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Chimeric antigen receptor natural Killer (CAR-NK) cells therapy represents a

next-generation immunotherapeutic approach following CAR-T cells therapy,

offering inherent “off-the-shelf” compatibility and mitigated off-tumor toxicity.

Despite these advantages, clinical translation remains constrained by poor in vivo

persistence and functional exhaustion in immunosuppressive tumor

microenvironments (TME). This review examines recent advancements in

synthetic biology aimed at enhancing the physiological characteristics of CAR-

NK cells. By delineating the synergy between NK cells and synthetic biology

toolkits, this work provides a roadmap for developing next-generation CAR-NK

therapies capable of addressing solid tumor challenges while maintaining

favorable safety profiles.
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Introduction

Natural killer (NK) cells constitute critical effectors of innate immunity, deploying

multifaceted cytotoxic mechanisms through dynamic integration of activating (e.g.,

NKG2D) and inhibitory (e.g., KIR, NKG2A) receptors. NK cells execute tumoricidal

activity through three mechanistically distinct pathways: perforin/granzyme-mediated

lysis; death receptor (FasL/TRAIL)-induced apoptosis; and antibody-dependent cellular

cytotoxicity (ADCC) via FcgRIIIa (CD16) engagement (1). CAR-NK cells leverage the

innate cytotoxic capacity of NK cells and gain specificity against particular tumor-

associated antigens, thus improving their effectiveness in targeting malignant cells.

Distinct from CAR-T cells, CAR-NK cells maintain dual targeting mechanisms both

through their engineered receptors and their native activating receptors. Notably, CAR-NK

cells do not require human leukocyte antigen (HLA) matching (2), maximumly eliminate

graft-versus-host disease and cytokine release syndrome risks (3), and showed superior

TME infiltration capabilities (4). Moreover, there are broader sources of NK cells (5),

making them suitable for “off-the-shelf” therapeutic applications. This feature significantly

enhances their accessibility and reduces the time required for treatment preparation, which
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is crucial for patients with aggressive cancers. Despite these merits,

CAR-NK cells face cardinal translational barriers in terms of

transient persistence and TME-imposed suppression (6). To

address these challenges, researchers are exploring various

approaches that can enhance the durability and effectiveness of

CAR-NK cells. Synthetic biology approaches showed promising

effects in CAR-NK cells therapy by focusing on the design,

construction, and assembly of modular components. Validating

these innovations in clinical trials will bridge current limitations to

therapeutic application.
NK cells biology and sources

NK cells constitute critical effectors of the innate immune system,

characterized by their unique capacity to detect and eliminate

malignant or infected cells through a sophisticated balance of

activating and inhibitory receptors (7). Notably, NK cells also

mediate ADCC via CD16 engagement with antibody-opsonized

targets, triggering cytotoxic granule polarization and release (8)

(Figure 1A). Activating receptor signaling converges on Syk/ZAP70

axis, orchestrating cytotoxic particle synthesis, trafficking, and
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exocytosis (9–11). Sustained activation further induces FasL/TRAIL

expression, activating extrinsic apoptosis pathways in target cells (12).

The immunomodulatory capacity of NK cells extends to cytokine

production, with IFN-g secretion enhancing macrophage activation

and antigen presentation, while TNF-a release promotes both direct

tumor apoptosis and inflammatory amplification (13). Cellular

ontogeny studies reveal NK cell proliferation and differentiation

depend on cytokine-regulated signaling cascades: The PI3K-Akt-

mTOR axis governs developmental progression (14), while JAK/

STAT activation sustains precursor cell expansion and survival (15)

(Figure 1B). Intervention in the biological features of NK cells will be a

great innovative help for treatment, which is crucial for patients with

aggressive cancers.

Current NK cell sources exhibit distinct therapeutic tradeoffs

(Figure 2A). NK cells originate from the bone marrow and can be

derived from various sources, including peripheral blood, umbilical

cord blood, NK cells lines, and induced pluripotent stem cells

(iPSCs). Peripheral blood-derived NK cells demonstrate

immediate cytotoxicity but limited persistence (16). Umbilical

cord blood variants show enhanced expansion capacity through

reduced cytotoxic potential (17). Immortalized cell lines offer

superior scalability and effector function but suffer from poor in
FIGURE 1

Functional attributes of natural killer (NK) cells in tumor immunity. (A) Direct tumor-killing mechanisms: NK cells eliminate cancer cells through
activating receptors (e.g., NKG2D), ADCC via CD16, and the FasL/TRAIL-mediated death pathways. (B) Indirect antitumor effects: NK cells secrete
immunomodulatory factors, including interferon-gamma (IFN-g), cytokines, and chemokines, to recruit and activate adaptive immune cells.
Additionally, metabolic reprogramming in the tumor microenvironment enhances NK cell effector functions. (Figure created with BioRender).
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FIGURE 2

