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Background: Hepatocellular carcinoma (HCC) is the most prevalent form of liver 
cancer, characterized by elevated mortality rates and heterogeneity. Despite 
advancements in treatment, the development of personalized therapeutic 
strategies for HCC remains a substantial challenge due to the intricate 
molecular characteristics of the disease. A multi-omics approach has the 
potential to offer more profound insights into HCC subtypes and enhance 
patient stratification for personalized treatments. 

Methods: A comprehensive data set comprising clinical, transcriptomic, 
genomic and epigenomic information from HCC patients was retrieved from 
the TCGA, ICGC, GEO and CPTAC databases. To identify distinct molecular 
subtypes, a multi-omics data integration approach was employed, utilizing 10 
distinct clustering algorithms. Survival analysis, immune infiltration profiling and 
drug sensitivity predictions were then used to evaluate the prognostic 
significance and therapeutic responses of these subtypes. Furthermore, 
machine learning models were employed to develop the artificial intelligence-
derived risk score (AIDRS) with the aim of predicting patient outcomes and 
guiding personalized therapy. In vitro and vivo experiments were conducted to 
assess the role of CEP55 in tumor progression. 

Results: The present study identified two distinct HCC subtypes (CS1 and CS2, 
respectively), each exhibiting different clinical outcomes and molecular 
characteristics. CS1 was associated with better overall survival, while CS2 
exhibited higher mutation burden and immune suppression. The AIDRS, 
constructed using a multi-step machine learning approach, effectively 
predicted patient prognosis across multiple cohorts. High AIDRS score 
correlated with poor prognosis and a limited response to immunotherapy. 
Furthermore, the study identified CEP55 as a potential therapeutic target, as it 
was found to be overexpressed in CS2 and associated with poorer outcomes. In 
vitro experiments confirmed that CEP55 knockdown reduced HCC cell 
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proliferation, migration, and invasion. Moreover, in xenograft models, CEP55 
knockdown significantly reduced tumor growth and proliferation. 

Conclusions: The integration of multi-omics data has been demonstrated to 
provide a comprehensive understanding of HCC subtypes, thus enhancing the 
prediction of prognosis and guiding personalized treatment strategies. The 
development of the AIDRS offers a robust tool for risk stratification, while 
CEP55 has emerged as a promising target for therapeutic intervention in HCC. 
KEYWORDS 

hepatocellular carcinoma (HCC), multi-omics, artificial intelligence-derived risk score 
(AIDRS), molecular subtypes, sorafenib, transcatheter arterial chemoembolization 
(TACE), immunotherapy, CEP55 
1 Introduction 

Primary liver cancer is the sixth most prevalent form of cancer 
worldwide and the third leading cause of cancer-related fatalities. 
Hepatocellular carcinoma (HCC) accounts for approximately 75% 
to 85% of liver cancer cases (1). According to global cancer statistics 
in 2022 (2), the incidence of HCC is highest in East Asia and sub-
Saharan Africa, particularly in countries like China, Japan and 
Mongolia. The major risk factors for HCC include chronic hepatitis 
B and C infections, excessive alcohol consumption and non­
alcoholic fatty liver disease (NAFLD). Surgical resection is 
regarded as the optimal treatment option for HCC, given its 
status as a radical therapy. However, the majority of patients 
present with late-stage disease, by which point the opportunity 
for surgical intervention has often been missed, and the recurrence 
rate after surgery remains high. It is evident that local treatments 
such as transcatheter arterial chemoembolization (TACE) and 
systemic treatments, including radiotherapy, chemotherapy and 
immunotherapy, have become significant treatment options for 
HCC (1, 3, 4). Among these, sorafenib, a multi-target tyrosine 
kinase inhibitor, is the first targeted chemotherapeutic drug to be 
approved for the treatment of HCC. Although it has been shown to 
prolong patient survival, its efficacy is limited and drug resistance is 
also a prominent problem (5–7). 

Recent years have seen a shift towards immunotherapy and 
combination targeted therapies as the prevailing trend in the 
treatment of HCC (1, 8, 9). A notable development is the 
combination of the anti- VEGFA monoclonal antibody 
bevacizumab and the PD-L1 inhibitor atezolizumab, which has 
emerged as the first treatment regimen to demonstrate a significant 
improvement in overall survival (OS) when compared to sorafenib 
(10). Furthermore, targeted drugs like lenvatinib and PD-1/PD-L1 
inhibitors such as pembrolizumab have exhibited promising results 
(11, 12). However, systemic therapy is usually accompanied by 
adverse effects on normal hepatocytes, and the survival time and 
quality of life of patients is often seriously affected by side effects, 
02 
mainly vomiting and immunosuppression (11–14). Therefore, the 
selection and implementation of personalized treatment regimens 
for HCC patients is a key challenge that needs to be addressed. 

HCC is characterized by significant heterogeneity, which poses a 
substantial challenge to its treatment. However, this heterogeneity also 
presents opportunities for the development of personalized treatment 
strategies (1, 13). The molecular heterogeneity of HCC patients can be 
categorized into distinct subtypes, each with unique biological 
characteristics, prognosis and response to treatment (15). 
Elucidation of these subtypes facilitates the development of more 
precise and personalized treatment strategies, thereby enhancing 
treatment efficacy and reducing unnecessary side effects. The advent 
of high-throughput sequencing technology has been instrumental in 
facilitating the analysis of molecular subtypes of HCC, with it offering 
significant contributions to the prognosis, prediction and precision 
treatment of HCC patients (16–18). However, the majority of current 
research is confined to the utilization of single omics methods such as 
transcriptomics (19), proteomics (20) and metabolomics (21), or 
analysis is restricted to specific biological pathways, such as fatty 
acid metabolism (21). There is a paucity of systematic subtype analysis 
incorporating multi-omics perspectives, including genomics, 
transcriptomics and epigenomics, and multiple biological levels. 
This has impeded our ability to fully elucidate the complex 
biological characteristics and clinical behavior of HCC and hindered 
the development of more accurate predictive tools, new classification 
standards and biomarkers to guide individualized treatment of HCC. 

In this study, we integrated multi-omics data, incorporating 
genomics, transcriptomics and epigenomics, to distinguish stable 
HCC subtypes and conduct an in-depth molecular characterization. 
Utilizing multiple machine learning techniques, we developed more 
accurate prognostic prediction models and artificial intelligence-
derived risk score (AIDRS), which provide targeted guidance for 
specific treatment strategies for patients. This approach will 
contribute to the establishment of a more comprehensive and 
accurate personalized therapeutic strategy for HCC, ultimately 
improving treatment outcomes and quality of life for HCC patients. 
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2 Materials and methods 

2.1 Multi-omics data collection and pre­
processing 

Clinical details, transcriptome expression (FPKM format), 
DNA methylation (methylation 450k format), somatic mutations 
(masked format) and copy number variants (gistic2 format) from 
TCGA-LIHC in The Cancer Genome Atlas (TCGA) database 
(https://portal.gdc.cancer.gov/) were downloaded using the R 
package “TCGAbiolinks” (v.2.28.3) (22). lncRNA and mRNA 
data were annotated using official website files followed by log2 
(FPKM+1) calculations to make them more comparable. The 
somatic mutation analysis was all performed by R package 
“maftools” (v.2.16.0) (23). For DNA methylation data, b-values 
were log-transformed. The external validation cohorts ICGC-LIRI 
was obtained from the International Cancer Genome Consortium 
(ICGC) database (https://dcc.icgc.org/) and GSE14520 (24), 
GSE144269 (25), GSE141200 (26) and GSE141198 (26) were

obtained from the NCBI Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/). For genes with 
duplicates, the average value was taken. The samples were 
identified and only the data from the tumor tissue was kept. 

Expression matrix and treatment response information for 67 
HCC patients treated with sorafenib were extracted from the 
GSE109211 (27) dataset to assess whether subtypes were sensitive to 
sorafenib. GSE104580 containing 147 HCC patients treated with 
TACE was recruited to assess subtype sensitivity to TACE. In 
addition, GSE215011 (28) and GSE202069 (29), including 10 and 24 
HCC patients respectively, were included to evaluate the association 
between molecular subtypes and immunotherapy response. 

To further explore the proteomic characteristics of subtypes, 
protein expression matrix and corresponding clinical information 
of 151 HCC patients were obtained from the Clinical Proteomic 
Tumor Analysis Consortium (CPTAC) cohort (20). This dataset 
was utilized to validate subtype-specific molecular features at the 
proteomic level and to assess their clinical relevance. 

The single-cell RNA sequencing (scRNA-seq) data were 
downloaded from the NCBI Gene GSE151530 (28), GSE156625 (29), 
GSE189903 (30) and GSE202642 (31). Among each sample, cells with 
fewer than 1000 UMI counts and genes expressed in less than 300 cells 
were excluded. In addition, a total of 273 genes associated with 
mitochondria, heat shock proteins and ribosomes were excluded to 
avoid expression artifacts from undetected noise and dissociation. After 
the quality filtering, 249012 cells were selected for the following analysis. 
 

2.2 Data integration and molecular subtype 
identification 

A new classification of HCC was established based on multi­

omics data of mRNA expression, LncRNA expression, DNA 
methylation and somatic mutation data. The factors most 
associated with OS were extracted based on Cox regression 
survival analysis, ensuring that these factors were all P ≤ 0.001. 
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Finally, 1000 mRNA, 100 lncRNA and 100 DNA methylation sites 
were recruited. Meanwhile, 11 genes with mutation frequencies 
greater than 3% were enrolled for multi-omics analysis. 

To minimize noise while retaining important features, CPI and 
Gaps-statistics were used to obtain the optimal number of clusters. 
Subsequently, 10 algorithms (iClusterBayes, moCluster, CIMLR, 
IntNMF, ConsensusClustering, COCA, NEMO, PINSPlus, SNF and 
LRA) built into the R package “MOVICS” (32) are used to cluster 
the samples and the clustering results of different algorithms are 
integrated to improve the robustness of the clustering. In addition, 
the nearest template prediction (NTP) was run in external 
validation cohorts to verify the stability of the subtypes. 
2.3 Survival analysis and comparison of 
clinical features 

Survival analysis was conducted for different cohorts using the 
subtypes and Kaplan-Meier curves were plotted and Log-Rank tests 
were performed. At the same time, the differences in clinical 
characteristics were compared. In addition, in order to clarify the 
potential impact of subtypes on the prognosis of HCC patients, 
univariate and multivariate Cox survival analysis were conducted 
sequentially for different cohorts. The results were presented in 
forest plots and P < 0.05 considered significant. 
2.4 Genomic characterization and tumor 
microenvironment analysis 

The R package “maftools” (23) (v.2.16.0) was used to somatic 
mutation analysis. The ‘mafCompare’ function was used to identify 
differentially mutated genes between CS1 and CS2 and the top 20 were 
visualized by the ‘coOncoplot’ function. The ‘trinucleotideMatrix’ and 
‘extractSignatures’ functions were used to identify retained 
characteristic mutation patterns in the cancer progression processes, 
thus enabling the interpretation of mutations as potential mutagenic 
processes. Mutant-allele tumor heterogeneity (MATH) and tumor 
mutation burden (TMB) was calculated for the TCGA-LIHC and 
ICGC-IRLI cohorts, and the mutation frequencies of TP53 and 
CNTTB1 were also compared between subtypes. 

Download the snp6.na35.remap.hg38.subset.txt.gz file from 
GitHub (https://github.com/NCI-GDC/dnacopy-tool/) as a marker 
file. Split the masked copy number segment according to the 
subtype and  use them as the  segment  file for CS1 and CS2 
respectively. The maker file and segment file were uploaded to the 
GenePattern (https://www.genepattern.org/) website,  while
Human_hg38.UCSC.add_mir.160920.mat was selected as the 
reference file. Finally, the GISTIC 2.0 (33) module was run to 
investigate the CNVs of CS1 and CS2. After the run results are 
obtained, the R package “BSgenome.Hsapiens.UCSC.hg38” (v.1.4.5) 
was used to identify the chromosomal location of any amplification 
or deletion events. 

In order to provide further clarification regarding the potential 
impact of CNV events on gene expression, genes corresponding to 
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specific copy number variation events in CS1 and CS2 were extracted 
and integrated into an expression matrix, respectively. The RNA-seq 
(count format) data were analyzed using DEseq2 (34) (v.1.40.2), 
whereby genes with P < 0.05 and ∣log2FC∣≥ 1 was defined as 
differentially expressed genes (DEGs). Furthermore, the copy 
number values corresponding to the aforementioned differentially 
expressed  genes  were  extracted  from  the  fi le  entitled  
“broad_data_by_genes.txt” and normalized to “Nor_CNV”. The 
student t-test was then used to identify “Nor_CNV” that differed 
significantly among subtypes and their corresponding genes were 
integrated with the DEGs in order to obtain the genes most likely to 
have altered expression due to copy number variation. Finally, the 
expression of genes was compared between subtypes and correlation 
curves were plotted between gene expression and “Nor_CNV”. 

The tumor microenvironment (TME) of three independent 
study cohorts was decoded using xCell (35), quantiseq (36), 
TIMER (37) and MCPcounter (38) algorithms. The differences in 
cell type-specific immune infiltration scores between subtypes were 
analyzed using the limma (39) (v.3.56.2) algorithm. The results were 
then normalized and presented as heatmap. 
 

