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Correlation study of LINC02609
and SNHG17 as prognostic
biomarkers of kidney renal clear
cell carcinoma and therapeutic
sensitivity based on public
data and In Vitro analysis
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Fan Yao1, Zhi-Yong Yao1 and Xiao-Liang Xing1*

1The First Affiliated Hospital of Hunan Medical University, School of Public Health and Emergency
Response, Hunan University of Medicine, Huaihua, Hunan, China, 2Gynecological Oncology
Department, The Second People’s Hospital of Huaihua, Huaihua, Hunan, China
Background: Cuprotosis, a newly identified form of regulated cell death, has

emerged as a potential therapeutic target for cancers. Kidney renal clear cell

carcinoma (KIRC) is frequently metastatic at diagnosis, resulting in poor

prognosis. This study aimed to identify prognostic biomarkers and construct a

risk model to improve survival prediction and guide therapeutic strategies for

KIRC patients.

Methods: Differential expression analysis, Cox regression, and risk modeling

were performed using transcriptomic and clinical data. The response to

immunotherapy and the sensitivity to chemotherapy drugs were analyzed

through the Tumor Immune Dysfunction and Exclusion (TIDE) database and

the Genomics of Drug Sensitivity in Cancer2 (GDSC2) database. Functional

validation of LINC02609 was conducted in renal carcinoma A498 cells using

siRNA-mediated knockdown.

Results: LINC02609 and SNHG17 were significantly upregulated in KIRC tissues

and independently associated with poor overall survival. The risk model

constructed using those two candidate biomarkers (LINC02609 and SNHG17)

exhibited high predictive accuracy as measured by the value of area under the

curve (AUC). Immune status analysis showed that high- and low-risk KIRC

patients exhibited abnormalities immune landscapes. TIDE analysis suggested

that the risk model was significantly correlated with multiple immunotherapy-

related signatures. RNA-sequencing (RNA-seq) analysis indicated that inhibition

of LINC02609 would lead to abnormal activation of the mitogen-activated

protein kinases (MAPK) signaling pathway. In vitro experiments confirmed that

LINC02609 knockout inhibits the proliferation, migration, and invasion of A498

cells by suppressing the MAPK signaling pathway.
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Conclusion: The candidate biomarker LINC02609 regulates the progression of

renal cell carcinoma through the MAPK signaling pathway. The risk model

constructed using LINC02609 and SNHG17 was significantly correlated with

multiple immunotherapy-related signatures, suggesting that it might be used for

the determination of immunotherapy options in KIRC
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Introduction

Kidney cancer ranks among the most prevalent malignancies in

the genitourinary system, accounting for approximately 3% of

global cancer diagnoses (1). According to 2021 epidemiological

statistics, it caused over 400,000 new cases (2.2% of all cancers) and

180,000 cancer-related deaths worldwide (2). Among renal cell

carcinoma subtypes, kidney renal clear cell carcinoma (KIRC)

predominates, comprising 85% of cases and demonstrating

aggressive clinical behavior (3, 4). Notably, a substantial subset of

KIRC patients (25–30%) present with metastatic disease at initial

diagnosis, severely limiting therapeutic options (5). Furthermore,

even after surgical resection, the postoperative recurrence rate

remains strikingly high (30–50% in advanced stages), culminating

in a dismal 5-year survival rate of approximately 10% (6, 7). These

persistent clinical challenges highlight the critical need for

developing reliable prognostic stratification tools to optimize

personalized therapeutic decision-making.

Copper ions, essential cofactors for enzymatic redox reactions,

are tightly regulated under physiological conditions to maintain

cellular homeostasis (8). Dysregulated copper accumulation triggers

metabolic dysfunction and induces a novel copper-dependent cell

death mechanism termed cuproptosis (9–11). This process is
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mechanistically distinct from other forms of cell death,

characterized by mitochondrial respiratory collapse via

aggregation of lipoylated tricarboxylic acid (TCA) cycle proteins

(12). Emerging studies link cuproptosis dysregulation to multiple

malignancies, including lung, prostate, breast, gastric, and thyroid

cancers (13–17). For example, Shen et al. reported that the copper

ionophore disulfiram induces immunogenic cell death, enhances

dendritic cell activation and T-cell infiltration, and synergizes with

programmed cell death protein 1 (PD-1) inhibitors to suppress

tumor growth in preclinical models (18). Similarly, Mao et al.

identified that the cuproptosis-related gene metal responsive

transcription factor 1 (MTF1) inhibits KIRC progression by

suppressing tumor proliferation and modulating immune cell

infiltration (19). Notably, the ferroptosis and cuproptosis-related

protein ferredoxin 1 (FDX1) regulates lipoylated protein

metabolism and drives cancer progression and metastasis in

diverse malignancies (20, 21). Additionally, copper chelators have

been shown to reverse cisplatin resistance through modulation of

mitochondrial copper dynamics (22). Intriguingly, the cuproptosis-

associated protein cyclin dependent kinase inhibitor 2A (CDKN2A)

has been implicated in cellular sensitivity to copper-mediated

proliferation (12). Previous studies indicated that dysregulation of

cuproptosis-related pathways may promote oncogenesis via

perturbation of key signaling cascades, including the MAPK and

phosphatidylinositol 3-kinase (PI3K)- protein kinase B (PKB, AKT)

pathways (23–25).