Bioengineering strategies to enhance NK cell antitumor efficacy. (A) Comparative profiles of NK cell sources: Functional and phenotypic differences
among NK cell subsets derived from peripheral blood, umbilical cord blood, iPSC, or engineered cell lines. (B) Genetic engineering for functional
optimization: (1). TME penetration: CRISPR-edited homing receptors (e.g., CXCR4/CXCR3) or matrix-degrading enzymes (MMPs); (2). Immune
checkpoint modulation. (3). Knockout of inhibitory receptors (e.g., NKG2A) or overexpression of activating receptors (e.g., NKG2D, DNAM-1); (4).
Intrinsic pathway activation: Constitutive signaling via STAT3, PI3K-AKT, or mTOR pathways; (5). Cytokine engineering: Armored CAR-NK cells
secreting IL-15/IL-21 for autocrine survival; (6). CAR evolution: Multigenerational CAR designs (1st–5th gen). (C) CAR-NK-mediated TME
reprogramming. (Figure created with BioRender).
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vivo survival and culture challenges (18). While iPSC-derived NK

cell products provide theoretically unlimited expansion potential,

they carry inherent tumorigenic risks and demonstrate genetic

instability during prolonged in vitro culture processes (5). These

critical safety concerns mandate comprehensive genomic stability

monitoring, inducible safety genes, and rigorous tumorigenicity

assessments through standardized assays (including teratoma

formation tests and karyotype analysis) prior to clinical

implementation (19). The inherent dichotomy between functional

potency and practical manufacturability presents fundamental

challenges in engineering optimal CAR-NK therapeutics.

Emerging synthetic biology strategies aim to overcome these

limitations through precision engineering of NK cell durability,

functionality, and tumor-resistant phenotypes.
Evolution of CAR architectures for NK
cells

Chimeric Antigen Receptors (CARs) are synthetic constructs

combining antibody-mediated specificity with cellular activation

capacity, first successfully implemented in T cells. A canonical CAR

architecture comprises three functional modules: an extracellular

antigen-binding domain (scFv) for antigen recognition, a

transmembrane domain, and an intracellular signaling domain

[Figure 2B (6)]. First-generation CARs featured a solitary CD3z
signaling domain that enabled antigen-specific activation but

showed restricted clinical efficacy due to transient persistence (20).

Second-generation designs incorporated a single co-stimulatory

domain (CD28 or 4-1BB) alongside CD3z, markedly enhancing

lymphocyte proliferation, metabolic fitness, and in vivo persistence –

breakthroughs that revolutionized hematologic malignancy treatment

(21, 22). However, these constructs remain vulnerable to

immunosuppressive checkpoints and exhibit poor solid tumor

penetration. Third-generation CARs addressed these limitations

through dual co-stimulation (e.g., CD28 + 4-1BB), though excessive

signaling occasionally precipitated T cell exhaustion via chronic

activation (23, 24). Fourth-generation ‘armored’ CARs introduced

inducible cytokine expression systems (e.g., IL-12) to remodel TME

post-target engagement, though off-target cytokine release risks

necessitated stringent safety controls (25). Fifth-generation platforms

integrate tunable activation switches and fail-safe mechanisms,

enabling real-time modulation of CAR activity to balance potency

and toxicity (26, 27). This iterative engineering progression informs

current CAR-NK cell development, which synergizes NK cells’

intrinsic advantages with synthetic biology precision editing.
Synthetic biology toolkit witches
regulate key physiological
characteristics

The synthetic biology toolkits enable the systematic integration

of genetic components that fine-tune NK cell behavior, amplify
Frontiers in Immunology 04
therapeutic efficacy, and impose spatiotemporal control over in vivo

activity. A cornerstone of this approach involves rewiring

intracellular signaling pathways governing antigen recognition,

activation dynamics, and cytotoxic execution.

Critical to CAR-NK cell utility is target identification, where

synthetic biology enhances ADCC through CD16 engineering.

Genetic modifications enhancing IgG Fc binding affinity have

demonstrated improved ADCC durability and potency (28).

