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Background: Pancreatic cancer (PC) is marked by extensive heterogeneity, 
posing  significant  chal lenges  to  effect ive  treatment.  The  tumor  
microenvironment (TME), particularly cancer-associated fibroblasts (CAFs), 
plays a critical role in driving PC progression. However, the prognostic and 
functional contributions of distinct CAF subtypes remain inadequately 
understood. Here, we introduce a novel 7-gene risk model that not only 
robustly stratifies PC patients but also unveils the unique role of PHLDA1 as a 
key mediator in tumor-stroma crosstalk. 

Methods: By integrating single-cell RNA sequencing (scRNA-seq), spatial 
transcriptomics, and bulk RNA sequencing data, we comprehensively 
characterized the heterogeneity of CAFs in PC. We identified five CAF subtypes 
and focused on matrix CAFs (mCAFs), which were strongly associated with poor 
prognosis. A 7-gene mCAF-associated risk model was constructed using 
advanced machine learning algorithms, and the biological significance of 
PHLDA1 was validated through co-culture experiments and pan-cancer analyses. 

Results: Our multiomics analysis revealed that the novel 7-gene model 
(comprising USP36, KLF5, MT2A, KDM6B, PHLDA1, REL, and DDIT4) accurately 
predicts patient survival, immunotherapy response, and TME status. Notably, 
PHLDA1 was uniquely overexpressed in CAFs and correlated with the activation 
of key protumorigenic pathways, including EMT, KRAS, and TGF-b, underscoring 
its central role in modulating the crosstalk between CAFs and malignant ductal 
cells. Pan-cancer analysis further supported PHLDA1’s prognostic and

immunomodulatory significance across multiple tumor types. 
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Conclusion: Our study presents a novel 7-gene prognostic model that 
significantly enhances risk stratification in PC and identifies PHLDA1+ CAFs as 
promising prognostic biomarkers and therapeutic targets. These findings provide 
new insights into the TME of PC and open avenues for personalized 
treatment strategies. 
KEYWORDS 

pancreatic cancer, PHLDA1, prognostic biomarker, tumor microenvironment (TME), 
spatial transcriptomics 
Background 

Pancreatic cancer (PC) is an aggressive neoplasm of the 
digestive system and may be expected to emerge as the major 
frequent cause of cancer-related fatality by 2030 (1). Despite the 
incremental progress in diagnostic modalities and therapeutic 
strategies, the overall survival (OS) rate for PC continues 
strikingly low, at less than 10% (2). This grim prognosis is 
attributed to the fact that over 80% patients preclude the 
possibility of curative surgery and increases the risk of tumor 
recurrence (3). For patients with unresectable PC, chemotherapy 
regimens based on fluorouracil or gemcitabine, has shown limited 
efficacy, with survival extension not exceeding 12 months (4–6). 
Therefore, to improve clinical outcomes, there is an imperative need 
to elucidate the intricate biological underpinnings of pancreatic 
cancer cells and their associated cellular milieu comprehensively. 

The tumor microenvironment (TME) has recently assumed a 
central focus on oncological research and drug development, 
encompassing a diverse array of cellular and noncellular elements, 
comprising immune cells, cancer-associated fibroblasts (CAFs) or 
cytokines (7–9). The intricate interplay within the TME is pivotal in 
modulating malignancy progression (10). CAFs, a predominant cell 
type in the stromal constituents, is closely associated with invasion, 
metastasis, or poor prognosis in a variety of malignant tumors (11, 
12). Single-cell analyses have revealed distinct CAF subtypes, each 
characterized by unique genetic signatures or functional attributes. 
The heterogeneity of fibroblasts has been investigated across various 
cancers, including colorectal (13, 14), chordoma (15), breast (16, 
17), and head and neck cancer (18), among others. The variability in 
CAF types and functions across different tumor types highlights the 
complexity of their functional role within the TME, indicating a 
need for further investigation into their multifaceted contributions. 
Given the marked heterogeneity within the CAF population, we 
hypothesize that distinct CAF subtypes exert unique influences on 
pancreatic cancer progression. In particular, we postulate that a 
specific subset characterized by elevated PHLDA1 expression plays 
a pivotal role in mediating the crosstalk between malignant ductal 
cells and the tumor microenvironment. We propose that PHLDA1+ 
CAFs contribute to tumor growth and immune modulation by 
activating protumorigenic signaling pathways—such as PI3K/Akt, 
02 
TGF-b, and KRAS—which, in turn, may impact patient prognosis 
and therapeutic response. This hypothesis underpins our 
investigation into the prognostic and functional significance of 
PHLDA1+ CAFs in pancreatic cancer. 

In recent years, machine learning (ML) approaches have 
become indispensable for extracting robust prognostic and 
biological insights from high‐dimensional cancer datasets (19). 
Supervised methods—such as Lasso‐Cox regression, Random 
Forests, and Support Vector Machines—have been widely applied 
to bulk and single‐cell transcriptomic profiles to derive multi‐gene 
signatures that accurately stratify patients by survival risk and 
therapeutic response. Unsupervised algorithms, including 
consensus clustering and non‐negative matrix factorization, have 
facilitated the identification of novel TME cellular subtypes by 
grouping cells with shared expression patterns, thereby revealing 
heterogeneity that is otherwise obscured in bulk analyses (20). More 
recently, deep learning frameworks have been integrated with 
spatial transcriptomics to infer spatially resolved cell–cell 
interactions, enabling the construction of predictive models that 
link the spatial distribution of immune and stromal populations to 
clinical outcomes (21). In pancreatic cancer and other malignancies, 
such integrative ML pipelines have successfully uncovered 
prognostic signatures within CAFs, predicted immunotherapy 
responders based on TME composition, and highlighted key 
signaling pathways driving tumor–stroma crosstalk. By leveraging 
these advanced algorithms, our study not only constructs a robust 
7‐gene risk model but also situates PHLDA1+ CAFs within a 
framework of ML‐driven TME analysis, underlining their 
relevance for precision prognostication and therapeutic targeting. 

ScRNA-seq technology has enabled the characterization of 
tumor cell heterogeneity with single-cell resolution, thereby laying 
a more robust foundation for the comprehensive elucidation of 
tumor pathogenesis, therapeutic strategies, and prognostic 
outcomes (22, 23). Spatial transcriptomics (ST) methodologies 
facilitate the acquisition of whole-transcriptome data within tissue 
sections, concurrently preserving the spatial context of cellular 
localization (24). 

In this research, multi-omics data were used to elucidate the 
contributions of CAFs in the malignant progression from a 
multidimensional perspective. Furthermore, we sought to 
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investigate the influence of CAFs on the prognosis of patients with 
PC and their possible predictive value for the response to 
immunotherapy. Our research contributes to clarifying the 
biological roles of CAFs in the development of PC and offers 
guidance for creating innovative treatment approaches. 
Methods 

Data collection 

All data were obtained from GEO database (https:// 
www.ncbi.nlm.nih.gov/geo/) and Xena database (https:// 
xena.ucsc.edu/).  ScRNA  data  consisted  of  GSE154778,  
GSE155698, and GSE231535 datasets, comprising 38 samples of 
primary pancreatic cancer and control tissues (25–27). Spatial 
transcriptomic data were derived from the GSE235315 dataset, 
used for deconvolution of single-cell data to observe cell type 
distribution (28). The bulk datasets were divided into three parts: 
1. The dataset for training the prognostic model was sourced from 
the TCGA-PAAD cohort, including 176 pancreatic cancer patients 
with survival and clinical information. 2. The datasets for validating 
the prognostic model were obtained from the GSE28735, 
GSE57495, and GSE62452 datasets, all containing survival 
information for pancreatic cancer patients (29–31). 3. The dataset 
for expression analysis was created by batch-correcting and 
merging the TCGA-PAAD cohort with the GTEX pancreatic 
cohort to increase the number of control samples, totaling 176 
pancreatic cancer tissues and 167 control pancreatic tissues. 
Data processing 

For single-cell data, analyses were conducted using Seurat 4.2.2. 
Data were normalized for dimensionality reduction and clustering. 
The Harmony algorithm was employed to correct batch effects 
across datasets and samples. Cell annotation was performed using 
SingleR and existing methods. The percentage of cells was displayed 
using the “ggalluvial” software package after identifying marker 
genes for cell types. 

