triggering mitochondrial DNA (mtDNA)

release into the cytoplasm, promoting pro-inflammatory

macrophage polarization and exacerbating endothelial cell

dysfunction (45). Notably, APOE2-expressing myeloid cells

exhibit elevated intracellular cholesterol due to impaired efflux,

driving inflammasome activation and myelopoiesis, while APOE4-

expressing cells promote inflammation through oxidative stress,

independent of inflammasome signaling (46). Our results reveal

that HG inhibits fibroblast proliferation, migration, and cell cycle

progression. Furthermore, HG elevates APOE expression and

enhances fibrosis and inflammation in fibroblasts. Knockdown of

APOE expression in high glucose-treated fibroblasts attenuated the

activation of NF-kB and JAK/STAT3 signaling pathways and

downregulated fibrosis-related genes induced by high glucose.

These results demonstrate that APOE mediates high glucose-

induced pro-fibrotic and inflammatory responses in fibroblasts,

suggesting that APOE+ fibroblasts contribute to DFU

progression. Local inhibition of APOE in wounds may thus

represent a novel therapeutic strategy for DFU treatment. While

our in vitro data suggest high glucose may prime fibroblasts for pro-

fibrotic and pro-inflammatory responses, further in vivo validation

is needed to assess this mechanism in diabetic wound contexts.
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Future studies should investigate the specific receptor mediating

APOE’s effects on DFU fibroblasts.

This study has several limitations that should be considered.

The DFU cohort size, though appropriate for initial single-cell

characterization, may constrain the detection of subtle biological

effects and limit generalizability across this clinically diverse patient

population. Demographic disparities between patients and controls,

combined with unstratified disease severity, represent additional

variables that could influence the interpretation of cellular profiles.

The cross-sectional nature of our dataset also precludes analysis of

temporal changes during ulcer progression. These constraints

reflect the inherent challenges of obtaining foot tissue biopsies

from DFU patients, where ethical considerations and clinical

practicality necessarily limit sample availability. To address these

limitations, we implemented complementary experimental

validations through in vitro models to ensure robust biological

concordance. Nonetheless, our work establishes the detailed single-

cell atlas of DFU fibroblasts, uncovering fundamental aspects of

cellular heterogeneity while identifying APOE as a mechanistically

plausible therapeutic target. Subsequent studies incorporating

larger, demographically balanced cohorts with longitudinal

sampling will be crucial to verify these observations and explore

clinically relevant patient stratifications.
4 Materials and methods

4.1 Human specimens

Biospecimens of DFU were collected from patients experiencing

the debridement of diabetic wounds. Biospecimens of HD were

collected from patients experiencing the removal of pigmented nevi.

Discarded skin specimens were obtained from Department of Burn

and Plastic Surgery, Seventh People’s Hospital Affiliated to

Shanghai University of Traditional Chinese Medicine. All

protocols involving human subjects were reviewed and approved

by the Institutional Review Board of Shanghai seventh People’s

Hospital (2024-7th-HIRB-016). All procedures were carried out in

accordance with guidelines set forth by Declaration of Helsinki.

Written informed consent was obtained from all participants.
4.2 Data preprocessing and quality control

The scRNA-seq data of skin biopsies from non-DM subjects,

DM patients with no DFU, and DM patients with DFU (Healers

and Non-healers) were obtained from the Gene Expression

Omnibus (GEO) database. GEO accession number is GSE165816.

The raw single-cell RNA sequencing (scRNA-seq) data were

initially processed to generate a count matrix. Subsequent analysis

was conducted using the Seurat package (v4.3.0) within the R

programming environment (v4.2.0), following established

methodologies. To ensure high-quality data and remove doublets,

the DoubletFinder package (v2.0.3) was employed. Quality control
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measures involved retaining cells with a feature count between 300

and 7,500, a total count between 500 and 100,000, and

mitochondrial gene expression below 20% of total gene

expression per cell. Additionally, cells exhibiting erythroid gene

expression exceeding 5% of total expressed genes were filtered out.

Normalization techniques were applied to mitigate biases related to

library size and cell-specific differences. Highly variable genes were

identified based on expression variance, with the top 2000 genes

selected for further processing. To address batch effects across

samples, the Harmony R package (v0.1.1) was utilized,

incorporating the ComBat algorithm to minimize technical biases

arising from different experimental batches. Furthermore, the

removeBatchEffect function from the limma package was applied

to enhance batch effect correction. Clustering analysis was

performed using the top 30 principal components (PCs), with

Uniform Manifold Approximation and Projection (UMAP) used

for visualization in a two-dimensional space. Cell type annotation

was conducted based on Seurat’s built-in tools, previous literature,

and known marker genes from the CellMarker database.