2.5 Dimension reduction, integration and 
unsupervised clustering of single-cell RNA 
sequencing data 

Single-cell RNA sequencing data from this study were analyzed 
uniformly using the R package “SCP” (v.0.5.6) (https://github.com/ 
zhanghao-njmu/SCP). NormalizeData and ScaleData were used to 
normalize and scale the preprocessed data, respectively, while 
FindVariableGenes was used to identify highly variable genes. The 
“RunPCA” function was used to estimate the principal components 
(PCs). Then, the dimension range was set to 1:40, and the “RunUMAP” 
functions were used to perform the uniform manifold approximation 
and projection downscaling (UMAP). In order to eliminate the batch 
effect caused by the difference of sample sources, we used the 
“Harmony” function of the R package “harmony” (0.1.1) (40) for

data integration. Set integration_method = “Harmony”, 
linear_reduction_dims_use = 1:50, and use the function 
FindNeighbors to allocate cells. In addition, set different resolutions 
and run FindClusters for unsupervised clustering. In conclusion, we 
displayed the clustering of cells at various resolutions in a tree format. 
We then selected the stable outcomes (cluster_resolution = 0.6) for 
further analysis. Based on published classical cell markers, six cell types 
were identified: B cells (CD79A, CD79B), Endothelial (VWF, PECAM1), 
Fibroblasts (COL1A1, COL1A2), Hepatocytes (ALB, APOA2), Myeloid 
(LYZ, C1QB, S100A9) and  T/NK  Cells (CD1C, CD3D, CD3E). 
2.6 Identifying subtype-related 
subpopulations by integrating bulk and 
single-cell RNA sequencing data 

We identified subtype-related subpopulations by the Scissor 
(41) algorithm. Briefly, we used CS1 and CS2 as the phenotype 
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while collating a single-cell RNA sequencing data (scRNA-seq) 
expression matrix and bulk profiling data. The above three files 
were used as input data for Scissor, where CS2 was defined as a 
positive outcome and CS1 as a negative outcome. A regression 
model was built against the dichotomous variables to calculate the 
regression coefficients for each cell against the phenotype. Cells with 
negative regression coefficients are highly correlated with CS1, 
described as “Scissor_CS1”, cells with positive regression 
coefficients are highly correlated with CS2, described as “ 
Scissor_CS2”, and cells with zero regression coefficients are 
background cells, described as “NULL”. 
2.7 Prediction of precise therapy strategies 

Drug sensitivity analysis was performed using the oncoPredict 
(42) algorithm for subtypes, extracting results that were consistent 
across three independent cohorts for normalization, and ggplot2 for 
visualization. To assess the sensitivity of immunotherapy, the R 
package “easier” was used to calculate the Estimate Systems 
Immunotherapy response (EaSIeR) score (43). Based on the 
outcomes, the patients were classified into two groups, namely 
non-response (NR) and response (R). Bar graphs were used to 
compare the proportion of patients responding to treatment in 
different subtypes. At the same time, the Tumor Immune 
Dysfunction and Exclusion (TIDE) score were calculated using 
the TIDE algorithm under a Linux system (44). Additionally, four 
independent cohorts (GSE109211, GSE104580, GSE215011 and 
GSE202069) containing treatment information, were further used 
to compare differences in sensitivity between sorafenib, TACE and 
immunotherapy treatment between subtypes. For all comparisons, 
P < 0.05 was considered significant. 
2.8 Construction and evaluation of the 
artificial intelligence-derived risk score 

The AIDRS was developed following a well-established 
analytical framework from the R package “Mime” (v.0.0.0.9) (38), 
which integrates ten classical machine learning algorithms: random 
forest (RSF), elastic network (Enet), stepwise Cox (StepCox), 
CoxBoost, partial least squares regression for Cox (plsRcox), 
supervised principal components (superpc), generalized boosted 
regression models (GBM), survival support vector machine 
(survivalsvm), Ridge, and least absolute shrinkage and selection 
operator (Lasso). Among these, RSF, Lasso, CoxBoost, and different 
variants of StepCox (both directions and backward selection) were 
employed in the initial feature selection stately generating 117 
distinct algorithmic combinations for model construction. AIDRS 
was developed using a structured multi-step process (1): Differential 
gene expression analysis was performed on both the training and 
validation cohorts, and input matrices were constructed by 
extracting genes that were differentially expressed in the three 
cohorts at the same time (2). Univariate Cox regression analysis 
was conducted using the coxph function from the R package 
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“survival” (v.3.8-3) on both the training and validation cohorts. 
Candidate prognostic genes (CPGs) were identified based on P ≤ 
0.01 and consistent hazard ratios (HR > 1 or HR < 1) across both 
datasets (3). Feature selection and model fitting were performed 
using the 117 algorithmic combinations, where selected CPGs were 
incorporated into prognostic models trained on the Z-score 
normalized gene expression values (4). Model evaluation was 
conducted by computing risk scores for patients in the training, 
validation and independent test sets, utilizing the predict function 
from the respective model packages (5). Performance assessment 
was based on Harrell’s concordance index (C-index), which was 
calculated via univariate Cox regression analysis on the risk scores 
across all datasets (6). The final optimal model was automatically 
selected based on the highest average C-index across all three 
cohorts. The corresponding risk score derived from this model 
was defined as the AIDRS. 

After construction, several strategies were used to further assess 
the predictive efficacy of the AIDRS in both the training and 
validation cohorts (1): Calculate the median risk score, categorize 
the HCC patients into high-risk and low-risk groups, plot the 
Kaplan-Meier curves and run the Log-Rank test to compare the 
differences in survival (2). Time-dependent ROC curve analysis was 
performed and the area under the curve (AUC) was calculated (3). 
Meta-analysis was performed for univariate Cox regression. 
2.9 Multidimensional validation of AIDRS 

The predictive efficacy of AIDRS was extensively and 
comprehensively validated using multi-omics data. Specifically, 
the AIDRS between subtypes in the training and validation 
cohorts were first compared to clarify differences between groups. 
Second, patients were grouped according to the median AIDRS and 
the Kaplan-Meier curves were plotted to compare survival 
differences. Subsequently, patients were differentiated on the basis 
of clinical characteristics and differences in AIDRS between groups 
were compared. In addition, patients in the TCGA-LIHC and 
ICGC-LIRC cohort were grouped according to whether TP53 and 
CTNNB1 were mutated or not, to verify the association between 
AIDRS and gene mutations. Further, the correlation between 
different treatment scores and AIDRS was calculated and 
correlation curves were plotted. Finally, AIDRS was calculated for 
scRNA-seq data using three methods (“Seurat”, “AUCell” and 
“UCell”), while comparing the intensity in different cell types. 
2.10 Identification of key genes in AIDRS 

The following steps were taken in order to identify overlapping 
genes included in the AIDRS model in the training and validation 
cohorts, along with multiple strategies to further identify key genes 
for AIDRS (1): AIDRS-associated genes were extracted from 
different study cohorts and overlapping genes were identified 
using veen plots (2). The multiplicity of differences in gene 
Frontiers in Immunology 05 
expression between subtypes will be compared (3). The 
prognostic hazard ratios of genes will be calculated based on 
univariate Cox regression (4). The Pearson correlation coefficient 
between gene expression and AIDRS will be calculated (5). 
Calculate the area under the curve (AUC) values of genes and 
compare the efficacy of genes in classifying subtypes (6). Group 
patients based on median gene expression, plot Kaplan-Meier 
curves and compare survival differences between groups using the 
Log-Rank test (7). Further validate the key genes based on scRNA­
seq data. 
2.11 Cell culture 

The human HCC cell lines Bel-7402 and Hep-3B were obtained 
from the Cell Bank of Type Culture Collection of the Chinese 
Academy of Sciences (Shanghai, China). Both cell lines were 
maintained in Dulbecco’s Modified Eagle’s Medium (DMEM)

(BasalMedia, Shanghai, China) supplemented with 10% fetal 
bovine serum (FBS, ExCell, Suzhou, China). Cells were incubated 
under standard culture conditions at 37°C with 5% CO2 in a 
humidified incubator. 
2.12 Cell transfection and CEP55 
knockdown 

To achieve effective CEP55 knockdown, small interfering RNA 
(siRNA) specifically targeting CEP55 was designed and synthesized 
by RiboBio (Guangzhou, China). A non-targeting siRNA was used 
as the negative control (NC). Transfection efficiency was confirmed 
through quantitative real-time polymerase chain reaction 
(qRT-PCR). 
2.13 Cell Counting Kit-8 assay 

Transfected Bel-7402 and Hep-3B cells were seeded into 96-well 
plates and incubated under optimal conditions for 24, 48 and 72 h. 
The Cell Counting Kit-8 (CCK-8) (US Everbright, Suzhou, China) 
assay was performed according to the manufacturer’s protocol. 
Absorbance was measured at 450 nm using a microplate reader 
(Infinite F50, Tecan, Switzerland) to assess cell viability. 
2.14 Colony formation assay 

Transfected Bel-7402 and Hep-3B cells were trypsinized, counted 
and plated in 6-well plates at a density of 200 cells per well. The cells 
were cultured for 14 days to allow colony formation. Colonies were 
then fixed with 4% paraformaldehyde for 30 minutes, washed with 
phosphate-buffered saline (PBS), and stained with 0.1% crystal violet 
solution (Solarbio, Beijing, China) for 30 minutes. The number of 
colonies was counted and analyzed statistically. 
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2.15 Transwell migration assays 

Cell migration ability was evaluated using transwell chambers 
with 24-mm pores. Briefly, 2.5 × 104 transfected cells resuspended in 
serum-free DMEM were seeded into the upper chamber, while the 
lower chamber contained DMEM supplemented with 10% FBS. 
After 48 h of incubation at 37°C, non-migrated cells were carefully 
removed, and migrated cells were fixed, stained and counted under 
a light microscope. 
2.16 Wound-healing assays 

To further assess the migration capability of CEP55-silenced cells, a 
scratch wound healing assay was performed. Transfected cells were 
seeded into 6-well plates and grown to near confluence. A 200-mL 
pipette tip was used to create a straight scratch in the cell monolayer. 
Images were captured at 0 and 48 h to evaluate the wound closure rate, 
which was used to quantify the migratory potential of the cells. 
2.17 Xenograft tumor model in nude mice 

BALB/c nude mice (4–6 weeks old, male) were purchased from 
the Comparative Medicine Center of Yangzhou University (SYXK 
(Su) 2023-0019) and housed in a specific pathogen-free (SPF) 
facility with controlled temperature, humidity, and a 12 h light/ 
dark cycle. All animal procedures were approved by the Dalian 
Medical University Animal Care and Ethics Committee 
(XL250423013) and were performed in accordance with the 
guidelines for the Care and Use of Laboratory Animals. 

CEP55 knockdown and control groups were established against 
Bel-7402 and Hep-3B cell lines. Each group was injected 
subcutaneously into the dorsal axilla of nude mice (5 × 106 cells 
in 100 µL PBS per mouse). Tumor growth and the health condition 
of the mice were monitored weekly. After 5 weeks, mice were 
euthanized by cervical dislocation, and tumors were excised, 
weighed, and measured. Tumor volume was calculated using the 
formula: V (cm3) = 1/2 × length × width2. The harvested tumor 
tissues were separated into two sections (1): preserved at -80°C for 
cryopreservation (2). fixed in a 4% paraformaldehyde solution. 
2.18 Western blotting 

Total protein was extracted from xenograft tumor tissues using 
a lysis buffer containing protease inhibitors. Protein concentration 
was determined using a BCA Protein Assay Kit (P0010, Beyotime 
Biotechnology, Shanghai, China). Equal amounts of protein were 
separated by 10% SDS-PAGE (S8010, Solarbio, Beijing, China) and 
transferred to PVDF membranes (ISEQ00010, Millipore, USA). The 
membranes were blocked with 5% non-fat milk and then incubated 
overnight at 4 °C with primary antibodies against CEP55 (1:1000, 
PA5-96976, Thermo, MA, USA) and GAPDH (1:500, ab8245, 
Abcam, Shanghai, China). After washing, the membranes were 
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incubated with HRP-conjugated secondary antibodies at room 
temperature for 2 h. Protein bands were visualized using 
enhanced chemiluminescence (ECL) reagents (180-5001, Tanon, 
Shanghai, China). Band intensities were quantified using ImageJ 
software, and the relative expression levels of target proteins were 
normalized to GAPDH. 
2.19 Immunohistochemistry 

Tumor tissues were fixed in 4% paraformaldehyde, embedded in 
paraffin, and sectioned at 4 mm thickness. Sections were deparaffinized 
with xylene and rehydrated through graded ethanol. Antigen retrieval 
was performed using heated citrate buffer (C1010, Solarbio, Beijing, 
China) for 15 minutes. Endogenous peroxidase activity was blocked 
with 3% hydrogen peroxide for 20 minutes at room temperature. 
After blocking with normal serum, sections were incubated overnight 
at 4 °C with a primary antibody against CEP55 (1:50, 23891-1-AP, 
Proteintech, Wuhan, China) and Ki-67 (1:500, ab15580, Abcam, 
Shanghai, China), followed by incubation with an appropriate 
HRP-conjugated secondary antibody for 1 h at room temperature. 
DAB (Diaminobenzidine) was used for chromogenic detection, and 
hematoxylin was used for nuclear counterstaining. After dehydration 
and mounting, the stained sections were imaged using a brightfield 
microscope (NIB900, Leica Microsystems, Germany). The 
histochemistry score were evaluated semi-quantitatively. 
2.20 Statistics and visualization 

All statistical analyses for the figures were conducted using rstatix 
(v.0.7.2) and visualizations were generated with ggplot2 (v.3.4.3), 
except for methods where default tools were applied. Group 
comparisons were performed using parametric tests, such as 
Student’s t-test or Welch’s ANOVA test, provided the data 
followed normality and homogeneity of variance assumptions. In 
cases where data deviated from normality, non-parametric tests, 
including the Wilcoxon test or Kruskal-Wallis test, were employed, 
followed by Tukey’s post-hoc analysis. The Chi-square test was used 
to determine whether the sample distribution of a categorical variable 
is consistent. When identical statistical methods or color schemes are 
used in multiple parts of the manuscript, only the initial reference will 
include detailed annotations. All subsequent references will follow the 
same format and statistical approach as stated initially. 
3 Results 

3.1 Identify two molecular subtypes of 
HCC patients based on consensus 
clustering 

After applying stringent data filtering, a total of 355 HCC 
patients with complete datasets across mRNA, lncRNA 
expression, DNA methylation, gene mutations and OS outcomes 
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from the TCGA-LIHC cohort were selected for consensus 
clustering to identify molecular subtypes. Based on the optimal 
number of multi-omics clusters determined by the clustering 
prediction index (CPI) and Gap statistics, we identified two 
molecular subtypes for further analysis (Supplementary 
Figure 1A). Ten classical clustering algorithms available in the R 
package “MOVICs” (34) were employed to assign patients to these 
predefined molecular subtypes, followed by an ensemble consensus 
to ensure the robustness of the classification. The silhouette analysis 
further validated the clustering, demonstrating a moderate 
similarity among the samples in each subtype, with silhouette 
scores of 0.56 and 0.80 for CS1 and CS2, respectively 
(Supplementary Figure 1B). The distribution of the multi-omics 
data across these subtypes, along with associated clinicopathological 
features was shown in Figure 1A. For instance, CS1 displayed a 
higher DNA methylation profile, with patients carrying mutations 
in CTNNB1 primarily grouped in this subtype. CS2 was 
characterized by higher prevalence of mutations in TP53. In 
addition, most of the incorporated mRNA and lncRNA were 
highly expressed in CS2, including SPP1, S100A10, SNHG3, 
SNHG4 and so on. 