For spatial transcriptomic data, the “cell2location” package was 
installed in a Python 3.9 environment for analysis. The “scanpy” 
package was used to import spatial transcriptomic data, filtering out 
low-quality cells after removing mitochondrial genes. A negative 
binomial regression model was used to train a feature matrix from 
single-cell data, achieving optimal results with max_epochs set to 
250. Shared genes between single-cell and spatial data were 
identified as reference signatures for deconvolution analysis, 
predicting cell abundance. Considering the availability of data and 
code, we supplemented the analyzed relevant code with Seurat 
objects to the supplemental notebook. 

For bulk transcriptomic data, the “sva” package facilitated batch 
correction and merging of TCGA and GTEX data. The data were 
then analyzed for different expression and survival. 
Frontiers in Immunology 03 
Identification of CAF subtypes 

To define and annotate cancer-associated fibroblast (CAF) 
subtypes, we first performed dimensionality reduction and 
unsupervised clustering within the CAF across all three scRNA­
seq cohorts (GSE154778, GSE155698, GSE231535). Clustering was 
conducted in Seurat v4.2.2 using principal component analysis 
(PCA) followed by the Louvain algorithm (resolution = 0.6). 
Marker genes for each cluster were identified with FindMarkers 
(log2 fold change > 0.25, adjusted P < 0.05). We required that each 
putative CAF subtype exhibit at least five independently validated 
“signature” genes (e.g., FAP, POSTN, COL1A1 for matrix CAFs 
(mCAFs); CXCL1, IL6, CXCL12 for iCAFs) with significant 
overexpression relative to other fibroblast clusters. 

To assess consistency across datasets, we reclustered CAFs 
independently in each cohort under identical parameters 
(Harmony for batch correction, followed by Louvain clustering). 
Each of the five subtypes (iCAFs, proCAFs, mCAFs, MT2A+ 

myCAFs, CXCL14+ myCAFs) appeared in all three cohorts, and 
the adjusted Rand index (ARI) between integrated and per-dataset 
cluster assignments exceeded 0.85 in each case. Finally, to verify that 
subtype definitions were not an artifact of a single clustering 
technique, we repeated the CAF subtyping using a Leiden 
algorithm (resolution = 0.5) and hierarchical clustering on z­
score–normalized expression profiles; subtype identities and 
relative proportions differed by less than 5% compared to the 
Louvain result. 
Identification of malignant versus non­
malignant cells 

First, we sorted the input expression matrix according to the 
order of genes in the genome, followed by data normalization. The 
cells were then clustered based on Euclidean distance or correlation. 
A Gaussian mixture model (GMM) was used to estimate the variance 
of each cluster, with the cluster showing the least variance serving as 
the diploid reference (i.e., normal cells) for subsequent analysis. 
When calculating copy number alterations (CNA) through gene 
expression, CopyKAT grouped every 25 genes into a detection 
window and assessed the significance of the mean expression 
differences between adjacent windows. Windows with significant 
differences were identified as chromosomal breakpoints. Finally, 
hierarchical clustering using CNA data was performed to 
distinguish between aneuploid tumor cells and diploid normal cells. 
This process was carried out using the R package “CopyKAT”. 
Inference of cell–cell communication 
networks 

The underlying mechanisms of cell-to-cell communication were 
uncovered by the “CellChat” v1.5.0. The netVisual_circle function 
visualized the number and strength of communications between 
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cells, whereas the netAnalysis_computeCentrality function inferred 
the input and output weights of specific signaling pathways. 
Estimation of cell-type proportions in 
TCGA-PAAD cohort 

The deconvolution algorithm extracted representative features 
from high-dimensional data and mapped them to a lower-
dimensional space to identify the proportions of elements in the 
high-dimensional data. To perform deconvolution, the “IOBR” 
package was used. First, the generateRef_seurat function extracted 
feature genes from single-cell data to construct a deconvolution 
feature expression matrix. The deconvo_tme function then applied 
the SVR algorithm to deconvolve the abundance of all cell types in 
the TCGA-PAAD dataset. 
Identification of core gene modules 
through high-dimensional co-expression 
analysis 

hdWGCNA (high-dimensional WGCNA) is a systems biology 
method that analyzes high-throughput gene expression data to uncover 
relationships between genes. Specifically, the SetupForWGCNA 
function constructs a WGCNA object, and the MetacellsByGroups 
function creates metacell information. Gene module analysis was 
performed based on the soft threshold of the co-expression network, 
and module eigengenes were calculated to identify core genes. 
Machine learning and prognostic model 
construction 

To develop a prognostic risk model, ten machine learning 
methods were used for selection and modeling: Lasso, Enet, 
StepCox, SurvivalSVM, CoxBoost, SuperPC, Ridge, plsRcox, RSF, 
and GBM. These were combined in various ways to create 101 
different algorithms to assess the diagnostic efficiency of the models. 
Cross-validation and model selection 

To mitigate the risk of overfitting associated with testing 101 
algorithms, we implemented a rigorous 10-fold cross-validation 
procedure on the training set. Specifically, the TCGA-PAAD cohort 
was randomly partitioned into 10 equal subsets. In each iteration, 9 
folds were used to train the model, while the remaining fold served 
as the validation set. We computed performance metrics, including 
the concordance index (c-index) and the area under the receiver 
operating characteristic curve (AUC), for each fold. The final model 
was selected based on the highest average performance across the 10 
folds. Additionally, sensitivity analyses were performed to assess the 
stability of model parameters. The selected model was further 
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validated using independent external datasets to ensure 
its generalizability. 
Immune infiltration and immunotherapy 
assessment 

To analyze the overall immune microenvironment and 
potential for immunotherapy in high- and low-risk patients, the 
CIBERSORT algorithm was performed. Additionally, the 
expression of key factors such as chemokines, TNF family factors 
and HLA family molecules in high- and low-risk groups was further 
investigated. Overall activation of the immune microenvironment 
was assessed by the “ESTIMATE” package. 