Long non-coding RNAs (lncRNAs), defined as transcripts

exceeding 200 nucleotides in length with no protein-coding

capacity, serve as critical regulators of tumorigenesis and cancer

progression through epigenetic modulation, transcriptional

regulation, and post-transcriptional modifications (26–33).

Building upon the emerging role of cuproptosis in KIRC

pathogenesis, this study performed an integrative multi-omics

analysis to identify prognostic lncRNA biomarkers associated

with cuproptosis, construct a risk stratification model, and

systematically evaluate its clinical utility for prognosis prediction

and therapeutic optimization in KIRC. Furthermore, functional

validation experiments were conducted to elucidate the mechanistic

contributions of candidate lncRNAs to tumor progression,

providing novel therapeutic targets for KIRC management.
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Materials and methods

The flow chart in Supplementary Figure S1 depicted the data

analysis process.
Data collection and preprocessing

RNA-sequencing (RNA-seq) raw count data and corresponding

clinical metadata were retrieved from the Cancer Genome Atlas

(TCGA) and International Cancer Genome Consortium (ICGC)

databases, comprising 602 samples (72 normal vs. 530 KIRC) from

TCGA and 136 samples (45 normal vs. 91 KIRC) from ICGC

(Table 1). The TCGA-KIRC cohort was designated as the discovery/

training cohort, while the ICGC-KIRC cohort served as the

independent validation cohort. The combined dataset (TCGA +

ICGC) constituted the entire cohort for pooled analyses. A curated

set of 16,901 annotated lncRNAs was obtained from the GENCODE

database (version 38). Nineteen cuproptosis-related genes (CRGs)

were selected based on prior mechanistic studies (12, 34), including:

ATP7A, ATP7B, CDKN2A, DBT, DLAT, DLD, DLST, FDX1, GCSH,

GLS, LIAS, LIPT1, LIPT2,MTF1, NFE2L2, NLRP3, PDHA1, PDHB,

and SLC31A1. The DESeq2 package (v1.26.0) in R (v3.6.1) was

employed to identify differentially expressed genes (DEGs) with the

following thresholds: baseline expression ≥ 100 counts (baseMean),

absolute log2 fold change ≥ 1, and adjusted p-value (padj) < 0.05.
Single-cell sequencing analysis

The single-cell sequencing data (GSE121636) were collected

from the Gene Expression Omnibus (GEO) database. Seurat

package in R (3.6.1) was applied for KIRC data integration and

quality control (35). Vlnplot, Dimplot, and Featureplot package in
Frontiers in Immunology 03
R (3.6.1) were used to visual genes expression. The FindClusters

function is used to group cells together. The tumor cells were

identified by intercnv packets and copycat packets in R (3.6.1). The

visualization of dimensionality reduction is realized by tSNE

function with default parameter.
Immune profile analysis

Estimation of STromal and Immune cells in MAlignant Tumor

tissues using Expression data (ESTIMATE) algorithm in R (3.6.1)

was used to evaluate the tumor microenvironment (TME) using all

genes normalized expression data (36). Single sample Gene Set

Enrichment Analysis (ssGSEA) algorithm in R (3.6.1) was used to

evaluate the immune score of immune factors and cells using all

genes normalized expression data (37).

Cox regression analysis
The median expressed value of each gene was used to divide the

patients with KIRC into low and high expression group. The

univariate Cox regression analysis was used to screen the overall

survival (OS) related signatures followed with least absolute shrinkage

and selection operator (LASSO) analysis in all KIRC patients.

Multivariate Cox regression analysis was carried out for overall

survival related biomarkers to screen the potential biomarkers.

Risk model construction
After multivariate Cox regression analysis, the potential

signatures were used to construct the prognosis model by the

following formula: Risk socre =on
i=1bðXiÞ*Exp(Xi) (38). To

conduct integrated analysis of different samples, we built the

comprehensive-index (C-index). C-index = (Risk score – Min)/

Max. The Youden index was used as the optimal cut-off value to

regroup the patients with KIRC into low and high-risk group.
TABLE 1 Clinical information of KIRC patients in different group.