Differential expression analysis was performed using the

“FindAllMarkers” function with log2 fold change (FC) > 0.5 and

an adjusted p-value < 0.01 as selection criteria. The proportion of

each cell type was then determined by analyzing their distribution

across different clusters. To ensure data quality, we applied stringent

quality control (QC) criteria to the raw single-cell expression

matrix. Specifically, cells were retained if they had between 200

and 6,000 detected genes (nFeature_RNA), fewer than 30,000 total

transcripts (nCount_RNA), and less than 10% mitochondrial gene

expression (percent.mt) (47).
4.3 Cell type annotation

During the annotation of cell subpopulations, we employed a

multi-step strategy for cell type naming. First, we performed

di ffe rent ia l gene expres s ion ana lys i s us ing Seura t ’ s

FindAllMarkers function to identify cluster-specific marker genes.

Based on the known biological functions of these genes and their

reported roles in the literature, we assigned preliminary cell type

identities. In addition, we cross-referenced these markers with

curated cell type marker databases such as CellMarker to validate

and refine our annotations. For clusters with ambiguous marker

profiles, we further conducted functional enrichment analyses

including Gene Ontology (GO), Kyoto Encyclopedia of Genes

and Genomes (KEGG) and Gene Set Enrichment Analysis

(GSEA) to support the annotation and enhance both its accuracy

and biological interpretability.
4.4 InferCNV

To evaluate the genomic stability of fibroblast subpopulations

and exclude malignant features, we applied the inferCNV package

(v1.10.1) for CNV inference. Epithelial cells from healthy control

samples were used as the reference. Raw counts were log-
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sliding window of 100 genes and a cutoff of 1.0. Clustering was

performed using hierarchical methods based on CNV patterns.
4.5 Bulk RNA-sequencing analysis

Differential expression analysis was performed separately for

healed and non-healed samples using the DESeq2 R package. Genes

with |logFC| > 2 and a p-value < 0.05 were considered significantly

differentially expressed. The identified genes were further analyzed

for GO, KEGG, and GSEA using the clusterProfiler package.
4.6 Pathways and systems biology analysis

To gain insights into cell-type-specific molecular mechanisms

underlying wound healing, pathway enrichment and systems

biology analysis were conducted. Transcripts significantly

dysregulated in different cell populations were compared between

healed and non-healed samples. Ingenuity Pathway Analysis (IPA

9.0, Qiagen) was utilized for pathway analysis, with details available

on the Ingenuity Systems website (http://www.ingenuity.com).

Upstream transcriptional regulators were identified through

systems biology analysis to determine significantly activated or

inhibited regulators. The statistical significance of transcriptional

regulator activity was assessed using a one-tailed Fisher’s exact test,

with regulators meeting the criteria of p-value < 0.01 and an

absolute z-score > 2 considered significant.
4.7 Metabolic pathway analysis

To comprehensively explore metabolic alterations across

different biological states, metabolic pathway analysis was

conducted through a combination of computational methods and

database-driven approaches. Differentially expressed genes (DEGs)

derived from transcriptomic datasets were annotated to established

metabolic pathways using resources such as the KEGG. Functional

enrichment analysis was performed utilizing the clusterProfiler R

package, with statistically significant pathways identified based on

an adjusted p-value threshold of < 0.05. In parallel, metabolomics

data were examined using MetaboAnalyst 5.0, where metabolites

showing significant variation (p-value < 0.05, VIP score > 1)

underwent pathway overrepresentation and network topology

analysis. The relative impact of each metabolic pathway was

determined by assessing metabolite importance and their

connectivity within the network.