The “IOBR” package was used for evaluating tumor TME-

related gene sets. The TIDE website (http://tide.dfci.harvard.edu/) 
was subsequently performed to analyze immunoreactivity and to 
assess immunotherapy sensitivity based on factors, such as co­
mutation frequency, tumor mutation burden, and immune 
checkpoint expression. Finally, the external immunotherapy 
datasets IMvigor210 and GSE91061 were used for validation (32). 
Enrichment analysis 

All genes were ranked by logFC values. HALLMARK 
enrichment analysis was conducted using the “GSEA” and 
“clusterProfiler” packages, with a significance threshold of 
adjusted P < 0.05. 
Drug screening and molecular docking 

Drug screening was primarily conducted using the DSigDB 
database available on the Enrichr website. Drugs with an adjusted P 
< 0.01 were selected. The top 20 drugs were selected for display 
according to the binding score. The top1 drug was chosen for 
further analysis. For molecular docking, AutoDock Tools 1.5.6 was 
used to set charges, add polar and nonpolar hydrogens, and define 
rotatable bonds. The receptor grid files were generated by 
AutoDock Tools. AutoDock Vina 1.2.5 was then employed to 
dock the ligand structures with the generated receptor grid files. 
The results were visualized, analyzed, and plotted using PyMOL 3.2. 
Pan-cancer analysis 

Pan-cancer data were derived in accordance with UCSC Xena 
(https://xenabrowser.net), encompassing 24 tumor types from 
TCGA.  The  “Limma” package  was  used  for  uniform  
standardization and normalization of all datasets. Survival 
analysis was then performed. Gene sets related to angiogenesis, 
cell cycle, and EMT were sourced from previous studies (33–35). 
Correlation scatter plots were created using “ggplot2”. 
 frontiersin.org 

http://tide.dfci.harvard.edu/
https://xenabrowser.net
https://doi.org/10.3389/fimmu.2025.1592416
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1592416 
Clinical samples 

Tumor tissues and paired adjacent tissues were obtained from 
Ruijin Hospital, Shanghai Jiao Tong University School of Medicine. 
The detail patient clinicopathologic information can be viewed in 
Supplementary Table S1. The research protocol was approved by 
the Research Ethics Committee of Ruijin Hospital, Shanghai Jiao 
Tong University School of Medicine. All the participants agreed to 
participate  in  this  cohort  study  and  provided  written  
informed consent. 
Cell culture and transfection 

PATU-8988 and PANC-1 were purchased from the Cell Bank 
of the Chinese Academy of Sciences. Cancer-associated fibroblasts 
(CAFs) were obtained from the tumor tissues. The above were 
cultured in RPMI-1640 medium containing 10% fetal bovine serum 
(FBS) and 1% penicillin/streptomycin (P/S). The incubation 
temperature was 37°C and the incubator was 5% CO2. Short 
hairpin RNA of PHLDA1 was provided by Genechem (Shanghai, 
China). For transfections, proper plasmids were introduced into the 
supernatant using HilyMax (Dojindo,Japan). After 8–12 hours, the 
medium was replaced and then validated. 
Immunohistochemistry and 
immunofluorescence 

After being formalin-fixed and paraffin-embedded, the tumor 
tissue samples were sectioned onto slides. IHC was then performed 
to validate the expression of PHLDA1. 

Following deparaffinization and rehydration, the slides were 
subjected to antigen repair. This was subsequently followed by 
antibody incubation, color development and sealing. Finally, 
representative images were captured under a microscope. Similar 
to the IHC protocol, IF was carried out. 
RNA extraction and real-time quantitative 
PCR 

Total RNA was abstracted by TRIzol reagent (Invitrogen, USA). 
cDNA was gotten by reverse transcription using HiScript III RT 
SuperMix (Vazyme, Nanjing, China). RT-qPCR was performed 
with the ChamQ SYBR qPCR Master Mix (Vazyme Biotech, 
China) according to the manufacturer’s instructions. 
Patient-derived organoid construction and 
evaluation 

Pancreatic tumor tissues from patients were quickly separated 
in RPMI-1640 medium that had been chilled beforehand and 
digested for 30 minutes at 37°C using collagenase. Individual cells 
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were subsequently placed into Matrigel (Corning, USA) and filtered 
through a Falcon 40 mm cell screen (Corning, USA). They were then 
grown in the full organoid medium (OmaStem, China). Following 
the manufacturer’s instructions, the CellTiter-Glo 3D cell viability 
assay (Promega, USA) was used to measure the relative activity of 
the organoids after being co-cultured with CAFs. 
Western blot 

RIPA buffer (Epizyme, China) combined with protease 
inhibitors (Epizyme, China) was used to extract proteins from 
cells. Separated from 10% SDS-PAGE, proteins were transferred 
to PVDF membranes. PHLDA1 primary antibody (Abcam, UK) 
and the relevant secondary antibody were used for incubation. 
Finally, protein expression levels were determined using ECL 
reagents (Epizyme, China). 
Cell proliferation assay 

For the Cell Counting Kit-8 (CCK-8; MeilunBio, China) assay, 
2000 cells were plated in a 96-well plate and then cultivated at 37°C 
in an incubator with 5% CO2. Following the addition of 90 mL of  
growth media and 10 mL of CCK-8 to each well at specified times, 
the cells were cultured for an additional 2 hours, and the optical 
density (OD) values of each group were measured at 450 nm. For 
colony formation, the cells were seeded at a density of 1000 cells per 
well in a 6-well plate, and the medium was replaced every three 
days. The cells were subsequently fixed and stained with 0.1% 
crystal violet at room temperature for 30 minutes. ImageJ 
software was used to quantify the number of colonies after they 
were imaged. 
Cell migration assay 

For the migration assay, the upper chamber was filled with 
pancreatic cancer cells (5 × 104) suspended in 200 µL of serum-free 
media, while 1×106 CAFs were seeded in lower chamber culture 
plates containing 700 ml of RPMI-1640 medium supplemented with 
10% FBS. After 24 hours, the cells that had moved to the lower side 
of the membrane were fixed and stained for 15 minutes at room 
temperature with a 1% crystal violet solution. ImageJ software was 
used to count the number of moving cells. 
Statistical analysis 

Statistical analyses were performed using GraphPad Prism 9.0. 
Continuous variables are presented as mean ± standard deviation 
(SD), and their distribution was assessed by the Shapiro–Wilk test. 
For comparisons between two independent groups, an unpaired 
two-tailed Student’s t-test was applied when data were normally 
distributed; otherwise, the Mann–Whitney U test was used. For 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1592416
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1592416 

 

comparisons among three or more independent groups, one-way 
analysis of variance (ANOVA) followed by Tukey’s multiple

comparisons test was employed. Categorical variables were 
compared using Pearson’s chi-square test; when any expected cell 
count was less than 5, Fisher’s exact test was used instead. Survival 
curves were generated by the Kaplan–Meier method, and 
differences between survival curves were evaluated by the log-
rank test. All statistical tests were two-tailed, and a P value < 0.05 
was considered statistically significant. 
 

 

Results 

Characterization of the single-cell 
landscape in pancreatic cancer 

Based on methodological quality control standards, we retained 
5,805 normal control group cells and 56,853 pancreatic cancer cells 
for downstream analysis. These included 12,458 from GSE154778, 
37,583 from GSE155698, and 12,617 from GSE231535. After batch 
effect removal, 34 clusters of cells labeled 0–33 were identified 
(Figure 1A). Using SingleR and existing methods, we annotated 
these 34 clusters into 11 cell types. The markers for each cell type 
included ductal cells (KRT19, KRT8, and CFTR), macrophages 
(LYZ, CD68, and C1QB), T cells (CD3D, CD3E, and NKG7), acinar 
cells (CLPS, CELA2A, and CELA3A), cancer-associated fibroblasts 
(FAP, COL1A1, and POSTN), endothelial cells (VWF, CDH5, and 
ERG), plasma cells  (JCHAIN,  MZB1, and  JSRP1), pericytes

(ACTA2, RGS5, and TAGLN), mast cells (KIT, CPA3, and 
TPSAB1), B cells (CD79A, CD79B, and MS4A1), and endocrine 
cells (GCG, INS, and GAS5) (Figures 1B, C). The changes in each 
cell type of consistency were compared and we found that 
proportions of ductal cells, CAFs, and plasma cells increased, 
whereas those of acinar cells and pericytes decreased. These 
findings suggested that ductal cells, CAFs, and plasma cells may 
be associated with the malignant progression (Figure 1D). 
Additionally, we found that most malignant cells originated from 
ductal cells using the CopyKAT (Figure 1E). This raised the 
question of whether malignant ductal cells have significant 
biological differences from nonmalignant ductal cells, accelerating 
progression of pancreatic cancer. 
Crosstalk between cancer-associated 
fibroblasts and malignant ductal cells 