Currently, a CAR-NK cell product containing optimized CD16a

is undergoing clinical evaluation. The preliminary results of the trial

were encouraging: objective response rates of >50% in 17 patients,

including 7 complete responses (29). Complementarily, synthetic

receptor systems mimicking natural activating ligands like NKG2D

counteract tumor immune evasion strategies driven by ligand

shedding (30). Counter-regulation of inhibitory checkpoints

further amplifies tumor targeting: CRISPR-mediated NKG2A

ablation prevents HLA-E-mediated suppression, markedly

enhancing cytotoxicity against resistant malignancies (31)

[Figure 2B (2, 3)]. For precision targeting, synthetic biology is

fundamentally transforming CAR-NK cell engineering by

implementing logic-gated (OR, AND, and NOT) receptor

architectures that enhance tumor specificity and mitigate off-

target toxicity (32–34). OR-gated dual CAR systems employ

independently functioning activation domains that synergistically

activate NK cells upon recognition of either target antigen,

effectively addressing tumor antigen heterogeneity (35). AND-

gated CAR systems require sequential engagement of two distinct

tumor antigens - primary CAR activation induces expression of a

secondary CAR, creating a failsafe mechanism that spares healthy

cells expressing single antigens. NOT-gated inhibitory CAR

architectures incorporate immune checkpoint-derived signaling

domains that dominantly suppress activation when encountering

healthy tissue biomarkers (36).

Upon target engagement, synthetic circuits amplify cytotoxic

payload delivery. Tet-On systems enable controlled perforin/

granzyme release, synergizing with engineered soluble factor-

related apoptosis-inducing ligand (TRAIL) expression to activate

both intrinsic and extrinsic apoptosis pathways (37, 38). Cytokine

engineering further augments antitumor immunity: chimeric

receptors incorporating CD28/IL-12 signaling domains drive IFN-

g hypersecretion (39), while IL-21 co-expression potentiates

cytotoxicity against epithelial tumors (40). In a clinical trial in

which CD19 and IL-15 co-express CAR structures to improve

survival rate, this therapy was effective and well tolerated in

patients with lymphocyte clearance from a large number of

relapsed or refractory CD19-positive malignancies, with a

complete response rate of 64%. Besides, CAR-NK cells are

detectable in the patient’s peripheral blood for more than 12

month (41).

Overcoming transient in vivo persistence remains paramount.

PI3K/AKT pathway modulation via IL-15/CCL21 co-expression

synergizes to sustain CAR-NK proliferative capacity and metabolic

fitness (42, 43). In addition to increasing persistence, long term

survival can also be achieved by introducing anti-apoptotic genes

(such as BCL-2) to reduce activation-induced apoptosis (44). In
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terms of NK cells sources, iPSC-derived CAR-NK cells exhibit

superior longevity compared to peripheral blood counterparts (45).

Safety engineering remains integral to clinical translation.

Inducible caspase 9 (iCasp9) suicide switches enable rapid

ablation during cytokine release syndromes (3). TME-responsive

circuits, such as TGF-b-inducible CAR activation, prevent off-

tumor toxicity by restricting effector function to malignant niches

(46). Collectively, these synthetic biology innovations establish a

robust framework for developing next-generation CAR-NK

therapeutics with enhanced specificity, persistence, and

safety profiles.
Synthetic biology techniques
reprogramming the TME

The TME suppresses immune cell cytotoxicity through three

interconnected mechanisms (47–50). First, cancer-related

fibroblasts secrete immunosuppressive factors including TGF-b,
VEGF, IL-6, CXCL12, and PD-L1, while depositing extracellular

matrix components like collagen and fibronectin that physically

impede immune infiltration. Second, TME metabolites such as

adenosine and lactate directly impair CD8+ T cell and NK cell

effector functions. Third, aberrant tumor vasculature creates

hypoxic niches that drive lactate accumulation via Warburg effect

reprogramming, simultaneously fueling tumor proliferation and

polarizing macrophages toward pro-tumoral M2 phenotypes

through HIF-1a signaling. These immunosuppressive networks

necessitate innovative strategies to enhance CAR-NK cell

functionality within hostile TME (Figure 2C).

To enhance tumor infiltration, overexpression matrix

metalloproteinase (MMP) engineering enables penetration

through stromal barriers (51) [Figure 2B (1)]. Synthetic biology

approaches counteract TME-driven immune evasion through

multiple mechanisms. CRISPR-mediated knockout of inhibitory

checkpoints like PD-1 on CAR-NK cells disrupts tumor immune

resistance pathways (52) [Figure 2B (2,3)]. This modification can

help overcome the immune evasion strategies employed by tumors,

leading to improved therapeutic outcomes. TGF-b resistance has

been achieved via CRISPR/Cas9-mediated TGFBR2 knockout,

effectively neutralizing this potent immunosuppressive cytokine

(46). Moreover, fused DNAX-activation protein 12 (DAP12) NK

cells demonstrated improved efficacy and persistence in TGF-b–
secreting TME (53).