To identify transcription factors potentially regulating gene

expression in specific cell populations, we performed motif

enrichment analysis using the cisTarget pipeline. This approach

utilizes precompiled motif rankings derived from databases such as

JASPAR, HOCOMOCO, and CIS-BP, integrated within the

cisTarget resource. Motif enrichment was calculated based on the

presence of conserved binding motifs in the regulatory regions of
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differentially expressed genes. This method allows for robust and

reproducible inference of key TFs driving cell-type-specific gene

regulatory programs.
4.8 Ro/e ratio analysis

To identify preferential enrichment offibroblast subpopulations

across different clinical conditions, we calculated the Ro/e ratio

(observed/expected ratio) for each cluster in each group. This

metric quantifies whether a given cell type is overrepresented

(Ro/e > 1) or underrepresented (Ro/e < 1) relative to the total

fibroblast pool, adjusting for sample composition. Statistical

significance was assessed using a hypergeometric test.
4.9 Differential expression and functional
enrichment analysis

Cell- type-specific DEGs were identified using the

“FindAllMarkers” function in Seurat, applying the Wilcoxon

rank-sum test with default parameters. Genes were selected based

on logFC > 0.25 and detection in at least 25% of cells within each

cluster. Functional enrichment analysis of DEGs was performed

using the clusterProfiler package (v0.1.1) to explore associated

biological processes.
4.10 Subpopulation analysis and functional
enrichment

Differential expression analysis across subpopulations was carried

out using the “FindAllMarkers” function in Seurat, employing the

Wilcoxon rank-sum test. The selection criteria included only.pos =

TRUE, min.pct = 0.25, and logFC.threshold = 0.25. GO-BP enrichment

analysis was performed on the identifiedDEGs using the clusterProfiler

package to explore their biological functions.
4.11 GSEA

Differential gene analysis was conducted using GSEA 4.1.0 on

an annotated expression matrix from the GEO database. The

analysis was performed with 1,000 permutations, with phenotype

labels set as PI versus normal. The permutation type was designated

as phenotype-based, and the top 2000 DEGs between the PI and

normal groups were identified. The resulting gene sets were

intersected with potential targets to validate significant genes.
4.12 Trajectory analysis

To examine differentiation trajectories of fibroblast

subpopulations, an integrated approach utilizing three
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computational tools was applied. First, the cytoTRACE algorithm

assessed cellular differentiation potential and stemness. Next, the

Monocle R package (v2.24.0) reconstructed differentiation

trajectories using the DDRTree algorithm. Finally, the Slingshot

package (v2.6.0) inferred lineage relationships by constructing a

minimum spanning tree (MST). Gene expression changes along

different iat ion tra jector ies were est imated using the

getCurves function.
4.13 Cell-cell communication analysis

Intercellular communication within DFU tissues was analyzed

using the CellChat R package (v1.6.1). Ligand-receptor interactions

were inferred using CellChatDB. human as a reference database,

providing insights into signaling networks and intercellular

interactions. Ligands expressed in ≥5% of sender populations and

receptors in ≥5% of receiver populations were included, enabling

detailed characterization of signaling interplay across cell types. Prior

to analysis, low-quality cells were filtered based on standard QC

metrics (e.g., number of genes detected <200 or mitochondrial gene

percentage >20%). The normalized and scaled gene expression matrix

from Seurat was imported into CellChat. The minimum number of

cells per group was set to 10 to ensure robust inference. Pathway-

specific communication probabilities were inferred and visualized

using netVisual_circle and netAnalysis_signalingRole functions.
4.14 Isolation and culture of human
fibroblasts

Skin specimens were stored in sterile PBS on ice, then incubated

in 5 mg/ml Dispase II (Thermo Fisher, USA) in HBSS (Gibco, USA)

overnight at 4°C. The epidermis was removed, and tissues were

minced, washed, and digested with 0.1% collagenase I (Sigma-

Aldrich, USA) in DMEM (Gibco, USA) for 1 h at 37°C. After

centrifugation, the cell pellet was resuspended, filtered through a 70

µm cell strainer and plated in DMEM with 10% FBS (Gibco, USA)

and 1% PSA (Gibco, USA). Non-adherent cells were removed by

medium replacement after 24–48 hours. Cells were cultured to 80%

confluence, detached with 0.05% Trypsin/EDTA, and resuspended

in complete medium.
4.15 Immunohistochemistry

Formalin-fixed paraffin-embedded tissue was deparaffinized,

rehydrated through graded alcohols, and subjected to heat-induced

antigen retrieval. The tissue was blocked with 3% BSA for 1 hour,

followed by overnight incubation at 4°C with primary antibody

against APOE (1:1000, Affinity, China) in 3% BSA. A secondary

antibody was then applied for 1 hour at room temperature. For DAB

staining, 3,3’-diaminobenzidine was used as the chromogen, and

hematoxylin was applied for counterstaining.
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4.16 Ex vivo stimulation of human
fibroblasts