To address this, we divided the ductal cells in the single-cell data 
into tumor-associated ductal cells and normal ductal cells based on 
whether they were diploid and calculated their communication with 
other cell components in the microenvironment. The results 
revealed that CAF or pericytes were most closely interconnected 
with malignant ductal cells (Figures 2A, B). In terms of specific 
communication signals, tumor-associated ductal cells increase the 
output of signals such as ALCAM and OCLN and the input of 
signals such as CD96 and CD6 (Figure 2C). To explore whether 
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CAFs or pericytes play a more important role in promoting disease, 
we extracted a reference set of feature genes from the single-cell 
expression matrix and deconvoluted them into ordinary 
transcriptome data. We found that the abundance of CAFs was 
significantly related to overall survival, with a higher proportion of 
CAFs associated with worse overall survival (Figures 2D, E). In 
addition, CAFs had a substantial positive correlation with the 
quantity of tumor-associated ductal cells, suggesting that CAFs 
may be the most important cells involved in malignant progression 
via affecting ductal cells (Figure 2F). At the same time, CAFs were 
also related to clinical stage, with worse stages such as G3/G4 or 
Stage III/IV having a higher proportion of CAFs (Figures 2G–I). 
Elucidating the characteristics and functions of CAFs may be 
important for understanding pancreatic cancer. 
mCAFs correlate with clinical prognosis in 
pancreatic cancer 

Next, by secondary dimensionality reduction and clustering on 
the CAFs, and based on their respective expression characteristics, 
five cell subgroups were derived: inflammatory CAFs (iCAFs), 
progenitor CAFs (proCAFs), matrix CAFs (mCAFs), and 
myogenic CAFs (two subtypes with high expression of MT2A 
and CXCL14 respectively) (Figures 3A, B). Univariate Cox 
analysis revealed that among these five types of cells, only mCAFs 
had a significant correlation with overall survival. The survival 
curve also revealed that a greater abundance of mCAFs was related 
to worse prognosis, suggesting mCAFs constituted the most 
significant malignant CAF subtype (Figures 3C, D). HdWGCNA 
is an important means to mine core genes. To parse the 
characteristic genes of mCAFs, hdWGCNA was performed. Given 
a soft threshold of 12, we achieved the best attributes of the scale-
free topological network model and good connectivity (Figure 3E). 
At this time, all genes were divided into eight color series module 
genes, including yellow, blue, turquoise, green, pink, brown, red, 
and black modules (Figures 3F, G). By calculating the correlation of 
each module gene with different CAF subtypes, we found that the 
black module genes had the highest correlation with mCAFs, 
indicating  that  the  module  genes  most  closely  fit the

characteristics of mCAFs (Figure 3H). This module gene has a 
total of 125 genes. Through differential expression analysis, we 
retained genes whose expression significantly differed, which will be 
used as candidate genes for the next step of core prognostic gene 
screening. (Figure 3I). 
Performance of a prognostic model 

Before constructing a prognostic model, we prescreened 
survival for the candidate genes. By Univariate Cox regression 
analysis, a total of 32 genes were substantial correlated with 
overall survival (Figure 4A). We constructed a protein interaction 
network of these 32 genes, and the MCODE algorithm extracted 
two core submodules from it (Figure 4B). Enrichment analysis 
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FIGURE 1 

Single-cell atlas features of pancreatic cancer construction. (A) UMAP visualization analysis of 56,853 cells from 34 clusters by integrating the 
GSE154778, GSE155698 and GSE231535 datasets. (B) The number of each cell type in the integrated dataset. (C) Percentages and abundances of 
marker genes expressed in different cell types. The horizontal axis represents marker genes in different cell types, and the vertical axis represents 
different cell subpopulations. The size of the dots represents the percentage of expression, and the color shading represents the average expression 
level. (D) Histograms of the percentages and numbers of various types of cells in normal and pancreatic tumor tissues. (E) The CopyKAT algorithm 
suggested that most ductal cells were malignant. 
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FIGURE 2 

In-depth analysis of mutual crosstalk between ductal cells and cancer-associated fibroblasts. (A) Number of interactions between different cell 
subpopulations. (B) Interaction weights/strengths among each cell type. (C) Outgoing signaling patterns and incoming signaling patterns of all cell 
types. (D) Survival analysis revealed that the abundance of CAFs was correlated with poor prognosis in patients with pancreatic cancer. (E) KM plot 
showing the relationship between the abundance of mural cells and patient prognosis. (F) Correlation analysis of the abundance between CAFs and 
malignant ductal cells. (G) The abundance of CAFs was correlated with clinical stage. (H) A positive association was found between the number of 
CAFs and the pathological stage of patients. (I) There was an association between the number of CAFs and the survival status of patients. * 
represents p<0.05; *** represents p<0.001. 
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FIGURE 3 

mCAFs are associated with poor prognosis in pancreatic cancer patients. (A) Expression levels of marker genes for 5 different CAF subtypes. The 
color shading represents the intensity of expression. (B) UMAP plot demonstrating the distribution of the five different CAF subtypes. Histograms 
indicate the number of cells in each type of subpopulation. (C) Univariate Cox analysis to assess the impact of five different CAF subtypes on the 
prognosis of patients with pancreatic cancer. (D) Survival analysis revealed that the abundance of mCAFs was correlated with poor prognosis in 
patients with pancreatic cancer. (E) The selection of the optimal soft threshold. (F) Scale-free topological network models were built using an ideal 
soft threshold of 12, and genes were partitioned into modules to create gene clustering trees. (G) The feature-based gene connectivity for each 
gene in the scale-free topological network analysis was calculated to determine the highly connected genes in each module. (H) Bubble plots 
illustrating the associations of different color modular genes with different CAF isoforms, with the black module gene having the highest correlation 
with mCAFs. (I) Differential expression analysis of black module genes. 
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revealed that these survival-related mCAF characteristic genes were 
enriched mainly in processes promoting tumors, such as hypoxia, 
angiogenesis, and apoptosis (Figure 4C). The results of feature gene 
screening and model construction based on 101 survival analyses 
revealed that after CoxBoost was used for core gene screening and 
StepCox was used for prognostic model construction, the best 
prognostic model was obtained. The average concordance index 
(C-index) reached 0.748, indicating excellent predictive 
performance (Figure 4D). The genes involved in the construction 
of this prognostic model included USP36, KLF5, MT2A, KDM6B, 
PHLDA1, REL, and DDIT4. According to this prognostic model, 
pancreatic cancer patients were stratified by disease status. Patients 
in the low-risk group had a better prognosis than those in the high-
risk group (Figures 4E–H). The model exhibited consistently robust 
predictive ability in both the training and validation cohorts, 
particularly at the second and third years of follow-up, where the 
area under the ROC curves (AUCs) exceeded 0.7 and even reached 
above 0.8(Figures 4I–L), suggesting that the reliability and accuracy 
of the constructed prognostic model. 
 