The clinical prognostic outcome of HCC patients is a crucial 
factor in determining subsequent treatment options. We indicated 
that CS1 exhibited significantly superior overall survival (OS), 
progression-free interval (PFI), disease-specific survival (DSS) and 
disease-free interval (DFI) when compared to CS2, indicating a 
higher prognosis (P ≤ 0.01) (Figures 1B–E). In addition, the TCGA­
LIHC cohort demonstrated that the nearest template prediction 
algorithm predictions were consistent with the original typing, 
thereby indicating stable and reliable CS subtypes and confirming 
the rationality of subtype extrapolation using nearest template 
prediction algorithm (Figure 1F). 
3.2 Molecular subtypes further confirmed 
in independent cohort 

In order to validate the external stability of the CS subtypes, the 
nearest template prediction algorithm was employed for the 
identification of subtypes against the ICGC-LIRI and GSE14520 
cohorts. The ICGC-LIRI cohort comprised 223 HCC patients, of 
whom 149 were classified as CS1 and 74 as CS2, while the 
GSE14520 cohort contained 237 HCC patients, with 123 
designated as CS1 and 114 as CS2 (Figures 1G, I). Furthermore, 
in both the ICGC-LIRI and GSE14520 cohorts, CS1, in comparison 
with CS2, exhibited superior overall survival (OS) and disease-free 
survival (PFI) (P ≤ 0.01) (Figures 1H, J, K). 
3.3 Patients with different molecular 
subtypes face different clinicopathologic 
and functional features 

In comparisons targeting clinicopathological features between 
subtypes, we found that CS2 patients in three independent cohorts 
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(TCGA-LIHC, ICGC-LIRI and GSE14520) were mostly in 
advanced tumor stage, along with higher alpha-fetoprotein (AFP), 
longer prothrombin time (PT), and larger tumor size compared to 
CS1 (P < 0.05) (Figures 2A–C). Second, in the univariate Cox 
regression of prognostic factors for HCC patients, CS subtypes were 
shown to be a prognostic risk factor in both the training and 
validation cohorts, with hazard ratios of 2.8, 2.3 and 2.2 in that 
order (P < 0.05) (Figure 2D). The hazard ratios of CS subtypes were 
similar to the tumor stage, which is often used to evaluate the 
patient’s prognosis in the clinic and were significantly superior to 
those of AFP, albumin (ALB) and PT (P < 0.05) (Figure 2D). In 
addition, after further incorporating the statistically significant 
prognostic factors into the multivariate Cox regression, we found 
that the statistical efficacy of a variety of metrics, including AFP, 
ALB and PT, was significantly reduced (P < 0.05) (Figures 2E–G). 
In contrast, CS subtypes and tumor stage were statistically different 
in the three independent cohorts, with hazard ratios for CS subtypes 
being: 2.2, 2.1 and 1.73, respectively (P < 0.05) (Figures 2E–G). 

The differential expression analysis among subtypes yielded 
4562, 2638 and 556 differentially expressed genes in the three 
study cohorts, respectively. Of these, 73 were concurrently 
expressed  upregulated  genes  and  99  were  expressed  
downregulated genes (Supplementary Figure 1C). GO enrichment 
analysis subsequently revealed that 172 DEGs were closely 
associated with metabolism-related biological processes, including 
xenobiotic metabolic process, small molecule metabolic process and 
oxoacid metabolic process (P < 0.05). Additionally, these genes were 
found to be actively involved in immune responses, such as positive 
regulation of immune system process (P < 0.05) (Supplementary 
Figure 1D). The KEGG analysis indicated that the DEGs were 
significantly enriched in pathways such as the Toll-like receptor 
signaling pathway, metabolic pathways and the IL-17 signaling 
pathway (P < 0.05) (Supplementary Figure 1E). Furthermore, an 
analysis of the differences in feature scores across three distinct 
study cohorts revealed that scores associated with immune 
activation-related pathways were significantly elevated in CS1, 
i n c l u d i n g  “ TMEs c o r eA_C IR  ” , “ T IP_R e c o gn i t i o n _  
of_cancer_cells_by_T_cells_1”, “TIP_Infiltration_of_immune_ 
cells_into_tumors_2” and so on (P < 0.05) (Supplementary 
Figure 1F). Conversely, scores for biological metabolic pathways 
such as “Tyrosine_Metabolism”, “Tryptophan_Metabolism”, 
“Steroid_Hormone_Metabolism” were significantly lower in CS1 
compared to CS2 (P < 0.05) (Supplementary Figure 1G). Overall, 
CS1 exhibited significant immune activity, while CS2 was closely 
associated with biological metabolic pathways. 
3.4 Genomic alterations with different 
molecular subtypes 

Following the sorting of the top twenty genes according to 
mutation frequency, it was established that the top three mutated 
genes in the TCGA-LIHC cohort were TP53 (28%), CTNNB1 
(26%) and TTN (24%) (Figure 3A). Twenty genes were identified 
as mutated in both CS1 and CS2, and no specific genes were found 
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FIGURE 1 

Two distinct molecular subtypes were identified through consensus clustering of multi-omics data, and clinical outcomes and stability were 
assessed. (A) Multi-omics features corresponding to CS1 and CS2 in the TCGA-LIHC cohort. M value, methylation value; CS, clustering subtype. 
(B–E) Kaplan–Meier curves corresponding to subtypes in the TCGA-LIHC cohort for overall survival, progression-free interval, disease-specific 
survival, and disease-free interval. (F) Consistency of subtype with nearest template prediction in the TCGA-LIHC cohort. (G) Evaluation of CS1 and 
CS2 subtypes in the ICGC-LIRI cohort. (H) Kaplan–Meier curves corresponding to subtypes in the GSE14520 cohort for overall survival. (I) Evaluation 
of CS1 and CS2 subtypes in the GSE14520 cohort. (J, K) Kaplan–Meier curves corresponding to subtypes in the GSE14520 cohort for overall survival 
and disease-free survival. Log-rank test was used in (B, C, D, E, H, J, K). 
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to be mutated only in one subtype. However, a significant variation 
in the frequency of gene mutation was observed among the different 
subtypes. For instance, the mutation frequency of the CTNNB1 
gene was approximately 75% in CS1, which is considerably higher 
than the 25% observed in CS2. Conversely, mutations in the TP53 
gene were present in about 67.5% of all CS2 individuals, compared 
to only about 47.5% of individuals with mutations in CS1 (P ≤ 
0.001) (Figure 3B). Furthermore, CS2 exhibited higher TMB and 
lower MATH compared to CS1 (P < 0.05) (Figure 3E). Significant 
differences in TP53 and CTNNB1 mutation frequency, TMB and 
MATH between subtypes were likewise confirmed in the validation 
cohort ICGC-LIRI (P < 0.05) (Figures 3F, G). In the analysis of 
mutations against genes, we found that mutations in CS1 were 
enriched for defective DNA mismatch repair features (COSMIC_6), 
exposure to aristolochic acid (COSMIC_22) and exposure to 
tobacco (smoking) mutagens (COSMIC_4), whereas mutations in 
CS2 were mainly enriched for exposure to aristolochic acid 
(COSMIC_22) (Figures 3C, D). 

For CNVs, the frequency of mutation events on different 
chromosomes and the corresponding p-values were calculated 
separately after grouping them according to subtypes. The results 
showed a higher frequency of gene copy number deletions on 
chromosomes 4 and 13–16 and a lower frequency of gene copy 
number duplications on chromosomes 5 and 8 in CS2 compared to 
CS1 (Figures 4A, B). Concurrently, the statistical efficacy of copy 
number variation events in CS1 and CS2 was inadequate, 
particularly in the context of gene copy number deletion events 
(Figure 4C). In the subsequent integrated analysis, it was found that 
CNV events involved a total of 415 genes, of which 62 genes were 
differentially expressed between subtypes, containing 42 
upregulated and 20 downregulated genes (Figure 4D). Among 
them, only CPB2 and DLEU7 genes showed simultaneous 
differences in expression and copy number values between 
subtypes (P < 0.05) (Figures 4E–G). Furthermore, the correlation 
analysis for gene expression and copy number values revealed a 
consistent positive correlation for the CPB2 gene in both CS1 and 
CS2 (P < 0.05), while the correlation for the DLEU7 gene did not 
satisfy the statistical difference (P ≥ 0.05) (Figure 4G). 
3.5 CS1 has abundant immune infiltration 
and CS2 has dense tumor cells 

The present study evaluated the cell types in the tumor 
microenvironment of HCC patients in three independent study 
cohorts, utilizing four distinct inverse convolution algorithms. The 
analysis revealed that CS1 exhibited a higher abundance of CD8+ T, 
CD4+ T, NK Cells and M1-type macrophages, indicative of a more 
pronounced immune cell infiltration compared to CS2 (P < 0.05). 
Conversely, CS2 demonstrated a higher prevalence of non-immune 
cells, including hepatocytes, endothelial cells, fibroblasts and 
pericytes, exhibiting significant disparities among the various 
subtypes (P < 0.05) (Figure 5A). 

Following the initial quality control and dimensionality 
reduction clustering, a single-cell atlas of HCC patients 
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containing 249012 cells with 39 cell subpopulations was 
established. Initially, the cell subpopulations were separated from 
each other according to the sample source, which exhibited a 
significant batch effect (Supplementary Figure 2A). Following data 
integration by the “harmony” algorithm (40), the distributions of 
cells from different samples overlapped with each other in the two-
dimensional space, thereby effectively avoiding the generation of 
aberrant cell clusters from the sample source (Supplementary 
Figure 2B). Subsequently, the cells were distinguished into six 
categories based on classical marker genes (Supplementary 
Figure 2C; Figure 5B). Following the mapping of CS subtypes to 
single-cell atlases based on the “Scissor” algorithm (41), it was 
found that the results in the three study cohorts varied greatly 
(Figures 5C–E). For example, CS1 was found to be concentrated in 
the fibroblast subpopulation in the ICGC-LIRI cohort, but not in 
the TCGA-LIHC and GSE14520 cohorts. A similar observation was 
made in the GSE14520 cohort, where CS2 was found to be 
concentrated in B cells, endothelial cells, fibroblasts and 
hepatocyte subpopulations. However, its distribution was not 
found to be simultaneous in the other two cohorts. It is 
noteworthy that all three study cohorts exhibited a centralized 
distribution of CS2 in the hepatocyte subpopulation, with 
percentages of 70%, 56%, and 64%, respectively (Figures 5C–E). 
This was significantly higher than the percentage of CS1. This 
finding indicates that CS2 exhibits a strong association with 
hepatocyte subpopulations, the inverse convolution results that is 
further validated by this conclusion. 
3.6 CS1 is sensitive to immunotherapy, CS2 
is more suitable for sorafenib and TACE 

In order to ascertain the most appropriate treatment for the 
various subtypes of HCC, the oncoPredict algorithm (42) was

utilized to evaluate patients’ therapeutic sensitivity. The findings 
revealed that CS1 exhibited high sensitivity to treatment with drugs 
such as nutlin-3 and ruxolitinib (P < 0.05), while microtubule 
inhibitors such as paclitaxel and vinblastine appeared to be more 
suitable for the treatment of CS2 (Figure 6A). Furthermore, in the 
analysis for the sorafenib treatment cohort GSE109211, patients 
categorized as CS2 demonstrated a treatment response rate of 
approximately 70%, whereas CS1 was even less than 5% 
(Figure 6F). Similarly, in the TACE treatment cohort GSE104580, 
about 75% of CS2 belonged to the treatment-responsive population, 
and far fewer, just about 27% for CS1 (P ≤ 0.0001) (Figure 6G). 