Clinical characteristics Training (N=530) Validation (N=91) Entire (N=621)

Vital Alive 357 61 418

Dead 173 30 203

M M0 420 81 501

M1 78 9 87

MX 32 1 33

N N0 239 79 318

N1 16 2 18

NX 275 10 285

T T1 271 54 325

T2 69 13 82

T3 179 22 201

T4 11 2 13
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Sensitivity analysis
Differentially expressed genes between high- and low-risk KIRC

patients were identified by DESeq2 algorithm in R (3.6.1) and then

used to evaluate chemotherapy sensitivity by oncoPredict algorithm,

and immunotherapy sensitivity by Tumor Immune Dysfunction and

Exclusion (TIDE) database (http://tide.dfci.harvard.edu/login/).
Cell culture and transfection

HK2, A498, CAKI-1, and 786-O cells were obtained from the

American Type Culture Collection (ATCC), and maintained in MEM

+ 10% FBS +1% PS, MEM + 10% FBS +1% PS, McCoy’s 5a + 10% FBS

+1% PS, and RPMI1640 + 10%FBS+1% PS respectively. All cells were

authenticated and tested for mycoplasma contamination, and were

maintained at 37 °C in an incubator containing 5% CO2.

LINC02609‐specific siRNAs were synthesized by GENERAL

BIOL (China). Si-NC: 5′‐UUCUCCGAACGUGUCACUUTT‐3′.
Si-RNA1: 5’-GAGAGAAGAGCAUGAUGAATT-3’. Si-RNA2: 5’-

GGUCAAUGCAUGUACUUAATT-3’.

SiRNAs were transfected into cells using Lipofectamine 2000

Reagent (Invitrogen, USA) according to the manufacturer’s

instructions. MAPK agonist (Ro 67–7476) was obtained

from MedChemExpress.

Quantitative reverse transcription–PCR
Total RNA from different cells were extracted using Trizol reagent

(Life technologies, NY, USA) according to the manufacturer’s

instruction. 2.0 mg of total RNA were reverse-transcribed using the

RevertAid First Strand cDNA Synthesis Kit (Thermo Fisher, Waltham

mass, USA). The mRNA levels were examined with qPCR using

1 × SYBR Green PCR master mix (Thermo Fisher, Waltham mass,

USA) by a C1000 touch Thermal Cycler. The primers sequence used in

our present study was showed as following (Table 2).

Cell counting kit-8 analysis
Cell proliferation was assessed using the cell counting kit‐8

(CCK‐8) assay (Beyotime Technology, China). 24h, 48h, 72h after

transfection, the absorbance was measured by adding 10 mL CCK-8

reagent per well for 2 h.

Wound healing assay
Cell migration was assessed using wound healing assay. When

the cell fusion rate of the six-well plate was about 90%, the vertical
Frontiers in Immunology 04
scraping was performed with a 1ml straw head. The suspended cells

were cleaned with PBS and treated with interference. Serum-free

medium was cultured for 24h in a 37°C-incubator containing

5% CO2.

Invasion assay
The cells were implanted in a 6-well plate and cultured in a

medium containing 10% fetal bovine serum and penicillin-

streptomycin in 37°C-incubator containing 5% CO2. After 48

weeks, the colonies were fixed with 100% methanol for 30

minutes, and then stained with 0.5% crystal violet solution. The

colonies were rinsed with clean water and counted under

a microscope.

Western blot and antibody
The cells were homogenized in 2 × SDS gel-loading buffer

(50 mM Tris–HCl at pH 6.8, 2% SDS and 10% glycerol) with

1 × Protein inhibitor cocktail. Proteins were resolved by SDS–

PAGE and transferred onto PVDF membranes. The PVDF

membranes was blocked in 5% skim milk/Tris-buffered saline

that contained 0.1% Tween 20, incubated with the primary

antibodies at 4°C overnight, and incubated with second antibody.

The PVDF membranes were visualized with enhanced

chemiluminescence western blotting detection reagents. The

antibodies were listed as following: Phospho-ERK (T202/Y204)

(Abways, China), ERK (T185/Y187) (Abways, China).
RNA-sequencing

Total RNA was extracted with TRIzol reagent following the

recommendations of the manufacturer. RNA was sequenced using

Illumina platform in Beijing Qingke Biotechnology Co., LTD. The

sequencing depth for each sample was >20 million reads. The reads

were aligned with TopHat 2.0.13 to GRCh38.112 with default

parameters. Transcript abundance was measured in fragments per

kb of exon per million fragments mapped (FPKM).
Statistical analysis

A repeated-measure ANOVA followed by Bonferroni post

hoc tests or unpaired two-tail Student’s t test was used

as indicated.
TABLE 2 Primer sequence information.

LncRNAs Forward Primer Reverse Primer

LINC02609 CAGCGCCCGTTTATTTGAG AGTGCTCCTGGCTTCTTCTTGTA

SNHG17 TGGGAGTGTCACATGACTGC TGGGAGTGTCACATGACTGC

PRKAR1B-AS2 TTGGACACTGCCCATCTTCC TGCAGCCACGGGATGTTTAT

U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT
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Results

Screening of CRDELs as a prognostic
marker of KIRC

To determine whether cuprotosis differed among KIRC

patients, we estimated the cuprotosis score for each sample using

cuprotosis related genes. Analysis of differences from the TCGA

and ICGC datasets showed that cuprotosis scores were significantly

higher in both KIRC patients (Supplementary Figures S2a, b).