Immune atlas of high- and low-risk groups 

Furthermore, we assessed the immune status of different groups 
patients. CIBERSORT analysis revealed that high-risk patients had 
fewer immune activation-related cells, such as memory B cells and 
follicular helper T cells, but more mast cells. These findings suggested 
that high-risk patients may have certain defects in assisting the 
activation of adaptive immunity (Figure 5A). In terms of immune 
activity factors, chemokines and the TNF family are common cell 
factors that induce immune cell aggregation and activate 
inflammatory responses. The risk score was markedly positively 
corresponded to these two molecules, suggesting that high-risk 
patients experienced a high degree of cytokine storm, which 
strongly promoted continuous chronic progression and delay of 
tumor development (Figure 5B). The HLA family comprises 
common antigen-presenting-related molecules. Except for MT2A 
and REL in the prognostic model, which are significantly positively 
correlated with the HLA family, most molecules are unrelated or even 
negatively correlated with the HLA family. These findings suggest 
that there was no obvious antigen presentation activation in the high-
risk group (Figure 5C). Microenvironment scoring revealed a more 
active immune status and a smaller proportion of tumor cells in the 
low-risk group. Conversely, patients in the high-risk group exhibited 
a state of immune deficiency and high tumor tissue infiltration 
(Figures 5D–F). In addition, we evaluated many gene sets related to 
the tumor microenvironment, including genes related to mismatch 
repair, EMT, and various biological metabolisms, all of which had 
positive risk scores (HRs). The high-risk group had higher CAF 
scores, EMT scores, etc., suggesting that the high-risk group was 
overall in a state of low antitumor immunity and an accelerated 
protumor environment (Figures 5G, H). 
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Immunotherapy response assessment by 
risk score 

To further demonstrate the immunotherapy sensitivity of patients 
by degree of risk, we first assessed their mutation status. The 
proportion of mutations was higher in patients in the low-risk group 
(92.77%), especially in KRAS, with a mutation rate reaching 81%. 
Furthermore, the tumor mutational load is higher in low-risk 
individuals, representing that immunotherapy  may be more likely to  
be beneficial for these patients (Figures 6A–C). Besides, the high-risk 
group’s higher  TIDE scores suggested  a lesser chance of benefit since  
they showed signs of rejection and immunological dysregulation. 
(Figures 6D–F). The low-risk group also showed higher expression 
of conventional immune checkpoints like CTLA-4 and PD1, indicating 
that these patients are better suited to start immunotherapy. 
(Figure 6G). To prove that the prognostic model could help assess 
the possibility of immunotherapy, we used two external treatment 
cohorts for validation. In the IMvigor210 cohort, high-risk patients 
assessed by our prognostic model also had significantly lower overall 
survival probabilities, and the risk scores of patients with complete

remission and partial remission were also significantly lower than those 
of patients with stable disease and progressive disease (Figure 6H). 
Another immunotherapy dataset also revealed that immunoreactive 
patients had lower risk scores (Figure 6I), illustrating our model’s 
strong immunological response prediction capabilities. 
Crosstalk between PHLDA1+ CAFs and 
malignant ductal cells 

Subsequently, we further confirmed the most important genes could 
be used as molecular markers and intervention targets. Through the 
examination of seven key genes’ expression levels, only PHLDA1 was 
highly expressed in CAFs in the pancreatic cancer group, suggesting that 
this gene could be a potential procancer CAF marker (Figure 7A). In 
four pancreatic cancer datasets, including the TCGA-GTEX cohort, 
PHLDA1 expression was remarkably elevated in the pancreatic cancer 
samples (Figures 7B–E). Meanwhile, PHLDA1 was related to TNM 
stage, and poorer TNM stages are associated with higher PHLDA1 
expression (Figures 7F–H). Further enrichment analysis demonstrated 
that high PHLDA1 expression activated classic protumor pathways 
such  as  the EMT,  KRAS,  and TGFB pathways (Figure 7I). Moreover, 
patients with high PHLDA1 expression also presented increased 
expression of chemokines and TNF family members, including CCL5, 
CCR1, and TNFRSF1B (Figures 7J, K). Spatial transcriptome analysis 
can better observe the spatial location of cells based on more spatial 
information. Unrolling cell types into tissue sections revealed significant 
colocalization of CAFs and ductal cells, indicating a clear spatial 
interaction between the two (Figure 8A). Moreover, the expression of 
PHLDA1  and the  CAF marker POSTN  was also  concentrated in the  
colocalization area of CAFs and ductal cells, indicating that PHLDA1 
may mediate their interaction (Figures 8B, C). 
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FIGURE 4 

Establishment and testing of the prognostic model. (A) Univariate Cox analysis revealed 32 marker genes associated with survival in patients with 
pancreatic cancer. (B) Network map of protein interactions of 32 survival-related genes. (C) Gene ontology enrichment analysis suggested that 
survival-related mCAF marker genes activated protumor-related biological processes. (D) 101 machine learning algorithms for marker gene 
screening and prognostic model construction. (E–H) Overall survival was compared between the high- and low-risk groups in K-M plots in both the 
training (E) and validation cohorts (F–H). (I–L) Time-dependent ROC curves for estimating 1-, 3-, and 5-year overall survival in the training (I) and 
validation (J–L) cohorts. * represents p<0.05; ** represents p<0.01; *** represents p<0.001. 
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FIGURE 5 

Assessment of the immune microenvironment in patients in high and low-risk groups. (A) The CIBERSORT algorithm demonstrated enrichment 
levels of various types of immune cells in patients from different risk groups. (B) Correlation analysis of different immunoreactive factors with the risk 
score. (C) Relationships of core genes with molecules associated with antigen presentation. (D–F) The ESTIMATE algorithm evaluated the 
ImmuneScore (D), StromalScore (E), and ESTIMATEScore (F) in patients from the high- and low-risk groups. (G, H) Assessment of hazard ratios (HRs) 
and activation levels for gene sets associated with the tumor microenvironment. 
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FIGURE 6 

Prediction of immunotherapy sensitivity. (A) Mutation analysis of patients in the high- and low-risk groups. (B) Correlation analysis of different 
immunoreactive factors with the risk score. (C) Comparison of tumor mutation burden (TMB) in patients in the high- and low-risk groups. (D) TIDE 
scores of high- and low-risk score patients. (E, F) Comparison of CAF (E) and TAM_M2 (F) infiltration levels in the immune microenvironment of 
patients in the high- and low-risk groups. (G) Assessment of the expression abundance of immune checkpoint molecules. (H, I) Prediction of 
immunotherapy efficacy by risk score in immunotherapy cohorts. * represents p<0.05; ** represents p<0.01; *** represents p<0.001. 
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Screening of small molecule drugs and 
molecular docking 

Drug screening is an essential step for the clinical translation of 
molecular targets. To screen for potential drugs targeting PHLDA1, 
Frontiers in Immunology 14 
we carried out a drug screening based on DSigDB and identified the 
top 20 drugs according to their binding scores. Among them, three 
drugs, TTNPB, securinine, and myricetin, had the highest binding 
scores (Figure 8D). To further determine which drug has the best 
binding rate with PHLDA1, molecular docking was performed 
FIGURE 7 

Screening of key molecular markers and intervention targets. (A) Box plots representing the expression levels of 7 model genes in pancreatic cancer 
and normal tissues. (B–E) Expression of PHLDA1 in different datasets. (F–H) The expression levels of PHLDA1 at different T stages (F), N stages (G), 
and M stages (H) were compared. (I) GSEA revealed enriched pathways in patients with high or low PHLDA1 expression in pancreatic cancer. (J, K) 
Differences in the expression levels of chemokines (J) and TNF family molecules (K) in patients with high or low PHLDA1 expression in pancreatic 
cancer. * represents p<0.05; ** represents p<0.01; *** represents p<0.001. 
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separately for the three drugs with PHLDA1. As seen in Figures 8E– 
G, TTNPB presented the lowest binding energy of -6.816 kcal/mol, 
indicating that it bound most stably with PHLDA1 and could 
potentially be a PHLDA1-targeted drug. 
Frontiers in Immunology 15 
In our drug‐screening pipeline, TTNPB emerged as the top 
candidate for PHLDA1 targeting based on its lowest docking energy 
among the top 20 ranked compounds. TTNPB is a well‐
characterized synthetic retinoic acid receptor (RAR) agonist that 
FIGURE 8 