Metabolic reprogramming strategies address TME-induced

dysfunction: GLUT1 overexpression enhances glycolytic flux in

hypoxic/lactate-rich conditions, sustaining CAR-NK cell

metabolic fitness and survival (54). Advanced control systems

incorporate hypoxia-responsive elements (HREs) to dynamically

regulate CAR expression based on TME oxygen tension (55)

[Figure 2B (4)]. Furthermore, engineered secretion of CCL5

enables CAR-NK cells to orchestrate antitumor immunity by

recruiting T cells and dendritic cells [Figure 2B (5)], converting

“cold” tumors into immunologically “hot” microenvironments,

boots the cytotoxic of immune cells (34, 42). While these
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advancements demonstrate significant progress in overcoming

TME constraints, clinical translation requires continued

optimization of CAR-NK cell durability, specificity, and safety

profiles through iterative synthetic biology innovations.
Strategies combining other
immunotherapies

The therapeutic potential of CAR-NK cells is amplified through

strategic combination with complementary modalities that address

tumor resistance mechanisms. Synergy with immune checkpoint

inhibitors counteracts TME-driven immunosuppression, as

evidenced by enhanced antitumor responses when combining PD-1/

CTLA-4 blockade with CAR-NK cells through dual activation of

innate and adaptive immunity (56). Combine cellular therapy

approaches leverage distinct cytotoxic mechanisms: CAR-NK/CAR-

T cell co-administration demonstrates improved solid tumor control

via spatial cooperativity, where NK cells eliminate CAR-T-resistant

antigen-low variants while T cells target bulk tumor populations (57).

Traditional cytotoxic therapies potentiate CAR-NK efficacy through

immunogenic modulation – radiotherapy-induced DNA damage

upregulates NKG2D ligands while chemotherapy depletes

immunosuppressive myeloid populations, collectively enhancing

tumor visibility and NK cell infiltration (58). This multidimensional

strategy surmounts tumor heterogeneity by simultaneously targeting

malignant clones, stromal barriers, and immune evasion pathways.
Future research

The clinical application prospects for CAR-NK cells are robust,

with ongoing research expected to yield innovative approaches that

enhance their therapeutic potential in cancer treatment. Innovation

in synthetic biology enables researchers to design and engineer NK

cells with unprecedented specificity and functionality. The field of

synthetic biology is poised to well benefit the development and

application of CAR-NK cells in cancer therapy.

Synthetic biology can facilitate the development of modular

CAR constructs that can be easily adapted to target various

antigens, thus streamlining the process of CAR design and

production (30). Traditional CAR therapies typically focus on a

single target antigen, which can lead to tumor escape mechanisms,

especially in heterogeneous cancers where antigen loss is common.

Dual-target CAR-NK cells can simultaneously engage multiple

tumor-associated antigens, thereby reducing the likelihood of

tumor evasion and enhancing overall therapeutic efficacy (32).

The ability to design CARs that can recognize multiple antigens

simultaneously is particularly valuable in treating complex

malignancies, such as acute myeloid leukemia, where antigenic

heterogeneity poses a significant challenge. In addition, adding a

protective CAR to prevent normal cells from being accidentally

injured is also a suitable way. Additionally, the integration of

artificial intelligence (AI) with synthetic biology is fundamentally

transforming CAR-NK cell development through many key
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mechanisms (59, 60): optimizing structures with algorithms;

customizing personalized treatment regimens; and imitating

treatment effects. Through the integration of AI technologies,

CAR-NK design will shift from a “trial-and-error mode” to a

“prediction-verification-optimization” closed loop, significantly

accelerating the development of next-generation therapies.

However, there is no ‘off of shelf’ NK cell in the market. Critical

challenges persist in manufacturing scale-up and safety assurance.

Good manufacturing practice-compliant scale-up requires

standardized protocols for closed-system bioreactor platforms and

automated cell processing systems. Safety assurance demands the

implementation of multiplexed pathogen and residual pluripotent

cells testing (61, 62). While iPSC-derived CAR-NK platforms

progress toward off-the-shelf availability, standardized potency

metrics, and reduced ex vivo manipulation costs remain

prerequisites for global accessibility. Long-term monitoring must

address theoretical risks of insertional oncogenesis from viral

vectors and HLA-independent alloimmunity. The field requires

harmonized clinical-grade production protocols validated through

multicenter trials, coupled with real-world evidence frameworks

tracking durable remission patterns.

Beyond CAR-NK cell optimization, synthetic biology has

revolutionized microbial-based cancer therapeutics through two

groundbreaking approaches: tumor-targeted bacterial vectors (63)

and xenogeneic antigen engineering (64), these have greatly

broadened the path of tumor therapies.

Through convergent innovation across synthetic biology, and

computational immunology, optimized NK sources, CAR-NK cells

are poised to transcend niche applications from robust hematologic

malignancy control to engineered tissue-homing systems

addressing solid TME. Realizing these potential demands

sustained interdisciplinary collaboration to navigate the intricate

interplay between cellular physiological characteristics, tumor

adaptability, and host immunity.
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