Therefore, to obtain suitable cuprotosis-related lncRNAs as

biomarkers, we first performed differential expression analysis.

There were significant differences in 3879 genes between the

normal and KIRC patients (Supplementary Figure S2c). Of these,

361 (278 up regulated and 83 down regulated) were differentially

expressed lncRNAs (DELs) (Supplementary Figure S2d). Next, 361

DELs were used for Pearson correlation analysis with cuprotosis-

related genes. Among them, 270 DELs were significantly correlated

with 19 cuprotosis-related genes (Supplementary Figures S2e-j).

Therefore, these 270 DELs are named as cuprotosis-related DELs

(CRDELs). Before the biomarker screening, we conducted

consensus analysis. The results showed that these 270 CRDELs

could well divide KIRC patients into two different groups, and the

overall survival of KIRC patients between the two groups was

significantly different (Supplementary Figures S2k, l).

Analysis of differences showed that 150 of 270 CRDELs were

significantly different between surviving and deceased KIRC

patients. Univariate Cox regression analysis was carried out for
Frontiers in Immunology 05
these 150 DELs followed by LASSO analysis (Figures 1a, b). The

results showed that 23 CRDELs were significantly associated with

the OS of KIRC (Figure 1c). Four CRDELs (Supplementary Figures

S3a-d) were significantly elevated in KIRC patients. However,

Kaplan-Meier (K-M) curves showed that KIRC patients with high

expression showed better survival (Supplementary Figures S3e-h).

Therefore, in the subsequent analysis, we only performed

multivariate Cox regression analysis for those 19 CRDELs

(Figure 1d). The results showed that LINC02069 and SNHG17

were independently correlated with the OS of KIRC. Their

expression and its relationship to the OS is shown in Figures 1e-h.
Construction and validation of risk models

Multivariate Cox regression analysis showed that LINC02609

and SNHG17 were independently related to KIRC OS. Therefore,

LINC02609 and SNHG17 were used to construct a risk model. With

the increase of risk value, the survival time of KIRC patients showed

a decreasing trend (Figure 2a). The expression of LINC02609 and

SNHG17 was not only highly expressed in KIRC patients, but also

significantly increased in high-risk KIRC patients (Figure 2b). The

K-M curve shows that high-risk KIRC patients exhibit significantly

poorer OS status (Figure 2c). To evaluate the accuracy of the risk

model for prognostic evaluation, we plotted the ROC curve. The

results showed that the AUC value of the risk model was 0.70, which

was slightly higher than that of pathologic M, pathologic N and

pathologic T (Figure 2d).
FIGURE 1

Identification of CRDELs as candidate biomarkers. (a) The LASSO tuning parameters. (b) The CRDELs LASSO coefficient profile. (c, d) Forest map of
overall survival related CRDELs verified by univariate (c) and multivariate (d) Cox regression analysis. (e, f) Expression LINC02609 (e) and SNHG17. (g,
h) K-M curve of LINC02609 (g) and SNHG17 (h). *P<0.05. **P<0.01. ***P<0.001. NS, no significance.
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To further validate the feasibility of the risk model, KIRC data

from the ICGC were used as other independent samples for

validation analysis. Similar results were obtained in the analysis of

this independently verified sample (Figures 2e-h). In addition, we

combined KIRC data from TCGA and ICGC and obtained similar

results (Figures 2i-l). In the training group, validation group, and

entire group, we found that high-risk KIRC patients showed

significantly poorer OS (Figures 2c, g, k). They all had AUC

values above 0.60 (Figures 2d, h, l).
Correlation analysis for risk models with
different clinical phenotypes

In the entire group, we created nomograms to understand the

relationship between the risk model and different clinical features. It

showed the status of one of the KIRC patients in different clinical

phenotypes and risk models (Supplementary Figure S4a). The

results show that the KIRC predicted by the risk model at 1-, 3-,
Frontiers in Immunology 06
and 5- years has a high agreement with the real structure

(Supplementary Figure S4b). The ROC curve showed that the risk

model had high accuracy in 1-, 3- and 5-year KIRC predictions.

Their AUC values were 0.77,0.69 and 0.68, respectively

(Supplementary Figure S4c).