Spatial transcriptomic analysis and target molecule docking of PHLDA1. (A) Spatial distribution of CAFs and malignant ductal cells in pancreatic 
cancer. (B, C) Distribution of PHLDA1 (B) and POSTN (C) expression in the region of colocalization of CAFs with malignant duct cells. (D) Top 20 
drugs targeting PHLDA1 in the DSigDB database. (E, G) Three-dimensional structure of the molecular docking of PHLDA1 with TTNPB (E), securinine 
(F) and myricetin (G). 
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has previously been shown to modulate fibroblast differentiation 
and extracellular matrix remodeling in various contexts. Although 
no studies to date have directly linked TTNPB to PHLDA1 
inhibition, several reports indicate that RAR activation can 
suppress profibrotic signaling cascades (e.g., TGF-b/Smad) in 
stromal fibroblasts, which raises the possibility that TTNPB may 
indirectly attenuate PHLDA1‐driven CAF activation. Moreover, 
retinoid signaling has been reported to downregulate key EMT‐

associated transcription factors—many of which overlap with 
PHLDA1 downstream effectors—thereby providing a mechanistic 
rationale for TTNPB’s potential efficacy in disrupting CAF–tumor 
crosstalk. Future work should therefore prioritize in vivo validation 
of TTNPB in CAF‐rich pancreatic cancer models, such as co‐
implantation of PHLDA1‐high CAFs with orthotopic tumor cells, 
to assess whether pharmacologic RAR activation can reduce tumor 
stiffness, limit desmoplasia, and enhance anti‐tumor immunity. 
Additionally, given the established immunosuppressive role of 
CAFs, combining TTNPB with immune‐checkpoint inhibitors 
(e.g., anti‐PD-1/PD-L1) or other stroma-modulating agents may 
further potentiate therapeutic responses. Such combinatorial 
strategies could help overcome the stromal barriers that 
frequently  limit drug delivery and  immunotherapy efficacy in 
pancreatic cancer. 
PHLDA1+ CAFs promote malignant 
progression in pancreatic cancer 

Next, we investigated the role of PHLDA1 in the development 
of pancreatic cancer. According to survival analysis, patients with 
high PHLDA1 expression had a worse prognosis than patients with 
low PHLDA1 expression, which suggested that PHLDA1 could be a 
possible prognostic marker for pancreatic cancer (Figures 9A, B). 
Also, the expression of PHLDA1 in clinical samples of patients with 
pancreatic cancer was subsequently described. It could be observed 
higher mRNA expression of PHLDA1 in tumor tissues (Figure 9C). 
At the same time, it was linked to lymph node metastases and worse 
pathological staging characteristics according to paired tumor 
tissues and adjacent tissues (Figures 9D, E) (Supplementary Table 
S1). Moreover, PHLDA1 was shown to be expressed differently in 
tumor and adjuvant tumor tissues by further western blot and IHC 
staining (Figures 9F, G). Following the previous analysis, 
immunofluorescence was performed on the tumor sample and 
adjuvant tumor sample, and the findings indicated that PHLDA1 
was expressed primarily in CAFs in pancreatic cancer (Figure 9H). 
As demonstrated in Figures 10A–C, downregulating PHLDA1 in 
CAFs dramatically decreased tumor cell proliferation activity, and 
similar results were achieved in colony formation assays. 
Additionally, patient-derived organoids were cocultured with 
CAFs, and we discovered that when PHLDA1 expression was 
reduced in CAFs, organoid proliferation ability was limited 
(Figures 10D, E). To ascertain if PHLDA1 in CAFs aided in the 
migration of pancreatic cancer cells, transwell experiments were yd. 
As expected, PHLDA1 considerably increased the migration 
capacity of PATU-8988 and PANC-1 cells (Figure 10F). Together, 
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our findings suggest that PHLDA1 serves as a prognostic biomarker 
in pancreatic cancer and influences tumor growth by modulating 
cancer-cell proliferation and migration. 
PHLDA1 reflects prognosis and immune 
status in multiple tumors 

Finally, to broaden the application of PHLDA1, we analyzed its 
applicability across various types of cancer. It could be seen that 
melanomas exhibited the highest PHLDA1 expression, while 
thymomas showed the lowest (Figure 11A). The expression of 
this gene varies among different tumors. Specifically, PHLDA1 
was highly expressed in the control group for bladder cancer, 
breast cancer, cholangiocarcinoma, renal papillary cell carcinoma, 
liver cancer, prostate cancer, and thyroid cancer, whereas it was 
highly expressed in the tumor groups for colorectal cancer, glioma, 
renal clear cell carcinoma, lung squamous cell carcinoma, rectal 
cancer, and gastric cancer (Figure 11B). PHLDA1 was found to be 
substantially associated with disease-free survival in patients with 
thyroid cancer, head and neck squamous cell carcinoma, pancreatic 
cancer, soft tissue sarcoma, bladder cancer, and endometrial cancer, 
as well as with overall survival in these patients. It was also 
significantly related to progression-free survival in patients with 
colorectal cancer, lung adenocarcinoma, pancreatic cancer, lung 
squamous cell carcinoma, thyroid cancer, and endometrial cancer 
(Figures 11C–E), suggesting that this indicator could be used to 
guide survival prognosis in these types of cancer. Additionally, 
PHLDA1 and the quantity of activated mast cells in practically all 
cancer types showed a strong positive connection, according to 
immune infiltration study, indicating that mast cells may contribute 
to the development of cancer (Figure 11F). Finally, the correlation 
analysis uncovered that angiogenesis, cell cycle, and EMT were 
significantly positively correlated with PHLDA1 in all types of 
cancer, further suggesting the cancer-promoting role of PHLDA1 
(Figures 11G–I). 
Discussion 

An increasing body of research has highlighted the pronounced 
intratumoral heterogeneity within pancreatic cancer (PC), posing 
significant challenges for the development of effective therapeutic 
strategies. Therefore, finding innovative treatment strategies is 
crucial to raising PC patients’ overall survival rates. A growing 
body  of  research  sugges t s  tha t  the  complex  tumor  
microenvironment’s (TME) neoplastic and stromal cells’ 
intercellular communication is closely related to the tumor cells’ 
malignant biological activities (36–38). As essential components of 
the TME, cancer-associated fibroblasts (CAFs) are known to 
influence important facets of carcinogenesis, such as metastasis, 
angiogenesis, proliferation, and resistance to different treatment 
modalities in a variety of cancers (12, 39, 40). Additionally, 
mounting data emphasizes how crucial CAFs are in initiating 
drug susceptibility in pancreatic cancer to immunotherapy, 
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FIGURE 9 

PHLDA1 is highly expressed and associated with poor prognosis in pancreatic cancer patients. (A, B) The overall survival (A) and disease-free survival 
(B) analysis of PHLDA1 in pancreatic cancer patients. (C) The mRNA expression level of PHLDA1 in tumor tissues (n=30) and paired adjacent tumor 
tissues (n=30). (D) The mRNA expression level of PHLDA1 in patients with lymph node metastasis. (E) PHLDA1 expression in patients with different 
pathological stages (n=30). (F) Western blot showing the protein level of PHLDA1 in tumor tissues and paired normal tissues (n=4). (G) IHC staining 
showing the expression level of PHLDA1 in tumor tissues and paracancerous tissues. (H) Colocalized distribution of PHLDA1 with the CAF marker a-
SMA in cancer and adjacent tumor tissues. 
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FIGURE 10
 

PHLDA1+ CAF facilitated malignant biological behavior in pancreatic cancer. (A) Knockdown efficiency of PHLDA1 at the protein level in CAFs.
 