In terms of predicting immunotherapy response in HCC 
patients, CS2 had higher EaSleR score than CS1, with a 
significant difference between the two (P < 0.05)  (Figure 6B). 
Accordingly, CS1 had a similar response rate of approximately 
60% across the three study cohorts, while CS2 had a peak response 
rate of only 30% (P ≤ 0.0001) (Figure 6B). In addition, the TIDE 
algorithm (44) was used to further evaluate a number of predictors 
in HCC patients that have been shown to potentially influence 
immunotherapy response. The results showed that CS1 had higher 
MSI score and IFNG compared to CS2, which was consistent across 
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FIGURE 2 

Clinical and molecular characteristics associated with subtypes across multiple cohorts, and their impact on survival. (A) Clinical features 
corresponding to CS1 and CS2 in the TCGA-LIHC cohort. (B) Clinical features corresponding to CS1 and CS2 in the ICGC-LIRI cohort. (C) Clinical 
features corresponding to CS1 and CS2 in the GSE14520 cohort. (D) Forest plot for univariate Cox of clinical variables and subtypes in the TCGA­
LIHC, ICGC-LIRI and GSE14520 cohorts. (E) Hazard ratios for clinical features and CS subtypes in relation to overall survival based on multivariate 
Cox analysis in the TCGA-LIHC cohort. (F) Hazard ratios for clinical features and subtypes in relation to overall survival based on multivariate Cox 
analysis in the ICGC-LIRI cohort. (G) Hazard ratios for clinical features and subtypes in relation to overall survival based on multivariate Cox analysis 
in the GSE14520 cohort. *P < 0.05, **P ≤ 0.01, ***P ≤ 0.001. 
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the three study cohorts (P < 0.05) (Figure 6C). CS2 had higher levels 
of MDSC, CAF and M2-type TAM, which are associated with the 
immunosuppressive microenvironment (P < 0.05) (Figure 6D). 
Meanwhile, CS1 had a lower cytotoxic T-cell dysfunction and 
exclusion score, suggesting its potential immune-activating 
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activity (P < 0.05)  (Figure 6E). Notably, the results of the 
explorations for the two real-world immunotherapy cohorts were 
consistent with our computational predictions, confirming that CS1 
patients responded significantly better to immunotherapy than CS2 
patients. Specifically, the majority of CS1 patients in GSE215011 
FIGURE 3 

Genomic alterations, mutation signatures and mutational burden in subtypes across cohorts. (A) Oncoplot showing the distribution of somatic 
mutations across the most frequently altered genes for CS1 and CS2 in the TCGA-LIHC cohort. (B) Proportions of mutations in TP53 and CTNNB1 
for CS1 and CS2 in the TCGA-LIHC cohort. (C) The best matching COSMIC mutational signatures (with similarity scores) for CS1. (D) The best 
matching COSMIC mutational signatures (with similarity scores) for CS2. (E) Violin plots showing the distribution of tumor mutational burden (TMB) 
in CS1 and CS2 subtypes in the TCGA-LIHC cohort. (F) Violin plots showing the distribution of TMB in CS1 and CS2 subtypes in the ICGC-LIRC 
cohort. (G) Mutation status of TP53 and CTNNB1 in CS1 and CS2 subtypes, showing the proportion of wild-type (WT) and mutant (MUT) alleles for 
each gene in the different clusters. Wilcoxon test was used in (E, F) Chi-square test was used in (B, G) ***P ≤ 0.001. 
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and GSE202069 demonstrated a positive response to treatment, 
with response rates as high as 75% and 80% for CS1 patients 
compared to less than 25% for CS2 patients, respectively (P ≤ 
0.0001) (Supplementary Figures S2D, E). 
3.7 Integrated machine learning algorithms 
to develop artificial intelligence-driven risk 
score 

A comprehensive analysis of these 172 overlapping DEGs was 
conducted using 10 machine learning algorithms, which resulted in 
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the creation of 117 prognostic prediction models. The consistency 
indices of these models were then calculated for each cohort and 
their mean values were determined within the overall study cohort. 
Of all the models, the StepCox[forward]+Ent[a=0.1] model 
demonstrated the most consistent prognostic prediction efficacy, 
exhibiting the highest average consistency indices of 0.703 and 
0.075 (Figure 7A). 

In the univariate Cox regression analysis for the training and 
validation cohorts, the StepCox[forward]+Ent[a=0.1] model 
corresponded to hazard ratio (HR) of 2.31, 5.34, and 2.83, 
respectively (P ≤ 0.001) (Figure 7B). Meanwhile, in the Meta­

analysis of HR for the StepCox[forward]+Ent[a=0.1] model across 
FIGURE 4 

Copy number alterations (CNA), gene expression and their correlation with subtypes. (A) Frequency plot showing the distribution of CNA across 
chromosomes for CS1 and CS2, with deletions (Del) and amplifications (Amp) indicated. (B) Statistical significance of CNA events with -log10 p-
values shown for each region. (C) Circular plots depicting the distribution of CNA variants (Del and Amp) and their statistical significance across CS1 
and CS2. Colors represent different levels of significance. (D) Volcano plot showing differentially expressed genes (DEGs). Red indicates upregulated 
genes and blue indicates downregulated ones. (E) Box plots showing the copy number variation (CNV) score of CPB2 and DLEU7 in CS1 and CS2. 
(F) Box plots presenting the gene expression of CPB2 and DLEU7 in CS1 and CS2. (G) Correlation analysis between CPB2 and DLEU7 gene 
expression and CNV score in CS1 and CS2. Pearson correlation coefficients and p-values are indicated. Wilcoxon test was used in (E, F). 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1592259
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1592259 
the three study cohorts, the random-effects model and the mixed-

effects model corresponded to HR of 2.88 and 2.75, respectively, and 
met the statistical differences (P ≤ 0.001) (Figure 7B). In addition, 
the prognostic predictive efficacy of the StepCox[forward]+Ent 
[a=0.1] model was found to be superior and accurate at 1, 3, and 
5 years, respectively, and relatively stable across cohorts. The 
corresponding AUC values ranged from 0.824 to 0.659 
(Figure 7C). It is noteworthy that the average AUC of the model 
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gradually decreased with the prolongation of follow-up time, which 
is consistent with the actual situation. 

Following the determination of the optimal prognostic model, 
the prognostic risk score, herein referred to as AIDRS, was 
calculated for each patient with HCC. Subsequent analyses 
revealed that patients with HCC exhibiting a high AIDRS 
demonstrated a worse prognosis in both the training and 
validation cohorts, corresponding to prognostic HR of 2.29, 5.24, 
FIGURE 5 

Immune infiltration and subtypes distribution across different datasets. (A) Heatmap showing the enrichment scores of various immune and stromal cell 
types in CS1 and CS2 across TCGA-LIHC, ICGC-LIRI and GSE14520 cohorts. The color intensity represents the degree of enrichment. (B) Uniform 
manifold approximation and projection (UMAP) of scRNA-seq data, depicting different cell populations across the dataset, with major cell types labeled. 
(C–E) Scissor-based subtypes distribution of CS1 and CS2 in TCGA-LIHC, ICGC-LIRI and GSE14520 cohorts. The left panels display UMAP projections 
with cells color-coded by subtype (CS1: red, CS2: cyan, NULL: gray). The right bar plots illustrate the proportion of different cell types within each 
subtype. *P < 0.05,  **P ≤ 0.01, ***P ≤ 0.001. 
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FIGURE 6 

Drug response, immune score and predictive classification across different datasets. (A) Heatmap of drug response in CS1 and CS2 across the TCGA­
LIHC, ICGC-LIRI and GSE14520 cohorts. The color represents drug response in each subtype, with yellow signifies CS1 sensitivity and blue signifies CS2 
sensitivity. (B) Proportion of immunotherapy response and boxplots of EasleR score in CS1 and CS2 across the TCGA-LIHC, ICGC-LIRI and GSE14520 
cohorts. (C) Boxplots showing MSI score and INFG in CS1 and CS2 across the TCGA-LIHC, ICGC-LIRI and GSE14520 cohorts. (D) Boxplots showing 
MDSC, CAF and M2-TAMs in CS1 and CS2 across the TCGA-LIHC, ICGC-LIRI and GSE14520 cohorts. (E) Boxplots showing T cell dysfunction and 
exclusion score in CS1 and CS2 across the TCGA-LIHC, ICGC-LIRI and GSE14520 cohorts. (F) Evaluation of CS1 and CS2 in the GSE109211 cohort. 
(G) Evaluation of CS1 and CS2 in the GSE104580 cohort. R indicates response, NR indicates no response. Wilcoxon test was used in (A–E) Chi-square 
test was used in (B, F, G) ns P ≥ 0.05, *P < 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. 
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and 2.8, respectively (P ≤ 0.001) (Figure 7D). This finding suggests 
that AIDRS is a key risk factor for the prognosis of patients 
with HCC. 
3.8 Association between AIDRS and patient 
prognosis, clinicopathological features, 
genomic alterations, and personalized 
therapy 

In each of the six mutually independent study cohorts, CS2 
exhibited significantly higher AIDRS than CS1 (P ≤ 0.0001) 
(Figure 8A). Meanwhile, AIDRS was calculated separately for 
scRNA-seq data using three different algorithms: “Seurat”, 
“AUcell” and “Ucell”. The results demonstrated that hepatocytes 
exhibited higher AIDRS (P ≤ 0.0001) (Figure 8B). This finding was 
consistent across the TCGA-LIHC, ICGCI-LIRI and GSE14520 
cohorts. Subsequently, survival analysis revealed that patients in 
the high AIDRS group corresponded to more fatal events and had a 
worse prognosis, and this finding was consistent across the TCGA­
LIHC, ICGCI-LIRI and GSE14520 cohorts (P ≤ 0.0001) 
(Figures 8C–E). 

Further analyses addressed AIDRS and clinicopathological 
features, revealing that patients with advanced tumors exhibited 
higher AIDRS (P ≤ 0.01) (Figures 8F–H). Similarly, prognostic risk 
factors such as AFP, PT and tumor volume were approximately 
significant, with higher AIDRS correlating with increased risk (P ≤ 
0.01) (Figures 8F–H). Furthermore, patients with TP53 mutant 
HCC patients exhibited a higher AIDRS in comparison to those 
with the wild type (P ≤ 0.0001) (Figure 8I). Conversely, patients 
with CTNNB1 mutant patients demonstrated a lower AIDRS (P ≤ 
0.01) (Figure 8I). The correlation analysis between AIDRS and 
immunotherapy response-related scores revealed that higher 
AIDRS was associated with higher EaSleR score and T-cell 
exclusion score, and lower MSI score and T-cell dysfunction score 
(P ≤ 0.01) (Figures 7J–M). These findings suggest that higher 
AIDRS is associated with a limited benefit from immunotherapy. 
3.9 CEP55 has good predictive efficacy and 
positively influences patient prognosis 

The genes corresponding to the StepCox[forward]+Ent[a=0.1] 
model in the three study cohorts were extracted, 79, 56, and 118, 
respectively, with 26 overlapping genes among the three 
(Figure 9A). Differential expression analysis of the subtypes 
showed that 18 genes in CS2, including CEP55, showed 
consistent upregulation of expression in the three study cohorts, 
while the remaining 8 genes were down-regulated (P < 0.05) 
(Figure 9B). Subsequent univariate Cox regression and correlation 
analysis revealed that all genes with upregulated expression in CS2 
belonged to the prognostic risk factors for HCC patients and were 
significantly positively associated with AIDRS (P < 0.05) 
(Figures 9C, D). Conversely, genes downregulated in CS2 showed 
protective factors for HCC prognosis and were significantly 
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negatively correlated with AIDRS (P < 0.05) (Figures 9C, D). 
Furthermore, the proteomics cohort CPTAC revealed that 
patients exhibiting low CEP55 expression exhibited significantly 
prolonged overall survival when compared to those exhibiting high 
CEP55 expression (P ≤ 0.01) (Supplementary Figure 2F). 
Concurrently, patients in the CEP55 high-expression exhibited 
elevated AIDRS (P < 0.05) (Supplementary Figure 2G), and 
CEP55 protein expression levels demonstrated a significant 
positive correlation with AIDRS (R = 0.27,  P  < 0.05) 
(Supplementary Figure 2H). 