Most KIRC patients already have metastatic cancer when they

are first diagnosed. Even after surgery, KIRC has a high recurrence

rate. These may be the reasons leading to the poor prognosis of

KIRC. Therefore, we explored the relationship between risk models

and different clinical features. In the training group, KIRC patients

with pathologic M1 had significantly higher risk value than those

KIRC patients with pathologic M0 (Figure 3a). In the validation

group, KIRC patients with pathologic M1 showed an increase risk

value, but there was no significant difference (Figure 3a). When we

performed our combined analysis, KIRC patients pathologic M1

still had significantly higher risk values than KIRC patients with

pathologic M0 (Figure 3a). Based on pathologic N, the risk value of

KIRC with pathologic N1 was significantly higher in the training

group than in KIRC patients with pathologic N0 (Figure 3c). Based
FIGURE 2

Construction and validation of risk model base on TCGA and ICGC database. (a-d) The survival status (a), expression status (b), K-M curve (c), and
ROC curve (d) of risk model in TCGA training group. (e-h) The survival status (e), expression status (f), K-M curve (g), and ROC curve (h) of risk
model in TCGA training group. (i-l) The survival status (i), expression status (j), K-M curve (k), and ROC curve (l) of risk model in TCGA training group.
*P<0.05. **P<0.01. ***P<0.001. NS, no significance.
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on pathological T, we obtained similar results to cases based on

pathological M (Figure 3c). In both the training and entire groups,

the risk values for KIRC with pathologic T1+T2 were significantly

higher than those for KIRC with pathologic T3+T4 (Figure 3e).

Chi-square analysis showed similar results (Figures 3b, d, f).
Sensitivity analysis of immunotherapy and
chemotherapy

Immunotherapy is a new and very promising approach to

cancer treatment. Previous studies have found that cuproptosis

based treatments can be synergistic with immunotherapy.

Therefore, we analyzed the immune status of KIRC patients with

different risks. The results showed that there were significant

differences between tumor immune microenvironment related

signatures scores and immune cell and molecular scores in KIRC

patients with different risks (Supplementary Figure S5). To further

understand the immune status of KIRC patients, we performed a

single-cell sequencing analysis using GSE121636 data. We obtained

12 clusters based on genes expression (Supplementary Figure S6a).

Using the expression of characteristic genes, we annotated these 12
Frontiers in Immunology 07
components into four distinct cell types (Supplementary Figures

S6b, c). The expression of four CRGs (ATP7A, DBT, DLST, and

MTF1) related to those two biomarkers (LINC02609 and SNHG17)

in different types of cells was shown in Supplementary Figure S6d.

Those four CRGs were mainly expressed in monocyte cell. The

correlation of those four type cells were displayed in figure

Supplementary Figure S6e. These results suggested that the

immune status of KIRC patients with different risk patterns

may differ. Therefore, to determine whether risk models can

guide immunotherapy response, we conducted TIDE based

immunotherapy response prediction study. In both the training

and validation groups, we found that high-risk KIRC patients had

significantly higher TIDE scores than low-risk KIRC patients

(Figures 4a, b). In addition, several other immunotherapy-related

signatures differed significantly between high- and low-risk KIRC

patients, including Dysfunction, Exclusion, MDSC, CAF, and

TAM_M2 (Figures 4a, b). Correlation analyses also showed

significant associations between the risk model and multiple

immunotherapy-related features (Figures 4c, d). However, very

coincidentally, we found that the TIDE score and the Exclusion

score were consistent in both the TCGA training group and the

ICGC validation group.
FIGURE 3

Correlation of risk model with different clinical features. (a) Correlation of risk model with pathologic M in different group. (b) Chi-square analysis for
risk model and pathologic M. (c) Correlation of risk model with pathologic N in different group. (d) Chi-square analysis for risk model and pathologic
N. (e) Correlation of risk model with pathologic T in different group. (f) Chi-square analysis for risk model and pathologic T. *P<0.05. **P<0.01.
***P<0.001. NS, no significance.
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In addition, oncoPredict algorithm based on GDSC2 was used

to explore the response of KIRC patients with different risk score to

chemotherapy. Sensitivity to the six drugs varied significantly and

consistently between high - and low-risk patients, including

Dactolisib_1057, Entospletinib_1630, ERK_2440_1713,

ERK_6604_1714, MG-132_1862, and Trametinib_1372

(Supplementary Figures S7a, b). The correlation of those drugs

with the risk model was showed in Supplementary Figures S7c, d.
02609 Inhibition of LINCsignificantly
reduce the progression of kidney cancer

These results suggested that LINC02609 and SNHG17 may be

prognostic markers of KIRC. To clarify the specific expression of

LINC02609 and SNHG17, we first detected their expression in

different renal tissue cell lines. Compared with normal tissue cells,

LINC02609 and SNHG17 in renal carcinoma cells were

significantly elevated (Figures 5a, b). Previous studies have found

that SNHG17 has a significant increase in KIRC and can promote

cancer progression (39, 40). Therefore, we only conducted studies

on the role of LINC02609 in the development of KIRC. To clarify

the role of LINC02609, we first designed the siRNA of LINC02609.