Cells were treated with human recombinant APOE3 protein

(MedChemExpress, China) at 10 ng/mL or 25 ng/mL for 24 hours,

or at 10 ng/mL for 6, 12, or 24 hours. Separately, cells were cultured

in normal glucose (5.5 mM) or high glucose (25 mM) medium for

24 hours.
4.17 Western blot

Tissue or cell extracts were separated by SDS-PAGE, and proteins

were transferred to a nitrocellulose membrane. The membrane was

incubated with primary antibodies: anti-APOE (1:1000, Affinity,

China), anti-NF-kB (1:1000, CST, USA), anti-p-JAK1 (1:1000, CST,

USA), anti-JAK1 (1:1000, CST, USA), anti-p-STAT3 (1:1000, CST,

USA), anti-STAT3 (1:1000, CST, USA), and anti-b-actin (1:10000,

Abclone, China). Immunoreactive bands were visualized using a

Servicebio (China) scanning system. Quantitative analysis was

performed using ImageJ software (NIH, USA).
4.18 RNA extraction and RT-qPCR

Total RNA was extracted using the Cell/Tissue Total RNA Kit

(NCMbiotech, China) and reverse-transcribed into cDNA using the

PrimeScript RT Master Mix Kit (TaKaRa, Japan) with oligo-dT

primers. RT-qPCR was performed using TB Green Premix Ex Taq

(TaKaRa, Japan), with specific primers obtained from Servicebio.

Relative gene expression was calculated using the 2−DDCT method.

Specific primers are as follows: a-SMA forward 5’-CAA TGT CCT

ATC AGG GGG CAC-3’and reverse 5’-CGG CTT CAT CGT ATT

CCT GTT-3’; COL1A1 forward 5’-CCC CTG GAA AGA ATG

GAG ATG-3’and reverse 5’- AGC TGT TCC GGG CAA TCCT-3’;

COL3A1 forward 5’-CCC CGT ATT ATG GAG ATG AACC-3’and

reverse 5’- CCA TCA GGA CTA ATG AGG CTT TC-3’; GAPDH

forward 5’- GGA AGC TTG TCA TCA ATG GAA ATC-3’ and

reverse 5’- TGA TGA CCC TTT TGG CTC CC-3’.
4.19 Cell viability assay

Cell viability was evaluated using the CCK-8 assay (Beyotime,

China) following the manufacturer’s protocol. Absorbance at 450

nm was measured using a microplate reader (Flexstation 3, USA),

and results were expressed as a percentage relative to control cells.
4.20 Scratch assay

A straight scratch was made in the cell monolayer using a 200 µl

pipette tip. After washing once with media to remove debris, cells

were incubated in fresh medium. Wound closure percentage was

calculated using the standard formula ((T0 - T24)/T0)) × 100.
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4.21 Cell cycle flow cytometric analysis

Cells were harvested and fixed in 70% ethanol overnight at 4°C.

Fixed cells were washed and stained with RNase A and PI

(KeyGEN, China) for 30 minutes at room temperature in the

dark. Cell cycle distribution was analyzed using a NovoCyte

Advanteon flow cytometer (Agilent, USA).
4.22 siRNA transfection

Cells at 60-70% confluence were transfected with 50 nM siRNA

(Hanbio, China) using Lipofectamine 3000 (Thermo Fisher, USA).

Medium was replaced after 6 h, and cells were harvested 48–72 h

post-transfection for analysis. siNC: sense 5’- UUC UCC GAA

CGU GUC ACG UTT -3’ and antisense 5’- ACG UGA CAC GUU

CGG AGA A TT -3’; siAPOE-1: sense 5’- GCU GAU GGA CGA

GAC CAU GAA TT -3’and antisense 5’- UUC AUG GUC UCG

UCC AUC AGC TT -3’; siAPOE-2: sense 5’- GCC UCA AGA GCU

GGU UCG AGC TT -3’and antisense 5’- GCU CGA ACC AGC

UCU UGA GGC TT -3’.
4.23 Statistical analysis

The data represent the mean ± standard deviation (SD) of three

independent biological replicates (n = 3). Differences between two

groups were assessed using a t-test, while multiple comparisons

were analyzed by one-way ANOVA (SPSS 16.0, Inc., USA). A p-

value < 0.05 was considered statistically significant.
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