In analyses targeting the predictive efficacy of subtypes, CEP55 
exhibited higher AUC compared to other genes in both the training 
and validation cohorts, with 0.942, 0.785, and 0.822, respectively 
(Figures 9E, F). For subsequent survival analyses, we found that 
HCC patients with high expression of CEP55 were more likely to 
experience a fatal event during the follow-up period, which was 
consistent among the three cohorts of independent studies of each 
other (P < 0.05) (Figures 9G–J). Furthermore, scRNA-seq data 
indicated that CEP55 was expressed at the highest level in 
hepatocytes (P ≤ 0.0001) (Figure 9K). 
3.10 Knockdown of CEP55 inhibited cell 
proliferation, migration and invasion of 
HCC cells 

In order to validate the critical role of CEP55 in HCC, two 
different types of CEP55 knockdown phenotypes were constructed 
for two HCC cell lines, Bel-7402 and Hep-3B. The presence of 
CEP55 in both HCC cell lines was indicative of the CEP55 
knockdown phenotypes. Following the targeting of siRNAs, the 
gene expression of CEP55 was significantly reduced in cell lines Bel­
7402 and Hep-3B (P < 0.05) (Figure 10A), thus confirming the 
success of the construction of the CEP55 knockdown phenotypes. 
Subsequent functional assays revealed that CEP55 knockdown 
phenotypes Si-1 and Si-2 exhibited diminished cell viability and 
reduced cell clone number, indicating that CEP55 knockdown 
inhibited HCC cell proliferation (P < 0.05) (Figures 10B, C). 
Furthermore, CEP55 knockdown significantly impeded the 
migration and invasion of cell lines A and B in the transwell 
assay and scratch wound healing assay (P < 0.05) (Figures 10D, E). 
3.11 Knockdown of CEP55 inhibits tumor 
growth and proliferation in xenograft 
models 

In order to investigate the effect of CEP55 on tumor growth in 
vivo, xenograft models were established in BALB/c nude mice using 
Bel-7402 and Hep-3B HCC cell lines with CEP55 knockdown. 
During the observation period, the activity levels, grooming 
behavior, and overall health status of the mice remained within 
normal parameters, exhibiting a downward trend in weight (P ≤ 0.01) 
(Figures 11A, B). The body weight of the mice decreased gradually 
over time, with a more significant decrease observed in the shCEP55 
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FIGURE 7 

Construction and evaluation of prognostic models across different datasets. (A) C-index of each model among different datasets sorted by the 
average of C-index in validation cohorts. (B) Meta-analysis of univariate Cox result of the best model StepCox[forward]+Ent[a=0.1] across the TCGA­
LIHC, ICGC-LIRC and GSE14520 cohorts. (C) Receiver operating characteristic (ROC) curves showing the prediction performance of the StepCox 
[forward]+Ent[a=0.1] model for 1-year (top left), 3-year (top right), and 5-year (bottom left) survival data across the TCGA-LIHC, ICGC-LIRC and 
GSE14520 cohorts. (D) Kaplan-Meier curves showing the survival probability for high-risk and low-risk groups predicted by the risk score calculated 
by StepCox[forward]+Ent[a=0.1] model across TCGA-LIHC (left), ICGC-LIRC (right), and GSE14520 (bottom) cohorts. Log-rank test was used in (D). 
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FIGURE 8 (Continued) 

Correlation of AIDRS with clinicopathological features, immune score, and survival outcomes across different datasets. (A) Boxplots displaying the 
AIDRS across the CS1 and CS2 for the TCGA-LIHC, ICGC-LIRI and GSE14520 cohorts. (B) UMAP plots (top) and violin plots (bottom) showing the 
expression distribution of AIDRS-related genes across the TCGA-LIHC, ICGC-LIRI and GSE14520 cohorts. (C) Kaplan-Meier curves showing the 
overall survival, progression-free interval, disease-specific survival and disease-free interval for high- and low-risk groups in the TCGA-LIHC cohort. 
(D) Kaplan-Meier curves showing the overall survival and progression-free interval in the ICGC-LIRI cohort. (E) Kaplan-Meier curve showing the 
overall survival in the GSE14520 cohort. (F) Violin plots illustrating the distribution of AIDRS based on clinicopathological features such as Grade, 
Stage, AFP, ALB and PT across the TCGA-LIHC cohort. (G) Violin plots comparing AIDRS across Stage in the ICGC-LIRI cohort. (H) Violin plots 
showing AIDRS based on clinicopathological features such as Stage, CLIP, AFP and tumor size across the GSE14520 cohort. (J) Scatter plots 
showing the correlation between AIDRS and EasleR score in the TCGA-LIHC, ICGC-LIRI and GSE14520 cohorts. (K) Scatter plots showing the 
correlation between AIDRS and MSI score in the in the TCGA-LIHC, ICGC-LIRI and GSE14520 cohorts. (L) Scatter plots showing the correlation 
between AIDRS and T cell dysfunction score in the in the TCGA-LIHC, ICGC-LIRI and GSE14520 cohorts. (M) Scatter plots showing the correlation 
between AIDRS and T cell exclusion score in the in the TCGA-LIHC, ICGC-LIRI and GSE14520 cohorts. Log-rank test was used in (C, D, E) Wilcoxon 
test was used in (A, F, G, H, I) Welch’s ANOVA test was used in (B) **P ≤ 0.01, ****P ≤ 0.0001. 
group (P ≤ 0.01) (Figures 11A, B). Western blotting analysis 
demonstrated that, in comparison with the control group, the 
expression levels of CEP55 in the xenograft tumors of the shCEP55 
group were significantly reduced, thus indicating that CEP55 
knockdown was effective at this particular time (P ≤ 0.01) 
(Figures 11C, D). Moreover, CEP55 knockdown effectively 
inhibited the growth of xenograft tumors derived from Bel-7402 
and Hep-3B cells, with tumor volumes in the shCEP55 group being 
significantly smaller than those in the control group (Figures 11A, B). 
Furthermore, it was found that in xenograft tumors derived from the 
two different sources, Bel-7402 and Hep-3B, the histochemistry score 
of CEP55 and Ki-67 in the shCEP55 group were significantly lower 
than those in the control group, further confirming the inhibitory 
effect of CEP55 knockdown on tumor cell proliferation (P ≤ 0.01) 
(Figures 11E, F). 
4 Discussion 

HCC is a highly heterogeneous malignancy, which poses 
significant challenges to both treatment and prognosis. Despite 
advancements in systemic therapies, including targeted and 
immunotherapies, the clinical outcomes for many patients remain 
suboptimal, particularly in advanced-stage disease. In recent years, 
multiple molecular subtypes have been proposed for HCC to better 
understand this heterogeneity and guide personalized treatment. 
For instance, Hoshida et al. (19) identified three robust HCC 
subtypes based on transcriptomics: S1, S2, and S3. Among them, 
S2 has the largest tumor volume and the highest AFP, and has the 
worst prognosis. In terms of molecular characteristics, S1 exhibits 
abnormal activation of the WNT signaling pathway, S2 is 
characterized by cell proliferation, and S3 corresponds to the 
process of hepatocyte differentiation. In a proteomic study by 
Guo et al. (20), hepatitis B virus-related HCC patients were 
divided into metabolic subgroups, microenvironment dysfunction 
subgroups and proliferation subgroups. S-Mb is characterized by 
high levels of proteins involved in cancer metabolism and is 
associated with the best prognosis. In contrast, S-Me is 
characterized by high levels of proteins involved in immunity and 
inflammation and is associated with a poorer prognosis when 
compared with S-Mb. In a systematic study of metabolic gene 
expression profiles, Chen et al. (45) also identified three subtypes of 
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HCC (C1, C2 and C3). Subtype C1 exhibits high metabolic activity, 
subtype C2 shows high sensitivity to immunotherapy, and subtype 
C3 has the highest AFP and the worst prognosis. These efforts have 
proposed distinct molecular subtypes of HCC and confirmed that 
these subtypes are associated with treatment response. Nevertheless, 
studies that focus on a single omics approach or specific biological 
pathways frequently fail to capture the full complexity of the 
disease. To address this limitation, our study integrates multi­

omics data from genomics, transcriptomics and epigenomics, 
identifying two molecular subtypes of HCC, CS1 and CS2, with 
distinct clinical and biological characteristics (Figure 12). 

In light of the intricacy involved in data integration and the 
necessity for ensuring the reproducibility of subtypes, the study 
employed the consensus clustering framework MOVICs (34), a 
methodology that has been demonstrated to be efficacious in other 
cancer studies, for the identification of molecular subtypes of HCC. 
For instance, Ji et al. (46) utilized MOVICs to distinguish between 
IDH-mutant glioblastoma subtypes, class 1 and class 2, elucidating 
the disparities in molecular characteristics while identifying drugs, 
temozolomide and navitoclax, that are sensitive to each of these 
subtypes. In a similar vein, studies on lung adenocarcinoma (47), 
colorectal cancer (48), and breast cancer (49) have also employed 
MOVICs to perform multi-omics typing, thereby enhancing the 
understanding of tumor heterogeneity and optimizing treatment 
options for patients. In a manner analogous to these studies, the 
present study identifies and characterizes HCC subtypes from 
multiple dimensions, including clinicopathologic features, genetic 
mutations, DNA methylation patterns, immune microenvironment 
composition and so on. In this study, we found that CS1 had a more 
favorable prognosis, while CS2 was associated with poorer clinical 
outcomes. CS2 was found to have higher serum levels of AFP, longer 
PT, and larger tumor volume when compared with CS1. As 
corroborated by both univariate and multivariate Cox regression 
analysis, underscore the significance of the CS subtype as a critical 
prognostic factor for patients diagnosed with HCC. The hazard ratio 
associated with CS1 is notably more effective in predicting outcomes 
when compared with conventional biomarkers such as AFP, ALB and 
PT. At the genomic level, CS1 was found to exhibit elevated levels of 
CTNNB1 mutations and high TMB, while CS2 was predominantly 
characterized by TP53 mutations and high MATH. It has been 
demonstrated that gene mutations can induce tumor cells to 
produce neoantigens by means of regulating gene expression. This, 
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FIGURE 9 

Identification and validation of CEP55 as a prognostic biomarker across multiple datasets. (A) Overlapping differentially expressed genes (DEGs) 
among the TCGA-LIHC, ICGC-LIRI and GSE14520 cohorts. (B) Log2 fold change (log2FC) values of overlapping DEGs across the TCGA-LIHC, ICGC­
LIRI and GSE14520 datasets. (C) Univariate Cox regression for overlapping DEGs associated with survival outcomes in TCGA-LIHC, ICGC-LIRI and 
GSE14520 cohorts. (D) Correlation heatmap showing the association of AIDRS and overlapping DEGs across the datasets. The color intensity 
represents the strength of the correlation. (E) Circular plot displaying the AUC value of overlapping DEGs, with each dataset (TCGA-LIHC, ICGC-LIRI 
and GSE14520) represented in different colors. (F) ROC curves illustrating the predictive accuracy of CEP55 in TCGA-LIHC, ICGC-LIRI and GSE14520 
datasets. (G) Kaplan-Meier curves for overall survival, progression-free interval, disease-specific survival and disease-free interval of high and low 
CEP55 expression groups in the TCGA-LIHC cohort. (H) Kaplan-Meier curves for overall survival and event-free survival of high and low CEP55 
expression groups in the ICGC-LIRI dataset. (I) Kaplan-Meier curve for overall survival in the GSE14520 dataset, showing significant survival 
differences between high and low CEP55 expression groups. (J) UMAP plot displaying the expression of CEP55 across different cell populations. The 
violin plot on the right shows the distribution of CEP55 expression across major cell types. Log-rank test was used in (G, I, J) Welch’s ANOVA test 
was used in (K) *P < 0.05, **P ≤ 0.01, ***P ≤ 0.001, ****P ≤ 0.0001. 
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FIGURE 10 

Effects of CEP55 knockdown on cell proliferation, migration and invasion in Bel-7402 and Hep-3B cell lines. (A) Quantitative PCR analysis showing 
the relative expression of CEP55 in Bel-7402 and Hep-3B cells after transfection with siRNA (Si-1 and Si-2) compared to the negative control (NC). 
(B) Cell viability measured at 24, 48, and 72 h in Bel-7402 and Hep-3B cells. Proliferation was significantly reduced in siRNA-treated cells compared 
to NC. (C) Representative images (upper) and quantification (lower) of colony formation in Bel-7402 and Hep-3B cells after CEP55 knockdown. 
(D) Representative images of wound healing at 0 and 48 h (upper) and quantification of healing percentage (lower) in Bel-7402 and Hep-3B cells. 
(E) Representative images (upper) and quantification of invaded cells (lower) in Bel-7402 and Hep-3B cells at 0 and 48 h after CEP55 knockdown. 
Wilcoxon test was used in A, C, D, (E) Chi-square test was used in (B) *P < 0.05, **P ≤ 0.01, ***P ≤ 0.001. 
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FIGURE 11 

Effects of CEP55 knockdown on tumor growth and proliferation in Bel-7402 and Hep-3B xenograft models. (A) Representative images (upper) and 
quantification (lower) of tumor weight and volume in Bel-7402 xenografts after CEP55 knockdown (shCEP55) and control treatments. (B) Representative 
images (upper) and quantification (lower) of tumor weight and volume in Hep-3B xenografts. (C) Western blotting analysis of CEP55 expression in Bel­
7402 xenograft tumors. (D) Western blotting analysis of CEP55 expression in Hep-3B xenograft tumors. (E) Immunohistochemistry staining of Ki-67 and 
CEP55 in Bel-7402 xenograft tumors (upper) and corresponding quantification of Ki-67 and CEP55 staining (lower). (F) Immunohistochemistry staining of 
Ki-67 and CEP55 in Hep-3B xenograft tumors (upper) and corresponding quantification (lower). *P < 0.05, **P ≤ 0.01, ***P ≤ 0.001.. 
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in turn, activates immune cells to recognize and eliminate the tumor 
cells, thus enhancing the efficacy of immunotherapy (50, 51). In this 
study, functional enrichment analysis indicated that CS1 with high 
TMB exhibited significant activation of immune-related pathways, 
and the infiltration levels of various immune cells, including CD8+ T 
cells, NK cells, and M1 macrophages were significantly higher than 
those in CS2. Moreover, both computational predictions and real-
world data indicated that CS1 exhibited a higher response to 
immunotherapy. Conversely, Li et al. (52) discovered that TP53 
mutations can upregulate MTFHD2 expression to enhance one-
carbon metabolism activity in tumor cells, thereby promoting cell 
proliferation and survival, rendering it an important factor 
influencing tumor malignant behavior. In a similar vein, it was 
ascertained that CS2, characterized by a high prevalence of TP53 
mutations, exhibited a strong correlation with multiple metabolic 
pathways. At the same time, Nian et al. (53) demonstrated that TP53 
mutations can induce metabolic reprogramming in TAMs in HCC, 
thereby suppressing the anti-tumor immunity of CD8+ T cells. 
Similarly, it was determined that the CS2 tumor microenvironment 
is characterized by the predominance of cells, including MDSCs and 
CAFs, that contribute to immune suppression  and immune escape,  
thereby leading to reduced tumor immunogenicity and 
immunotherapy response rates. In summary, it is hypothesized that 
Frontiers in Immunology 22 
high TMB and high TP53 mutations may be significant driving 
factors leading to substantial differences in molecular characteristics 
and clinical outcomes between CS1 and CS2. 