(B) When PHLDA1 was inhibited, CCK8 assays were used to detect the proliferative activity of PANC-1 or PATU-8988 cells when cocultured with 
CAFs. (C) Colony formation assays in PATU-8988 and PANC1 cells after cocultured with CAFs (shNC, sh1 PHLDA1, sh2 PHLDA1). (D) Representative 
images of PDO 1 or PDO 2 co-cultured with CAFs. (E) CTG assays revealed the proliferative capacity of different patient-derived organoids after 
cocultured with CAFs in Days 1, 4, and 8. (F) Evaluation of the migration capacity of PATU-8988 and PANC-1 cells after cocultured with CAFs (shNC, 
sh1 PHLDA1, sh2 PHLDA1). * represents p<0.05; ** represents p<0.01; *** represents p<0.001. 
Frontiers in Immunology 18 frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1592416
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1592416 
targeted treatment, chemotherapy, and radiation (41, 42). 
According to certain report, the formation and spread of cancer 
are directly linked to the interactions between various cell types 
inside the TME (43). Our analysis of published single-cell RNA 
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sequencing (scRNA-seq) data revealed an increased proportion of 
ductal and CAF cells in PC tissues, along with enhanced 
interactions between these cell types as shown by CellChat 
analysis. In addition, a higher prevalence of CAFs was correlated 
FIGURE 11 

The applicability of PHLDA1 at the pan-cancer level. (A) The mRNA expression level of PHLDA1 in various cancer types. (B) PHLDA1 expression in the 
tumor and adjacent tumor tissues of different tumors. (C–E) The overall survival (C), disease-free survival (D) and progression-free survival (E) of 
PHLDA1 at the pan-cancer level. (F) Correlations of PHLDA1 with the infiltration of various immune cells in multiple tumor types. (G, H) Evaluation of 
PHLDA1 expression, angiogenesis score, cell cycle score and EMT score in a range of cancers. * represents p<0.05; ** represents p<0.01; *** 
represents p<0.001. 
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with advanced disease stages and poorer overall survival. These 
observations indicate a potential involvement of CAFs in 
PC progression. 

CAFs are a heterogeneous population arising from various cell 
types across solid tumors, activated by multiple signaling pathways 
(44). Their diverse origins and activation mechanisms generate a 
spectrum of phenotypes, resulting in functional heterogeneity. 
CAFs were first divided into two subgroups (CAF-A and CAF-B) 
via single-cell sequencing in colorectal cancer (45). In recent years, 
CAFs have been divided into three groups based on their roles in 
lung, prostate, and triple-negative breast cancer: myofibroblastic 
CAFs (myCAFs), inflammatory CAFs (iCAFs), and matrix CAFs 
(mCAFs) (46–48). Our goal in this study was to clarify how CAFs 
affect PC’s biological behavior. Comprehensive analysis revealed the 
existence of five distinct CAF subpopulations, namely, iCAFs, 
progenitor cell CAFs (proCAFs), mCAFs, MT2A-expressing 
myofibroblastic CAFs (MT2A+ myCAFs), and CXCL14­
expressing myofibroblastic CAFs (CXCL14+ myCAFs). Among 
these, mCAFs have emerged as the most critical malignant CAF 
subgroup with the potential to predict the prognosis of PC patients. 
We developed a 7-gene mCAF-related gene risk model, which 
allowed us to accurately forecast the survival rates of patients by 
classifying them into high-risk and low-risk groups. This 
stratification approach holds promise for improving prognostic 
accuracy and may inform personalized treatment strategies for 
PC patients. 

CAFs are intricately involved in the progression of PC and are 
closely linked to metastasis, immune evasion, and resistance to 
immunotherapy (49). Within the TME, CAFs engage tumor cells 
and other stromal components, producing excess extracellular 
matrix proteins, soluble mediators, and matrix-degrading 
enzymes. These activities result in increased matrix deposition, 
increased interstitial pressure, and compression of blood vessels, 
which collectively contribute to hypoxia and nutrient deprivation 
(50, 51).  Consequently,  this  environment  restricts  the  
administration of chemotherapeutic drugs and prevents immune 
cells from infiltrating. 

In this study, we employed our established risk model to assess 
the immune profiles of patients, as well as their potential response 
to immunotherapy. Our findings showed that high-risk patients 
exhibited a pronounced inflammatory cytokine surge, which 
correlates with chronic tumor progression (52). Moreover, the 
high-risk group displayed immune dysfunction, weakened 
antitumor responses, and an intensified protumorigenic 
microenvironment. Our risk model demonstrated statistically 
significant predictive accuracy for immunotherapy outcomes in 
PC patients, suggesting its potential utility in guiding patient care 
and clinical decision-making. 

Prior investigation has emphasized how crucial the temporal 
and spatial dynamics within the TME are in promoting tumor 
heterogeneity (53). Malignant tumor invasiveness, metastatic 
potential, and clinical outcomes have been found to be 
substantially associated with the density and spatial distribution 
of immune cells across different tissue subregions (54). These 
conclusions are supported by published data, which also confirm 
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that the spatial variability of CAFs significantly affects cancer 
patients’ survival (55). These observations highlight the 
importance of considering the spatial architecture of the TME 
when examining the biology of cancer and its response to 
therapy. Although previous studies have characterized CAF 
signatures based on a limited set of markers (56), our study 
extends these findings by identifying a distinct PHLDA1-positive 
CAF subtype that is significantly associated with poor prognosis 
and tumor-stroma interactions. Recent advancements in single-cell 
and spatial transcriptomic technologies have revealed that specific 
CAF  subpopulat ions  play  cri t ical  roles  in  mediat ing  
immunotherapy resistance and overall patient outcomes (8, 17). 
Importantly, our data suggest that targeting PHLDA1-positive 
CAFs could serve as a novel therapeutic strategy, thereby bridging 
the gap between conventional CAF classifications and personalized 
treatment approaches (16). In this context, our findings not only 
refine the existing CAF paradigm but also enhance its clinical 
applicability by providing a more robust biomarker for prognostic 
stratification and therapeutic decision-making. 

Consistent with these findings, our analysis revealed that 
mCAFs are in close proximity to malignant ductal cells and that 
their spatial distribution and density within tumor tissues are 
correlated with the aggressiveness and prognosis of PC. 
According to these findings, mCAFs most likely promote PC 
development by having a direct impact on the biological activity 
of ductal cells. Notably, mCAFs’ spatial heterogeneity may play a 
role in the regulation of tumor behavior. Specifically, mCAFs 
located at different spatial distances from ductal cells may carry 
out unique biological tasks that could influence tumor growth and 
invasion through a variety of mechanisms of action, ultimately 
accelerating the advancement of the tumor. Further mechanistic 
analysis revealed that elevated expression of PHLDA1 promotes 
CAF activation and proliferation by activating key signaling 
pathways such as TGF-b and KRAS, thereby inducing epithelial­
mesenchymal transition (EMT) and enhancing extracellular matrix 
(ECM) deposition and remodeling. This ECM remodeling increases 
tissue stiffness and density, creating physical barriers that restrict 
immune infiltration and therapeutic drug penetration, consequently 
facilitating invasion and migration of pancreatic cancer cells and 
leading to poor patient prognosis. These findings uncover the 
underlying mechanisms by which PHLDA1+ CAFs shape the 
tumor microenvironment and drive pancreatic cancer progression. 