48 hours after transfection of the siRNA of LINC02609, we collected

RNA and performed qPCR detection, and found that the expression
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of LINC02609 was significantly reduced in the interference groups

(Figure 5c). Interference with the expression of LINC02609 for 24h,

48h and 72h could significantly reduce the cell viability of A498 cells

(Figure 5d). The results of wound healing experiment showed that

interference with the expression of LINC02609 significantly

inhibited the cell migration of A498 compared with the control

group (Figures 5e, f). Invasion experiments showed that

interference with the expression of LINC02609 significantly

inhibited the number of A498 cells compared with the control

group (Figures 5g, h).
The effect of MAPK signaling pathway
agonists in reversing LINC02609

To clarify the mechanism of LINC0609 in KIRC, we first

performed an RNA-seq analysis. The results showed that after

interfering with LINC02609 with siRNA1, we found 1477

significantly increased DEGs and 1323 significantly reduced

DEGs (Figure 6a). After interfering with LINC02609 with

siRNA2, we found 2403 significantly increased DEGs and 1158

significantly decreased DEGs (Figure 6b). Then, we performed

KEGG functional enrichment analysis. The results showed that 26

and 25 KEGG signaling pathways were significantly enriched based

on RNA-seq data of siRNA1 and siRNA2 as measured by the
FIGURE 4

Correlation analysis of risk model with Immunotherapy signatures. (a, b) Differentially analysis of immunotherapy-related signatures between high-
and low-risk KIRC patients in training group (a) and validation group (b). (c, d) Point plot of correlation analysis of risk model with immunotherapy
signatures in training group (c) and validation group (d). *P<0.05. **P<0.01. ***P<0.001. NS, no significance.
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Benjamini and FDR values both less than 0.05 (Supplementary

Table S1). The top 10 signal pathways were represented by

Figure 6c, d, respectively. The overlap signaling pathways were

hsa05165: human papillomavirus infection, hsa04360: axon

guidance, hsa04933: AGE-RAGE signaling pathway in

complications of diabetes, hsa04820: cytoskeleton of muscle cells,

and hsa04010: MAPK signaling pathway (Figures 6e, f). The

differentially expressed genes enriched in the MAPK signaling

pathway are shown in Figures 6g, h.

Based on previous studies, to determine whether LINC02609

regulates EOKIRC progression through the MAPK signaling

pathway, we then detected the activation level of MAPK signaling

pathway, and found that the expression of pERK, a characteristic

molecule of the MAPK signaling pathway, was significantly

reduced, suggesting that inhibiting LINC02609 could inhibit the

activation of the MAPK signaling pathway (Figures 7a, b). Next, we

conducted rescued studies using agonists of the MAPK signaling

pathway (Figures 7c, d). The results showed that MAPK agonists
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could inhibit the proliferation, migration and invasion of cells

affected by LINC02609 (Figure 7e-i).
Discussions

KIRC is one of the most common malignant tumors of the

genitourinary system (1–4). Even after surgical intervention, the

postoperative recurrence rate remains alarmingly high, with a 5-

year survival rate of about 10% (5–7). Therefore, identifying

patient-specific KIRC prognostic markers and elucidating their

functions are critical to improving KIRC outcomes. In this study,

TCGA and ICGC datasets were used to screen and validate KIRC

prognostic markers. In addition, we conducted in vitro functional

studies of candidate potential biomarker LINC02609. Through

bioinformatics studies, we found that LINC02609 and SNHG17

were significantly elevated in patients with KIRC. This is consistent

with previous bioinformatics analysis reports (41–44). To further
FIGURE 5

Inhibition of LINC02609 significantly reduce the progression of kidney cancer. (a, b) Expression of LINC02609 (a) and SNHG17 (b) among different
cells type. (c), SiRNA of LINC02609 significantly reduced the expression of LINC02609. (d), Cell viability analysis between control and siRNA
interference group (n=3). (e, f), Migration ability analysis between control and siRNA interference group. (e) migration diagram. (f) statistical chart
(n=3). The magnification of the picture is 40×. (g, h), Invasion ability analysis between control and siRNA interference group. (g) invasion diagram. (h)
statistical chart (n=3). The magnification of the picture is 100×. *P<0.05. **P<0.01. ***P<0.001. NS, no significance.
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clarify the expression of LINC02609 and SNHG17, we examined

their expression in different renal cell lines and found that

LINC02609 and SNHG17 were indeed significantly elevated in

renal cancer cell lines. Previous studies have found that SNHG17

expression is significantly elevated in renal cancer, and its high

expression is significantly correlated with tumor OS and different

clinical features (45–50). We further identified the high expression

of SNHG17 in renal carcinoma. Xiao et al. found that LINC02609

was significantly elevated in renal cancer (43). In this study, we

found that LINC02609 was significantly elevated in kidney cancer

cells which was consistence with previous study (43). Although the

high expression of LINC02609 has been verified by experiments, its

expression situation still needs to be verified by a large number of

clinical samples.