As a small molecule inhibitor, nutlin-3 activates the p53 pathway, 
inducing cell cycle arrest and apoptosis in tumor cells without exerting 
toxic effects on normal cells (48). It has been demonstrated to possess 
excellent anti-cancer activity and safety in preclinical studies of 
retinoblastoma (54), lymphoma (55) and other malignant tumors 
(56, 57). In this study, we found that CS1 is sensitive to nutlin-3, 
suggesting that it may benefit significantly from nutlin-3. Conversely, 
CS1 demonstrated heightened sensitivity to the JAK2 inhibitor 
ruxolitinib in comparison to CS2. This observation is particularly 
noteworthy in light of the documented enhanced effect of targeting the 
JAK2/STAT3 pathway on tumor immunogenicity (58). We 
hypothesize that this heightened sensitivity is associated with its 
regulatory influence on the immune microenvironment. 
Consequently, the combination of ruxolitinib with immune 
checkpoint inhibitors (ICIs) may yield a more pronounced 
therapeutic effect for CS1. Conversely, CS2 appears to demonstrate 
heightened sensitivity to chemotherapeutic agents such as paclitaxel 
and vinblastine, which are conventional anti-microtubule drugs that 
have received the Food and Drug Administration (FDA) approval for 
the treatment of various malignant tumors (59–61), including ovarian 
FIGURE 12 

Sketch diagram illustrating the clinicopathological features, genetic alterations, immune status, and treatment responses among CS1 and CS2 based 
on multi-omics data, as well as the artificial intelligence-derived risk score (AIDRS) classification. 
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cancer, non-small cell lung cancer and breast cancer. However, studies 
conducted on HCC have thus far been confined to phase II clinical 
trials (NCT02423239 and NCT04175912). Maybe, the differences 
between them in drugs sensitivity to CS subtypes may provide a 
valuable information for subsequent research. 

Sorafenib is a first-line treatment for patients with advanced HCC 
(1).  A phase 3 clinical study  (5) conducted by the SHARP investigators 
study group demonstrated that sorafenib can prolong the median 
survival and time to radiographic progression by nearly 3 months in 
patients with advanced HCC. However, it is important to note that 
only a small proportion (20%–40%) of patients with advanced HCC 
are reported to be sensitive to sorafenib treatment and these patients 
usually progress after sorafenib treatment (secondary or acquired 
resistance) (6, 7). For this reason, some special technical methods, 
such as TACE, are recommended as an important supplementary 
means of first-line treatment for HCC (62, 63). The current research 
indicates that the survival outcomes of TACE treatment are variable, 
with only some patients demonstrating survival benefits (64–66). This 
study found that patients sensitive to sorafenib and TACE treatment 
are more concentrated in the CS2 subtype. The tumor 
microenvironment of CS2 is rich in non-immune cells, such as 
hepatocytes and fibroblasts, which is undoubtedly optimal for 
sorafenib and TACE, which exert anti-cancer activity through tumor 
toxicity. In recent years, there has been vigorous development in 
research into ICIs for malignant tumors, and related drugs have been 
widely used in clinical practice (8). The results are not so promising, 
and some patients have not significantly improved their survival 
endpoints due to the low response rate (1, 67). However, there is a 
subset of patients for whom the response to therapy is more favorable, 
and in whom the immune system can mount a more effective response 
due to the high immunogenicity of the tumors. This is exemplified by 
melanoma. By contrast, “cold tumors”, such as those observed in 
pancreatic cancer and prostate cancer, are characterized by a dense 
tumor tissue, which hinders the infiltration of immune cells. The 
immunosuppressive microenvironment of these hinders the 
effectiveness of immunotherapy. Similarly, CS1 was demonstrated 
higher immunogenicity due to its abundance of immune cell 
infiltrations, rendering it more susceptible to immunotherapy. 

The application of machine learning (ML) in various fields has led 
to a growing body of research that substantiates the efficacy of ML 
technology in predicting disease outcomes, treatment responses, and 
patient prognoses (68–71). Nevertheless, the selection of the most 
appropriate model remains challenging due to the heterogeneity of file 
types, system parameters and dataset formats employed by disparate 
machine learning algorithms. To address this challenge, this study 
utilized the Mime framework (72), which integrates 117 distinct 
machine learning models to construct a prognostic model for HCC 
patients associated with CS subtypes (72). The “StepCox[forward]+Ent 
[a=0.1]” model, which demonstrated the highest prediction accuracy, 
was identified through a comparative analysis of model performance 
across multiple independent study cohorts. To enhance interpretability 
and streamline application, artificial intelligence-derived risk score 
(AIDRS) was further developed based on the model. The findings of 
this study revealed that elevated AIDRS score were associated with a 
more unfavorable prognosis for HCC patients with larger tumor 
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volumes, elevated AFP, and longer PT. Six independent study 
cohorts all confirmed that the AIDRS score for CS2 was significantly 
higher than that for CS1. Furthermore, the study demonstrated that 
elevated AIDRS scores are associated with improved immunotherapy 
efficacy, as evidenced by increased EaSleR and T cell rejection scores, as 
well as reduced microsatellite instability (MSI) and T cell dysfunction 
scores. It is evident that AIDRS scores serve a dual purpose; they 
function as an excellent prognostic risk prediction tool and aid in 
identifying HCC patient CS subtypes through transcriptomics. This 
enhances the convenience and universality of subtype classification, 
thereby guiding personalized treatment for HCC patients. Specifically, 
patients with higher AIDRS scores tend to belong to CS2. In 
combination with the elevated response rates documented in CS2 
patients to sorafenib or TACE treatment, this substantiates the 
prioritization of sorafenib or TACE as primary treatment modalities. 
Conversely, patients exhibiting lower AIDRS scores are more aptly 
categorized as CS1, signifying a predilection for immunotherapy. 
Moreover, our findings indicate that CEP55 is a pivotal contributor 
to AIDRS and associated with unfavorable prognose. In addition, it 
exhibited an excellent predictive capacity for CS subtypes, with AUC 
values of 0.942 and 0.822 in the training and validation sets, 
respectively. Consequently, these findings suggest that CEP55 can 
serve as a reliable biomarker for distinguishing CS subtypes in HCC 
patients, which is fully consistent with the AIDRS score. So, the 
consideration of CEP55 expression may prove advantageous in the 
development of personalized treatment strategies for HCC patients. 

CEP55, a centromere protein, has been shown to be overexpressed 
in  various human  cancers,  including  liver cancer (73), breast cancer 
(74), and renal cell carcinoma (75). The study (76) found that CEP55 
can activate PI3K/AKT and FOXM1-related pathways to intervene in 
the process of cytokinesis, thereby promoting tumorigenesis, 
proliferation, and metastasis. In addition, Yang et al. (77) found that 
patients with HCC overexpressing CEP55 generally had higher 
histological grades, more lymph node metastases and a poorer 
prognosis, which is consistent with the findings of the current study. 
The functional studies of CEP55 in HCC cell lines (Bel-7402 and Hep­
3B) demonstrated that CEP55 knockdown inhibited cell proliferation, 
migration and invasion. Moreover, in xenograft models, CEP55 
knockdown significantly reduced tumor growth and proliferation, as 
evidenced by decreased tumor volume, lower CEP55 and Ki-67 
expression. A pan-cancer study by Xie et al. (78) revealed that

CEP55 is closely associated with immune-related pathways, such as 
the IL-6/JAK-STAT3 signaling  pathway and  the IFN-a/g response 
pathway. Additionally, in most malignant tumors, including HCC, 
CEP55 expression is significantly positively correlated with the 
infiltration levels of MDSCs and Th2 cells in the tumor 
microenvironment, leading to immune suppression. In the study, 
CS2 with high CEP55 expression was found to correspond to higher 
T cell rejection scores and lower T cell dysfunction scores, overall 
exhibiting low immunogenicity. On the basis of these findings, it can be 
speculated that targeting CEP55 may not only directly inhibit tumor 
cell proliferation and migration but also modulate tumor 
immunogenicity by influencing immune-related pathways, including 
the IL-6/JAK-STAT3 and IFN-a/g pathways, thereby enhancing 
sensitivity to relevant therapies, particularly immunotherapy. 
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While the present study provides valuable insights into the 
molecular subtypes of HCC, there are several limitations that 
should be acknowledged. Firstly, the retrospective nature of the 
cohort means that the results may be subject to bias and prospective 
validation in larger, more diverse patient populations is essential. 
Secondly, the multi-omics data utilized were limited to genomics, 
transcriptomics, epigenomics and proteomics. Incorporating 
additional omics layers, such as metabolomics, could further 
enhance the predictive power of the models. In addition, while it 
was demonstrated that the AIDRS had the capacity to predict 
patient prognosis and guide treatment decisions, its clinical 
applicability must be confirmed through prospective, multi-

central studies. Moreover, further research is required to explore 
how other therapies, such as combination immune checkpoint 
inhibitors or novel targeted agents could benefit patients. 
 

5 Conclusion 

In conclusion, this study successfully identifies and 
characterizes two distinct HCC subtypes, CS1 and CS2, through 
the integration of multi-omics data, highlighting their significant 
differences in clinical outcomes, molecular characteristics and 
immune features. The development of the AIDRS provides an 
effective prognostic tool, enabling precise risk stratification and 
guiding personalized treatment decisions for HCC patients. Of 
particular note is the identification of CEP55 as a pivotal gene 
associated with poor prognosis and progression, suggesting that its 
targeting may offer a promising therapeutic strategy. These findings 
contribute to a more profound understanding of HCC 
heterogeneity and  lay the  foundation  for more tailored

approaches to treatment, thereby enhancing the precision of 
clinical interventions in the management of HCC. 
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BCLC strategy for prognosis prediction and treatment recommendation: The 2022 
update. J Hepatol. (2022) 76:681–93. doi: 10.1016/j.jhep.2021.11.018 

4. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T-Y, et al. Atezolizumab plus 
bevacizumab in unresectable hepatocellular carcinoma. N Engl J Med. (2020) 382:1894– 
905. doi: 10.1056/NEJMoa1915745 

5. Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc J-F, et al. Sorafenib in 
advanced hepatocellular carcinoma. N Engl J Med. (2008) 359:378–90. doi: 10.1056/ 
NEJMoa0708857 

6. He Y, Luo Y, Huang L, Zhang D, Wang X, Ji J, et al. New frontiers against 
sorafenib resistance in renal cell carcinoma: From molecular mechanisms to predictive 
biomarkers. Pharmacol Res. (2021) 170:105732. doi: 10.1016/j.phrs.2021.105732 

7. Zhu Y, Zheng B, Wang H, Chen L. New knowledge of the mechanisms of 
sorafenib resistance in liver cancer. Acta Pharmacol Sin. (2017) 38:614–22. 
doi: 10.1038/aps.2017.5 

8. Sharma P, Siddiqui BA, Anandhan S, Yadav SS, Subudhi SK, Gao J, et al. The next 
decade of immune checkpoint therapy. Cancer Discov. (2021) 11:838–57. doi: 10.1158/ 
2159-8290.CD-20-1680 

9. Wang Y-Y, Yang X, Wang Y-C, Long J-Y, Sun H-S, Li Y-R, et al. Clinical 
outcomes of lenvatinib plus transarterial chemoembolization with or without 
programmed death receptor-1 inhibitors in unresectable hepatocellular carcinoma. 
World J Gastroenterol. (2023) 29:1614–26. doi: 10.3748/wjg.v29.i10.1614 

10. Llovet JM, Castet F, Heikenwalder M, Maini MK, Mazzaferro V, Pinato DJ, et al. 
Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. (2022) 19:151–72. 
doi: 10.1038/s41571-021-00573-2 

11. Llovet JM, Pinyol R, Yarchoan M, Singal AG, Marron TU, Schwartz M, et al. 
Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma. Nat Rev Clin 
Oncol. (2024) 21:294–311. doi: 10.1038/s41571-024-00868-0 

12. Llovet JM, Pinyol R, Kelley RK, El-Khoueiry A, Reeves HL, Wang XW, et al. 
Molecular pathogenesis and systemic therapies for hepatocellular carcinoma. Nat 
Cancer. (2022) 3:386–401. doi: 10.1038/s43018-022-00357-2 

13. Yang X, Yang C, Zhang S, Geng H, Zhu AX, Bernards R, et al. Precision 
treatment in advanced hepatocellular carcinoma. Cancer Cell. (2024) 42:180–97. 
doi: 10.1016/j.ccell.2024.01.007 

14. Tabrizian P, Abdelrahim M, Schwartz M. Immunotherapy and transplantation 
for hepatocellular carcinoma. J Hepatol. (2024) 80:822–5. doi: 10.1016/ 
j.jhep.2024.01.011 

15. Rebouissou S, Nault J-C. Advances in molecular classification and precision 
oncology in hepatocellular carcinoma. J Hepatol. (2020) 72:215–29. doi: 10.1016/ 
j.jhep.2019.08.017 

16. Reuter JA, Spacek D, Snyder MP. High-throughput sequencing technologies. 
Mol Cell. (2015) 58:586–97. doi: 10.1016/j.molcel.2015.05.004 