To provide more direct evidence for PHLDA1’s functional 
involvement in key protumorigenic pathways, we examined both 
published mechanistic studies and our own co-culture results. 
PHLDA1 has been identified as a direct TGF-b/SMAD target, 
with TGF-b1 treatment increasing PHLDA1 mRNA expression 
approximately threefold in keratinocyte models, and chromatin 
immunoprecipitation confirmed SMAD3/SMAD4 binding to a 
regulatory region upstream of PHLDA1 (57). In addition, 
PHLDA1  overexpression  can  induce  b-catenin  nuclear  
localization, disrupt adherens junctions, and trigger EMT-

associated transcriptional programs—specifically upregulating 
SNAI1 and VIM—consistent with a functional role in EMT 
induction (58). And, PHLDA1 augments KRAS pathway activity 
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by stabilizing the RAS–ERK axis: in glioblastoma, PHLDA1 binds to 
Ras and competitively inhibits Src-mediated Ras phosphorylation, 
resulting in sustained Ras-GTP levels, increased RAF/MEK/ERK 
signaling, and elevated downstream MYC transcription; conversely, 
PHLDA1 knockdown reduces phospho-ERK1/2 levels by 
approximately 50 % (59). 

PHLDA1 (also known as TDAG51) is a pleckstrin homology 
domain-containing protein originally implicated in regulating 
apoptosis, cell proliferation, and cellular stress responses. Under 
physiological conditions, PHLDA1 plays a role in maintaining 
cellular homeostasis and signaling balance, as well as in specific 
differentiation processes. Notably, prior studies have reported that 
PHLDA1 is involved in several key signaling pathways, including 
the PI3K/Akt, TGF-b, and KRAS pathways. In our study, elevated 
PHLDA1 expression was associated with the activation of 
protumorigenic pathways such as EMT, KRAS, and TGF-b, 
suggesting that it may contribute to the regulation of tumor cell 
transformation, invasion, and migration. Moreover, the high 
expression of PHLDA1 in CAFs and its significant correlation 
with poor prognosis indicate that it plays an important role in 
modulating the tumor microenvironment. Therefore, targeting 
PHLDA1 might not only disrupt the detrimental crosstalk 
between CAFs and tumor cells but also enhance the efficacy of 
conventional therapies, offering a promising new avenue for 
pancreatic cancer treatment. Further studies are needed to fully 
elucidate its mechanisms and validate its potential as a 
therapeutic target. 

Although we applied established batch-correction tools (e.g., 
Harmony for single-cell data and sva for bulk RNA-seq), some 
technical variability from library preparation, sequencing platforms, 
and sample handling likely persists. These residual batch effects may 
obscure subtle transcriptomic differences, especially among rare cell 
populations. Moreover, although pan-cancer analysis highlights the 
broad prognostic and immunomodulatory relevance of PHLDA1, 
interpretation of these cross-tumor associations must be tempered 
by the fact that expression patterns and downstream signaling 
networks can vary dramatically between tumor lineages. In 
particular, tissue-specific microenvironmental cues and distinct 
oncogenic drivers in each cancer type may confound the 
generalizability of PHLDA1’s functional role. Future work 
incorporating uniformly processed samples and validation in 
lineage-matched models will be essential to disentangle true 
biological signals from cohort-specific artifacts. 

Although our study focused on the enrichment of PHLDA1 in 
mCAFs and its association with ECM remodeling and tumor 
invasion, it is important to place these findings within the broader 
context of CAF heterogeneity. In contrast to inflammatory CAFs 
(iCAFs), which are marked by high cytokine secretion, and 
myofibroblastic CAFs (myCAFs), known for their contractile and 
matrix-remodeling functions, our data indicate that PHLDA1+ 
mCAFs preferentially activate TGF-b and KRAS signaling 
pathways. This suggests that targeting PHLDA1+ mCAFs, either 
alone or in combination with interventions aimed at other CAF 
subtypes, could provide a more comprehensive strategy for 
disrupting tumor–stroma interactions and improving therapeutic 
Frontiers in Immunology 21 
outcomes in pancreatic cancer. Unlike traditional CAF markers 
such as FAP and a-SMA—which mainly indicate matrix 
remodeling and myofibroblastic activation, respectively—our results 
show that PHLDA1 specifically marks a CAF subset that is strongly 
associated with protumorigenic pathways (e.g., EMT, KRAS, and 
TGF-b signaling). In our study, high PHLDA1 expression correlated 
with advanced TNM stage and poorer overall survival, a relationship 
that was less pronounced for FAP and a-SMA. Furthermore, 
PHLDA1 knockdown in CAFs significantly impaired tumor cell 
proliferation and migration. These findings suggest that PHLDA1 
not only offers superior prognostic value but also plays a direct role in 
mediating tumor-stroma crosstalk, thereby representing a promising 
therapeutic target. 

In addition to molecular targeting of PHLDA1, recent 
bioengineering platforms offer promising avenues to overcome 
stromal barriers and reshape the tumor microenvironment. For 
example, Huang et al. developed a Christmas tree–shaped 
microneedle patch that achieved spatiotemporal delivery of 
FOLFIRINOX directly into orthotopic pancreatic tumors by 
layering oxaliplatin/leucovorin and irinotecan/fluorouracil within 
hierarchical microneedle tiers, significantly enhancing intratumoral 
penetration and drug retention. Such a device could be adapted to 
co-deliver PHLDA1 inhibitors alongside chemotherapeutics or 
CAF-modulating agents, thereby improving drug distribution in 
desmoplastic lesions. Similarly, Zetrini et al. engineered polymer– 
lipid manganese dioxide nanoparticles that consume hydrogen (60) 
peroxide to generate oxygen and buffer acidity, reoxygenating 
hypoxic tumors and driving macrophage polarization toward an 
M1 phenotype when combined with radiotherapy (61). Translating 
this platform to PHLDA1^high CAF-rich pancreatic tumors could 
normalize the microenvironment, attenuate CAF-mediated 
immunosuppression, and potentiate the efficacy of PHLDA1­

targeted therapies and immune checkpoint blockade. Future 
studies should investigate the integration of microneedle-based 
spatiotemporal delivery and redox-active nanoparticle strategies 
in lineage-matched pancreatic cancer models to evaluate 
synergistic effects on stromal depletion and antitumor immunity. 

In addition to molecular and delivery‐based innovations, 
emerging spatial genomics platforms and integrin–mTOR 
signaling studies offer novel avenues for future PHLDA1 research. 
For example, the recently described Perturb-DBiT technology 
enables simultaneous in vivo CRISPR screening and spatial 
transcriptomics, providing single‐cell resolution maps of how 
genetic perturbations affect both coding and noncoding RNAs 
within their native microenvironment (62). By applying Perturb-
DBiT to CAF populations, researchers could uncover PHLDA1’s 
spatially resolved downstream effectors and identify context‐
dependent interactions between CAFs and tumor cells in situ. 
Likewise, insights from integrin-mediated mTOR/TGF-b 
overactivity in fibrotic valve disease illuminate how integrin– 
mTOR axes drive profibrotic signaling and immune cell 
recruitment (63). Translating these findings to CAF biology 
suggests that integrin–mTOR inhibitors may synergize with 
PHLDA1‐targeted approaches to normalize the stroma and 
enhance anti‐tumor immunity. Altogether, integrating spatial 
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CRISPR screens with targeted modulation of integrin–mTOR 
pathways could accelerate the development of more precise, 
microenvironment-focused therapies. 
Conclusion 

In conclusion, our study found a novel CAF cluster with strong 
predictive significance and offered a thorough examination of ductal 
cells and fibroblasts in the PC tumor microenvironment. According to 
comprehensive RNA-seq and ST findings, the mCAF subset may 
facilitate PC development by directly interacting with ductal cells. 
Through additional pan-cancer analysis tests, we investigated the 
function of PHLDA1. To sum up, we detailed the variety of CAFs in 
PC and discovered a distinct mCAF isoform and target linked to tumor 
growth,  which  enables us to better comprehend why  immunotherapy is  
so ineffective in this situation. The present research offers a workable 
concept for upcoming PC medication interventions. 
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