In the study of KIRC prognostic models, many studies have been

carried out. Yu et al. used five M6A-associated lncRNAs to construct
Frontiers in Immunology 10
a risk model, with AUC values of 0.802 and 0.725 in the training

group and validation group, respectively (51). Yu et al. used five

lncRNAs associated with autophagy to construct a risk model, and

the AUC values of the training group and the verification group were

0.81 and 0.71, respectively (52). Cai et al. used 8 immunogenic cell

death related models to construct a risk model with an AUC value of

0.75 (53). Ren et al. constructed a risk model using three CCNB2-

associated lncRNAs (54). The areas under the total survival ROC

curve of stage 1, 3 and 5 were 0.704, 0.702 and 0.741, respectively (54).

In this study, we identified two CRDELs independently associated

with KIRC OS (LINC02609 and SNHG17) and used them to

construct a risk model with an AUC value of 0.70. While the AUC

of our model is not the highest, we use relatively few biomarkers. In

addition, it is very important that we also carry out validation studies

on the model in other independent samples. The AUC value of risk

model in the independent sample model is 0.60. Due to the small
FIGURE 6

Enrichment analysis based on RNA-seq data by suppressed LINC02609. (a) Volcano map of Differentially genes between CTRL and siRNA1. (b)
Volcano map of Differentially genes between CTRL and siRNA2. (c) Bubble plots of the top 10 significantly enriched signal pathways based on the
DEGs between CTRL and siRNA1. (d) Bubble plots of the top 10 significantly enriched signal pathways based on the DEGs between CTRL and
siRNA2. (e) The map of the significantly enriched common signal pathways based on the DEGs between CTRL and siRNA1. (f) The map of the
significantly enriched common signal pathways based on the DEGs between CTRL and siRNA2. (g) Differentially expressed genes enriched in the
MAPK signaling pathway on the DEGs between CTRL and siRNA1. (h) Differentially expressed genes enriched in the MAPK signaling pathway on the
DEGs between CTRL and siRNA2.
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sample size of other independent samples used in this study. Further

sample expansion studies are necessary. Nevertheless, our study

further suggests that LINC02609 and SNHG17 may serve as

prognostic biomarkers for KIRC (55–58).

SNHG17 is a widely expressed lncRNA in a variety of cancers.

Previous studies have found that the expression of SNHG17 is up-

regulated in ovarian, gastric, lung, prostate and other cancers (59–62).

SNHG17 may promote the development of cancer through various

molecular mechanisms, such as up-regulating FOXA1, sponging

miR-328-3p, targeting microRNA-375-3p, inhibiting P15 and P16

(45, 59, 63, 64). At present, there are few researches on the role of

LINC02609. Xiao et al. found that LncRNA LINC02609 up-regulates

the expression of APOL1 in KIRC via sponge miR-149-5p (43). The

expression of APOL1 gene inhibited tumor formation, proliferation,

metastasis and xenograft tumor formation (43). These results

suggested that LINC02609 may be carcinogenic. However, it is a

great pity that the authors do not report specific data. In this study,
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we found that the expression of LINC02609 was significantly

elevated. High expression of LINC02609 was significantly

associated with poor prognosis of KIRC. Our findings also suggest

that LINC02609 may play a role in promoting kidney cancer.

Therefore, we conducted a functional study of LINC02609 in vitro.

We found for the first time that inhibition of LNC02609 significantly

reduced the proliferation, migration and invasion of renal

carcinoma cells.

The tumor immune microenvironment consists of tumor cells,

invasive immune cells, stromal cells and cytokines. Invasive

immune cells play an important role in tumor genesis,

development and anti-cancer immune regulation, and are a

promising therapeutic target. In this study, we found significant

differences in immune status between high- and low-risk patients

and significant correlation with immunotherapy response-related

signatures, further suggesting that cuproptosis may be related to

immunotherapy (65, 66). However, it needs to be emphasized that
FIGURE 7

The effect of interfering with LINC02609 was reversed by the MAPK agonist. (a, b) Western blot analysis showing that interfering with LINC02609
inhibited the activation of MAPK as measured by the phosphorylation level of ERK. (c, d) Western blot analysis showed that interference with
LINC02609 could inhibit ERK phosphorylation, which could be reversed by MAPK agonists. (e) CCK8 analysis showed that the inhibitory level of cell
proliferation by LINC02609 was reversed by the MAPK agonist (n=3). (f, g), Migration analysis showed that the MAPK agonist reversed the inhibitory
level of LINC02609 on cell proliferation (n=3). The magnification of the picture is 40×. (h, i), Invasion analysis showed that the MAPK agonist
reversed the inhibitory level of LINC02609 on cell proliferation (n=3). The magnification of the picture is 100×. *P<0.05. **P<0.01. ***P<0.001. NS,
no significance.
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we found that the TIDE score and the Exclusion score are