17. Adam G, Rampásěk L, Safikhani Z, Smirnov P, Haibe-Kains B, Goldenberg A. 
Machine learning approaches to drug response prediction: challenges and recent 
progress. NPJ Precis Oncol. (2020) 4:19. doi: 10.1038/s41698-020-0122-1 

18. Ding L, Bailey MH, Porta-Pardo E, Thorsson V, Colaprico A, Bertrand D, et al. 
Perspective on oncogenic processes at the end of the beginning of cancer genomics. 
Cell. (2018) 173:305–320.e10. doi: 10.1016/j.cell.2018.03.033 

19. Hoshida Y, Nijman SMB, Kobayashi M, Chan JA, Brunet J-P, Chiang DY, et al. 
Integrative transcriptome analysis reveals common molecular subclasses of human 
hepatocellular carcinoma. Cancer Res. (2009) 69:7385–92. doi: 10.1158/0008­
5472.CAN-09-1089 

20. Gao Q, Zhu H, Dong L, Shi W, Chen R, Song Z, et al. Integrated proteogenomic 
characterization of HBV-related hepatocellular carcinoma. Cell. (2019) 179:1240. 
doi: 10.1016/j.cell.2019.10.038 

21. Li B, Li Y, Zhou H, Xu Y, Cao Y, Cheng C, et al. Multiomics identifies metabolic 
subtypes based on fatty acid degradation allocating personalized treatment in 
hepatocellular carcinoma. Hepatol Baltim Md. (2024) 79:289–306. doi: 10.1097/ 
HEP.0000000000000553 

22. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. 
TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. 
Nucleic Acids Res. (2016) 44:e71. doi: 10.1093/nar/gkv1507 

23. Mayakonda A, Lin D-C, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and 
comprehensive analysis of somatic variants in cancer. Genome Res. (2018) 28:1747–56. 
doi: 10.1101/gr.239244.118 
Frontiers in Immunology 25 
24. Roessler S, Jia H-L, Budhu A, Forgues M, Ye Q-H, Lee J-S, et al. A unique 
metastasis gene signature enables prediction of tumor relapse in early-stage 
hepatocellular carcinoma patients. Cancer Res. (2010) 70:10202–12. doi: 10.1158/ 
0008-5472.CAN-10-2607 

25. Candia J, Bayarsaikhan E, Tandon M, Budhu A, Forgues M, Tovuu L-O, et al. 
The genomic landscape of Mongolian hepatocellular carcinoma. Nat Commun. (2020) 
11:4383. doi: 10.1038/s41467-020-18186-1 

26. Hsu C-L, Ou D-L, Bai L-Y, Chen C-W, Lin L, Huang S-F, et al. Exploring 
markers of exhausted CD8 T cells to predict response to immune checkpoint inhibitor 
therapy for hepatocellular carcinoma. Liver Cancer. (2021) 10:346–59. doi: 10.1159/ 
000515305 

27. Pinyol R, Montal R, Bassaganyas L, Sia D, Takayama T, Chau G-Y, et al. 
Molecular predictors of prevention of recurrence in HCC with sorafenib as adjuvant 
treatment and prognostic factors in the phase 3 STORM trial. Gut. (2019) 68:1065–75. 
doi: 10.1136/gutjnl-2018-316408 

28.  Liu C, Zhou C, Xia  W,  Zhou  Y,  Qiu Y, Weng  J, et al.  Targeting  ALK  averts
ribonuclease 1-induced immunosuppression and enhances antitumor immunity in 
hepatocellular carcinoma. Nat Commun. (2024) 15:1009. doi: 10.1038/s41467-024-45215-0 

29. Wang Y-P, Yu G-R, Lee M-J, Lee S-Y, Chu I-S, Leem S-H, et al. Lipocalin-2 
negatively modulates the epithelial-to-mesenchymal transition in hepatocellular 
carcinoma through the epidermal growth factor (TGF-beta1)/Lcn2/Twist1 pathway. 
Hepatol Baltim Md. (2013) 58:1349–61. doi: 10.1002/hep.26467 

30. Ma L, Hernandez MO, Zhao Y, Mehta M, Tran B, Kelly M, et al. Tumor cell 
biodiversity drives microenvironmental reprogramming in liver cancer. Cancer Cell. 
(2019) 36:418–430.e6. doi: 10.1016/j.ccell.2019.08.007 

31. Sharma A, Seow JJW, Dutertre C-A, Pai R, Blériot C, Mishra A, et al. Onco-fetal 
reprogramming of endothelial cells drives immunosuppressive macrophages in 
hepatocellular carcinoma. Cell. (2020) 183:377–394.e21. doi: 10.1016/j.cell.2020.08.040 

32. Ma L, Heinrich S, Wang L, Keggenhoff FL, Khatib S, Forgues M, et al. Multiregional 
single-cell dissection of tumor and immune cells reveals stable lock-and-key features in liver 
cancer. Nat Commun. (2022) 13:7533. doi: 10.1038/s41467-022-35291-5 

33. Zhu G-Q, Tang Z, Huang R, Qu W-F, Fang Y, Yang R, et al. CD36+ cancer-
associated fibroblasts provide immunosuppressive microenvironment for 
hepatocellular carcinoma via secretion of macrophage migration inhibitory factor. 
Cell Discov. (2023) 9:25. doi: 10.1038/s41421-023-00529-z 

34. Lu X, Meng J, Zhou Y, Jiang L, Yan F. MOVICS: an R package for multi-omics 
integration and visualization in cancer subtyping. Bioinforma Oxf Engl. (2021) 36:22–3. 
doi: 10.1093/bioinformatics/btaa1018 

35. Aran D, Hu Z, Butte AJ. xCell: digitally portraying the tissue cellular 
heterogeneity landscape. Genome Biol. (2017) 18:220. doi: 10.1186/s13059-017-1349-1 

36. Finotello F, Mayer C, Plattner C, Laschober G, Rieder D, Hackl H, et al. 
Molecular and  pharmacological modulators of the  tumor immune contexture
revealed by deconvolution of RNA-seq data. Genome Med. (2019) 11:34. 
doi: 10.1186/s13073-019-0638-6 

37. Li T, Fu J, Zeng Z, Cohen D, Li J, Chen Q, et al. TIMER2.0 for analysis of tumor-
infiltrating immune cells. Nucleic Acids Res. (2020) 48:W509–14. doi: 10.1093/nar/ 
gkaa407 

38. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, et al. 
Estimating the population abundance of tissue-infiltrating immune and stromal cell 
populations using gene expression. Genome Biol. (2016) 17:218. doi: 10.1186/s13059­
016-1070-5 

39. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers 
differential expression analyses for RNA-sequencing and microarray studies. Nucleic 
Acids Res. (2015) 43:e47–7. doi: 10.1093/nar/gkv007 

40. Korsunsky I, Millard N, Fan J, Slowikowski K, Zhang F, Wei K, et al. Fast, 
sensitive and accurate integration of single-cell data with Harmony. Nat Methods. 
(2019) 16:1289–96. doi: 10.1038/s41592-019-0619-0 

41. Sun D, Guan X, Moran AE, Wu L-Y, Qian DZ, Schedin P, et al. Identifying 
phenotype-associated subpopulations by integrating bulk and single-cell sequencing 
data. Nat Biotechnol. (2022) 40:527–38. doi: 10.1038/s41587-021-01091-3 

42. Maeser D, Gruener RF, Huang RS. oncoPredict: an R package for predicting in 
vivo or cancer patient drug response and biomarkers from cell line screening data. Brief 
Bioinform. (2021) 22:bbab260. doi: 10.1093/bib/bbab260 

́43. Lapuente-Santana O, van Genderen M, Hilbers PAJ, Finotello F, Eduati F. 
Interpretable systems biomarkers predict response to immune-checkpoint inhibitors. 
Patterns N Y N. (2021) 2:100293. doi: 10.1016/j.patter.2021.100293 

44. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction 
and exclusion predict cancer immunotherapy response. Nat Med. (2018) 24:1550–8. 
doi: 10.1038/s41591-018-0136-1 

45. Yang C, Huang X, Liu Z, Qin W, Wang C. Metabolism-associated molecular 
classification of hepatocellular carcinoma. Mol Oncol. (2020) 14:896–913. doi: 10.1002/ 
1878-0261.12639 
frontiersin.org 

https://doi.org/10.1038/s41572-020-00240-3
https://doi.org/10.1038/s41572-020-00240-3
https://doi.org/10.3322/caac.21834
https://doi.org/10.3322/caac.21834
https://doi.org/10.1016/j.jhep.2021.11.018
https://doi.org/10.1056/NEJMoa1915745
https://doi.org/10.1056/NEJMoa0708857
https://doi.org/10.1056/NEJMoa0708857
https://doi.org/10.1016/j.phrs.2021.105732
https://doi.org/10.1038/aps.2017.5
https://doi.org/10.1158/2159-8290.CD-20-1680
https://doi.org/10.1158/2159-8290.CD-20-1680
https://doi.org/10.3748/wjg.v29.i10.1614
https://doi.org/10.1038/s41571-021-00573-2
https://doi.org/10.1038/s41571-024-00868-0
https://doi.org/10.1038/s43018-022-00357-2
https://doi.org/10.1016/j.ccell.2024.01.007
https://doi.org/10.1016/j.jhep.2024.01.011
https://doi.org/10.1016/j.jhep.2024.01.011
https://doi.org/10.1016/j.jhep.2019.08.017
https://doi.org/10.1016/j.jhep.2019.08.017
https://doi.org/10.1016/j.molcel.2015.05.004
https://doi.org/10.1038/s41698-020-0122-1
https://doi.org/10.1016/j.cell.2018.03.033
https://doi.org/10.1158/0008-5472.CAN-09-1089
https://doi.org/10.1158/0008-5472.CAN-09-1089
https://doi.org/10.1016/j.cell.2019.10.038
https://doi.org/10.1097/HEP.0000000000000553
https://doi.org/10.1097/HEP.0000000000000553
https://doi.org/10.1093/nar/gkv1507
https://doi.org/10.1101/gr.239244.118
https://doi.org/10.1158/0008-5472.CAN-10-2607
https://doi.org/10.1158/0008-5472.CAN-10-2607
https://doi.org/10.1038/s41467-020-18186-1
https://doi.org/10.1159/000515305
https://doi.org/10.1159/000515305
https://doi.org/10.1136/gutjnl-2018-316408
https://doi.org/10.1038/s41467-024-45215-0
https://doi.org/10.1002/hep.26467
https://doi.org/10.1016/j.ccell.2019.08.007
https://doi.org/10.1016/j.cell.2020.08.040
https://doi.org/10.1038/s41467-022-35291-5
https://doi.org/10.1038/s41421-023-00529-z
https://doi.org/10.1093/bioinformatics/btaa1018
https://doi.org/10.1186/s13059-017-1349-1
https://doi.org/10.1186/s13073-019-0638-6
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1093/nar/gkaa407
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1186/s13059-016-1070-5
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1038/s41592-019-0619-0
https://doi.org/10.1038/s41587-021-01091-3
https://doi.org/10.1093/bib/bbab260
https://doi.org/10.1016/j.patter.2021.100293
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1002/1878-0261.12639
https://doi.org/10.1002/1878-0261.12639
https://doi.org/10.3389/fimmu.2025.1592259
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http:36:418�430.e6


Wang et al. 10.3389/fimmu.2025.1592259 

 

46. Ji Q, Zheng Y, Zhou L, Chen F, Li W. Unveiling divergent treatment prognoses 
in IDHwt-GBM subtypes through multiomics clustering: a swift dual MRI-mRNA 
model for precise subtype prediction. J Transl Med. (2024) 22:578. doi: 10.1186/s12967­
024-05401-6 

47. Han T, Bai Y, Liu Y, Dong Y, Liang C, Gao L, et al. Integrated multi-omics 
analysis and machine learning to refine molecular subtypes, prognosis, and 
immunotherapy in lung adenocarcinoma. Funct Integr Genomics. (2024) 24:118. 
doi: 10.1007/s10142-024-01388-x 

48. Zheng X, Ma Y, Bai Y, Huang T, Lv X, Deng J, et al. Identification and validation 
of immunotherapy for four novel clusters of colorectal cancer based on the tumor 
microenvironment.  Front  Immunol .  (2022)  13:984480.  doi :  10.3389/  
fimmu.2022.984480 

49. He Y, Duan S, Wang W, Yang H, Pan S, Cheng W, et al. Integrative radiomics 
clustering analysis to decipher breast cancer heterogeneity and prognostic indicators 
through multiparametric MRI. NPJ Breast Cancer. (2024) 10:72. doi: 10.1038/s41523­
024-00678-8 

50. Klebanov N, Artomov M, Goggins WB, Daly E, Daly MJ, Tsao H. Burden of 
unique and low prevalence somatic mutations correlates with cancer survival. Sci Rep. 
(2019) 9:4848. doi: 10.1038/s41598-019-41015-5 

51. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. 
Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung 
cancer. Science. (2015). doi: 10.1126/science.aaa1348 

52. Li G, Wu J, Li L, Jiang P. p53 deficiency induces MTHFD2 transcription to 
promote cell proliferation and restrain DNA damage. Proc Natl Acad Sci U.S.A. (2021) 
118:e2019822118. doi: 10.1073/pnas.2019822118 

53. Nian Z, Dou Y, Shen Y, Liu J, Du X, Jiang Y, et al. Interleukin-34-orchestrated 
tumor-associated macrophage reprogramming is required for tumor immune escape 
driven by p53 inactivation. Immunity. (2024) 57:2344–2361.e7. doi: 10.1016/ 
j.immuni.2024.08.015 