consistent. The TIDE score is calculated by integrating the

Exclusion score and the Dysfunction score. If the Dysfunction

score of a certain sample is negative (that is, the immune

function is not significantly imbalanced), the TIDE score will be

directly equal to the Exclusion score. Therefore, we retrospectively

tested the immunotherapy response data and found that there was

indeed a phenomenon where the Dysfunction score of some KIRC

patients was negative. But why are the TIDE scores and Exclusion

scores of other KIRC patients the same? Although KIRC is usually

dominated by T-cell infiltration and Dysfunction, certain specific

subtypes (such as highly fibrotic tumors) may mediate immune

Exclusion through the stromal barrier. This leads to the TIDE score

being dominated by the Exclusion mechanism (67–70). Therefore,

we retrospectively analyzed the fibroblast activation marker

COL1A1 and found that COL1A1 was indeed significantly highly

expressed, which supported the above hypothesis (71, 72). The

calculation of TIDE score relies on the preset gene set and

standardized methods, and the universality of the results needs to

be cross-verified in other algorithms. Overall, this study reports the

consistency phenomenon between TIDE score and Exclusion score

in KIRC, suggesting that it may reflect a unique type of immune

escape. In the future, multi-omics data and clinical intervention

trials need to be combined to reveal the biological basis and

therapeutic significance of this phenomenon. If some KIRC are

indeed dominated by immune Exclusion, traditional immune

checkpoint inhibitors (such as anti-PD-1) may have limited

efficacy, and drugs targeting the stromal barrier (such as anti-

TGF-b or anti-CTGF) need to be combined to enhance T cell

infiltration (73, 74). Furthermore, the oncoPredict algorithm

showed that the sensitivity of six drugs was associated with risk

model. The effectiveness of these drugs in other cancers indicates

that they may be regarded as a treatment for kidney cancer, and

further confirms that copper nephropathy is related to the

sensitivity to chemotherapy drugs (75).

Our research results reveal the key carcinogenic role of

LINC02609 in the progression of KIRC, mediated by its

regulatory effect on the MAPK signaling pathway. Silencing

LINC02609 can significantly weaken the activation of the MAPK

pathway, as evidenced by the decreased phosphorylation of ERK1/2,

which is associated with the reduced proliferation, migration and

invasion abilities of KIRC cells. It is worth noting that the

application of MAPK agonists effectively rescued these

phenotypic changes, confirming that LINC02609-driven

malignant tumors are mechanistically dependent on MAPK

signaling. This is consistent with the established role of overactive

MAPK signaling in promoting tumorigenesis in various cancer

types, including KIRC, by facilitating cell cycle progression,

epithelial-mesenchymal transition (EMT), and extracellular

matrix remodeling (76).

Although our research suggests that LINC026089 achieves its

carcinogenic effect through the MAPK signaling pathway. But there

are also some shortcomings in our research. The exact mechanism

by which LINC02609 regulates the MAPK signal remains to be

further studied. As a long non-coding RNA (lncRNA), LINC02609
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may act as a molecular scaffold or chromatin remodeler to promote

the assembly of the MAPK signaling complex. For example, it is

known that lncRNAs such as MALAT1 and HOTAIR can interact

with components of the MAPK pathway (such as Raf kinase or

ERK), or regulate the transcription of the upstream receptor

tyrosine kinase of MAPK (77, 78). Therefore, how inhibiting

LINC02609 achieves the inhibition of the MAPK signaling

pathway is highly worthy of subsequent research.

Clinically, targeting LINC02609 is a promising therapeutic

strategy for KIRC, especially considering the limitations of

directly using MAPK inhibitors to treat this malignant tumor.

Although MAPK-targeted therapies (such as MEK inhibitors)

have shown efficacy in melanoma and lung cancer, their

application in KIRC is hindered by compensatory feedback loops

and dose-limiting toxicity (76). In contrast, silencing LINC02609

can weaken the MAPK signal of the proximal node, potentially

bypassing the resistance mechanism. However, there are still some

challenges. Firstly, the tissue specificity and off-target effects of

LINC02609 targeting need to be strictly evaluated in preclinical

models. Secondly, in the KIRC patient cohort, the correlations

between the expression level of LINC02609, MAPK activity and

clinical outcomes need to be verified. Finally, identifying small

molecule inhibitors that can selectively inhibit LINC02609 or RNA-

based therapies will be crucial for translation applications.
Conclusion

In this study, we found that LINC02609 and SNHG17 were

significantly elevated in patients with KIRC and were

independently associated with the survival status of KIRC. The

risk model based on LINC02609 and SNHG17 can predict

prognosis well and guide the selection of clinical treatment

regimens. In vitro experiments have shown that the inhibitory

effect of interfering with LINC02609 on renal cell carcinoma is

reversed by MAPK agonists, suggesting that LINC02609 may

achieve its pro-cancer effect through the MAPK signaling

pathway. Although the risk model was verified by another

external independent sample, due to the small sample size of the

external independent sample, the risk model still needs further

verification. Although the function of LINC02609 has been

verified in vitro, further in vivo verification studies are still needed.
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