54. Romani A, Zauli E, Zauli G, AlMesfer S, Al-Swailem S, Voltan R. MDM2 
inhibitors-mediated disruption of mitochondrial metabolism: A novel therapeutic 
strategy for retinoblastoma. Front Oncol. (2022) 12:1000677. doi: 10.3389/ 
fonc.2022.1000677 

55. Voltan R, di Iasio MG, Bosco R, Valeri N, Pekarski Y, Tiribelli M, et al. Nutlin-3 
downregulates the expression of the oncogene TCL1 in primary B chronic lymphocytic 
leukemic cells. Clin Cancer Res Off J Am Assoc Cancer Res. (2011) 17:5649–55. 
doi: 10.1158/1078-0432.CCR-11-1064 

56. Romani A, Lodi G, Casciano F, Gonelli A, Secchiero P, Zauli G, et al. Enhanced 
Anti-Melanoma Activity of Nutlin-3a Delivered via Ethosomes: Targeting p53­
Mediated Apoptosis in HT144 Cells. Cells. (2024) 13(20):1678. doi: 10.3390/ 
cells13201678 

57. Vassilev LT. p53 Activation by small molecules: application in oncology. J Med 
Chem. (2005) 48:4491–9. doi: 10.1021/jm058174k 

58. Wang Z, Chen Y, Fang H, Xiao K, Wu Z, Xie X, et al. Reprogramming cellular 
senescence in the tumor microenvironment augments cancer immunotherapy through 
multifunctional nanocrystals. Sci Adv. (2024) 10:eadp7022. doi: 10.1126/ 
sciadv.adp7022 

59. Wong PY, Chan CYK, Xue HDG, Goh CC, Cheu JWS, Tse APW, et al. Cell cycle 
inhibitors activate the hypoxia-induced DDX41/STING pathway to mediate antitumor 
immune response in liver cancer. JCI Insight. (2024) 9:e170532. doi: 10.1172/ 
jci.insight.170532 

60. Petroni G, Formenti SC, Chen-Kiang S, Galluzzi L. Immunomodulation by 
anticancer cell cycle inhibitors. Nat Rev Immunol. (2020) 20:669–79. doi: 10.1038/ 
s41577-020-0300-y 
Frontiers in Immunology 26 
61. Suski JM, Braun M, Strmiska V, Sicinski P. Targeting cell-cycle machinery in 
cancer. Cancer Cell. (2021) 39:759–78. doi: 10.1016/j.ccell.2021.03.010 

62. Forner A, Gilabert M, Bruix J, Raoul J-L. Treatment of intermediate-stage 
hepatocellular carcinoma. Nat Rev Clin Oncol. (2014) 11:525–35. doi: 10.1038/
nrclinonc.2014.122 

63. Habib A, Desai K, Hickey R, Thornburg B, Lewandowski R, Salem R. 
Transarterial approaches to primary and secondary hepatic Malignancies. Nat Rev 
Clin Oncol. (2015) 12:481–9. doi: 10.1038/nrclinonc.2015.78 

64. Zhou Y, Zhang X, Wu L, Ye F, Su X, Shi L, et al. Meta-analysis: preoperative 
transcatheter arterial chemoembolization does not improve prognosis of patients with 
resectable hepatocellular carcinoma. BMC Gastroenterol. (2013) 13:51. doi: 10.1186/ 
1471-230X-13-51 

65. Bruix J, Sala M, Llovet JM. Chemoembolization for hepatocellular carcinoma. 
Gastroenterology. (2004) 127:S179–188. doi: 10.1053/j.gastro.2004.09.032 

66. Li K-W, Li X, Wen T-F, Lu W-S. The effect of postoperative TACE on prognosis 
of HCC: an update. Hepatogastroenterology. (2013) 60:248–51. doi: 10.5754/hge12665 

67. Cheng A-L, Hsu C, Chan SL, Choo S-P, Kudo M. Challenges of combination 
therapy with immune checkpoint inhibitors for hepatocellular carcinoma. J Hepatol. 
(2020) 72:307–19. doi: 10.1016/j.jhep.2019.09.025 

68. Hashizume T, Ying B-W. Challenges in developing cell culture media using 
machine  learning.  Biotechnol  Adv .  (2024)  70:108293.  doi :  10.1016/  
j.bioteChadv.2023.108293 

69. Roisman LC, Kian W, Anoze A, Fuchs V, Spector M, Steiner R, et al. Radiological 
artificial intelligence - predicting personalized immunotherapy outcomes in lung 
cancer. NPJ Precis Oncol. (2023) 7:125. doi: 10.1038/s41698-023-00473-x 

70. Kim H-J, Gong E-J, Bang C-S. Application of machine learning based on 
structured medical data in gastroenterology. Biomimetics. (2023) 8:512. doi: 10.3390/ 
biomimetics8070512 

71. Liu Z, Liu L, Weng S, Guo C, Dang Q, Xu H, et al. Machine learning-based 
integration develops an immune-derived lncRNA signature for improving outcomes in 
colorectal cancer. Nat Commun. (2022) 13:816. doi: 10.1038/s41467-022-28421-6 

72. Liu H, Zhang W, Zhang Y, Adegboro AA, Fasoranti DO, Dai L, et al. Mime: A 
flexible machine-learning framework to construct and visualize models for clinical 
characteristics prediction and feature selection. Comput Struct Biotechnol J. (2024) 
23:2798–810. doi: 10.1016/j.csbj.2024.06.035 

73. Yang Y-F, Zhang M-F, Tian Q-H, Fu J, Yang X, Zhang CZ, et al. SPAG5 interacts 
with CEP55 and exerts oncogenic activities via PI3K/AKT pathway in hepatocellular 
carcinoma. Mol Cancer. (2018) 17:117. doi: 10.1186/s12943-018-0872-3 

74. Kalimutho M, Sinha D, Jeffery J, Nones K, Srihari S, Fernando WC, et al. CEP55 
is a determinant of cell fate during perturbed mitosis in breast cancer. EMBO Mol Med. 
(2018) 10:e8566. doi: 10.15252/emmm.201708566 

75. Zhou L, Zhu Y, Guo F, Long H, Yin M. Pan-cancer analysis of oncogenic role of 
CEP55 and experiment validation in clear cell renal cell carcinoma. Sci Rep. (2024) 
14:28279. doi: 10.1038/s41598-024-80057-2 

76. Tandon D, Banerjee M. Centrosomal protein 55: A new paradigm in 
tumorigenesis. Eur J Cell Biol. (2020) 99:151086. doi: 10.1016/j.ejcb.2020.151086 

77. Yang L, He Y, Zhang Z, Wang W. Upregulation of CEP55 predicts dismal 
prognosis in patients with liver cancer. BioMed Res Int. (2020) 2020:4139320. 
doi: 10.1155/2020/4139320 

78. Xie X, Liang H, Jiangting W, Wang Y, Ma X, Tan Z, et al. Cancer-testis antigen 
CEP55 serves as a prognostic biomarker and is correlated with immune infiltration and 
immunotherapy efficacy in pan-cancer. Front Mol Biosci. (2023) 10:1198557. 
doi: 10.3389/fmolb.2023.1198557 
frontiersin.org 

https://doi.org/10.1186/s12967-024-05401-6
https://doi.org/10.1186/s12967-024-05401-6
https://doi.org/10.1007/s10142-024-01388-x
https://doi.org/10.3389/fimmu.2022.984480
https://doi.org/10.3389/fimmu.2022.984480
https://doi.org/10.1038/s41523-024-00678-8
https://doi.org/10.1038/s41523-024-00678-8
https://doi.org/10.1038/s41598-019-41015-5
https://doi.org/10.1126/science.aaa1348
https://doi.org/10.1073/pnas.2019822118
https://doi.org/10.1016/j.immuni.2024.08.015
https://doi.org/10.1016/j.immuni.2024.08.015
https://doi.org/10.3389/fonc.2022.1000677
https://doi.org/10.3389/fonc.2022.1000677
https://doi.org/10.1158/1078-0432.CCR-11-1064
https://doi.org/10.3390/cells13201678
https://doi.org/10.3390/cells13201678
https://doi.org/10.1021/jm058174k
https://doi.org/10.1126/sciadv.adp7022
https://doi.org/10.1126/sciadv.adp7022
https://doi.org/10.1172/jci.insight.170532
https://doi.org/10.1172/jci.insight.170532
https://doi.org/10.1038/s41577-020-0300-y
https://doi.org/10.1038/s41577-020-0300-y
https://doi.org/10.1016/j.ccell.2021.03.010
https://doi.org/10.1038/nrclinonc.2014.122
https://doi.org/10.1038/nrclinonc.2014.122
https://doi.org/10.1038/nrclinonc.2015.78
https://doi.org/10.1186/1471-230X-13-51
https://doi.org/10.1186/1471-230X-13-51
https://doi.org/10.1053/j.gastro.2004.09.032
https://doi.org/10.5754/hge12665
https://doi.org/10.1016/j.jhep.2019.09.025
https://doi.org/10.1016/j.bioteChadv.2023.108293
https://doi.org/10.1016/j.bioteChadv.2023.108293
https://doi.org/10.1038/s41698-023-00473-x
https://doi.org/10.3390/biomimetics8070512
https://doi.org/10.3390/biomimetics8070512
https://doi.org/10.1038/s41467-022-28421-6
https://doi.org/10.1016/j.csbj.2024.06.035
https://doi.org/10.1186/s12943-018-0872-3
https://doi.org/10.15252/emmm.201708566
https://doi.org/10.1038/s41598-024-80057-2
https://doi.org/10.1016/j.ejcb.2020.151086
https://doi.org/10.1155/2020/4139320
https://doi.org/10.3389/fmolb.2023.1198557
https://doi.org/10.3389/fimmu.2025.1592259
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http:57:2344�2361.e7


Wang et al. 10.3389/fimmu.2025.1592259 
Glossary 

AIDRS Artificial Intelligence-Derived Risk Score 
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AFP Alpha-Fetoprotein 
ALB Albumin 
AUC Area Under the Curve 
CCK-8 Cell Counting Kit-8 
CIMLR Cancer Integration via Multikernel Learning 
CNV Copy Number Variation 
COCA Cluster of Clusters Analysis 
CPGs Candidate Prognostic Genes 
CPI Clustering Prediction Index 
CS1/CS2 Clustering Subtypes 1 and 2 
CTNNB1 Catenin Beta 1 
DEGs Differentially Expressed Genes 
DLEU7 Deleted in Lymphocytic Leukemia 7 
DMEM Dulbecco’s Modified Eagle’s Medium 
DNA Deoxyribonucleic Acid 
DSS Disease Specific Survival 
EaSIeR Estimate Systems Immunotherapy Response 
EGFR Epidermal Growth Factor Receptor 
Enet Elastic Network 
FBS Fetal Bovine Serum 
FDA Food and Drug Administration 
FPKM Fragments Per Kilobase of transcript per Million mapped reads 
GBM Generalized Boosted Regression Models 
GEO Gene Expression Omnibus 
GISTIC Genomic Identification of Significant Targets in Cancer 
HCC Hepatocellular Carcinoma 
HR Hazard Ratio 
ICGC International Cancer Genome Consortium 
IDH Isocitrate Dehydrogenase 
IFNG Interferon-Gamma 
IntNMF Integrative Nonnegative Matrix Factorization 
JAK2 Janus Kinase 2 
Lasso Least Absolute Shrinkage and Selection Operator 
lncRNA Long Non-Coding RNA 
MATH Mutant-Allele Tumor Heterogeneity 
MCPcounter Microenvironment Cell Populations-counter 
MDSC Myeloid-Derived Suppressor Cells 
MET Mesenchymal-Epithelial Transition 
ML Machine Learning 
ogy 27 
MOVICS Multi-Omics integration and Visualization in Cancer Subtyping 
MSI Microsatellite Instability 
NC Negative Control 
NCBI National Center for Biotechnology Information 
NF-kB Nuclear Factor Kappa-Light-Chain-Enhancer of Activated 

B Cells 
NGS Next-Generation Sequencing 
NTP Nearest Template Prediction 
OS Overall Survival 
PBS Phosphate Buffered Saline 
PCs Principal Components 
PECAM1 Platelet and Endothelial Cell Adhesion Molecule 1 
PFI Progression Free Interval 
plsRcox Partial Least Squares Regression for Cox model 
PT Prothrombin Time 
qRT-PCR Quantitative Real-Time Polymerase Chain Reaction 
ROC Receiver Operating Characteristic 
RNA-seq RNA Sequencing 
RSF Random Survival Forest 
scRNA-seq Single-Cell RNA Sequencing 
siRNA Small Interfering RNA 
SNP Single Nucleotide Polymorphism 
SNF Similarity Network Fusion 
SPP1 Secreted Phosphoprotein 1 
StepCox Stepwise Cox Regression Model 
Superpc Supervised Principal Components 
TACE Transcatheter Arterial Chemoembolization 
TCGA The Cancer Genome Atlas 
TIDE Tumor Immune Dysfunction and Exclusion 
TIMER Tumor Immune Estimation Resource 
TMB Tumor Mutation Burden 
TME Tumor Microenvironment 
TP53 Tumor Protein P53 
TTN Titin 
UMAP Uniform Manifold Approximation and Projection 
UMI Unique Molecular Identifier 
VEGF Vascular Endothelial Growth Factor 
VEGFA Vascular Endothelial Growth Factor A 
VWF Von Willebrand Factor 
WNT Wingless/Integrated Signaling Pathway 
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