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Transcriptional profiling reveals
H.pylori-associated genes
induced inflammatory cell
infiltration and chemoresistance
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Background: H. pylori infection is closely associated with the tumor

microenvironment (TME) in gastric cancer (GC), yet its underlying mechanism

is elusive. Hence, it is imperative to explore the microenvironment and drug

resistance arising from H. pylori to enhance therapeutic strategies for GC.

Methods: Employing transcriptional bioinformatics, we computed a H. pylori-

associated prognostic index (HPI) using datasets from TCGA and GSE62254

containing ACSM5 and HSPB2 gene expression. We assessed IC50 values for

anticancer drugs and immune cell infiltration to evaluate the therapeutics and

TME based on the HPI. Further, we validated the transcriptional profiling findings

by examining drug sensitivity transfected with siACSM5 and siHSPB2 and

analyzing scRNA-seq data and clinical patient samples.

Results: ACSM5 and HSPB2 were identified as correlates of H. pylori infection in

GC. Significantly, we established the H. pylori-associated prognostic index (HPI)

and found that a high HPI was linked with a worse prognosis. Classification based

on the HPI indicated an enhanced infiltration of tumor microenvironment cells

and resistance to anti-tumor drugs.
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Conclusion: The HPI, reflecting newly identified and complementary biomarkers,

correlated with the TME and could accurately project chemoresistance and an

altered immune cell distribution in GC patients, thus providing clinical guidance

on therapeutic interventions.
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Introduction

Gastric cancer (GC) ranks among the most prevalent cancers

and is a leading cause of cancer-related mortality globally (1). Most

patients are already in the advanced stage of GC when they are first

diagnosed, which leads to a poor prognosis (2). Helicobacter pylori

(H. pylori), the main environmental contributor to GC, is

implicated in nearly 90% of its newly diagnosed cases (2, 3). H.

pylori invades the host gastric mucosa, causing epithelial damage

and heightening GC risk through mechanisms involving flagella,

adhesin, and cytotoxins (VacA and CagA) (4). During GC

progression post-H. pylori infection, tumor cells interplay with a

complex and dynamic tumor microenvironment (TME) (5), mainly

including tumor cells, immune and stromal cells, tumor vasculature

and metabolic byproducts (6). The TME implicated cancer

metabolism, angiogenesis, metastasis and chemoresistance, and

notably influences immunomodulatory interactions (7).

Recent focus on H. pylori’s impact in the TME has spanned

DNA damage, oncogenic signaling, and immune regulation. Studies

have unearthed that H. pylori infection triggers significant

inflammation, leading to cellular hypoxia and metabolic

disruption associated with the TME (8). Inflammatory cells in the

gastric mucosa post-infection, such as macrophages and

neutrophils, producing an excess of reactive oxygen species and

DNA damage (9). P53 mutations, a pivotal TME regulator that

promotes angiogenesis via fibroblast activation and VEGF secretion

(10, 11). Furthermore,H. pylori activates HIF-1a through the PI3K/

AKT/mTOR pathway to foster inflammatory factor production,

cancer cell invasion, and alter traditional radiotherapy and

chemotherapy responses (12).

Despite insights into H. pylori’s influence on the TME, the

correlation between H. pylori infection status and GC patient

prognosis remains unclear. Therefore, to reveal the role of H.

pylori infection in the progression and outcome of GC patients,

our study utilized bioinformatics to flag potential TME-related

differentially expressed genes (DEGs) in H. pylori-positive GC

and compute the H. pylori-associated prognostic index (HPI).

The HPI-based assessment revealed potential contributions of

drug resistance and immune infiltration in H. pylori-infected GC

to adverse prognoses.
02
Materials and methods

Data collection

We sourced raw RNA-seq data (FPKM normalized) and patient

follow-up information from stomach adenocarcinoma (STAD)

dataset in The Cancer Genome Atlas (TCGA) (n=348) (https://

www.cancer.gov/) and RMA-normalized microarray gene

expression data of GSE62254 (n=300) from GEO (https://

www.ncbi.nlm.nih.gov/geo/).

The processed expression matrices of scRNAseq were download

from OMIX001073 (13) (https://ngdc.cncb.ac.cn/omix/release/

OMIX001073). Three H. pylori negative cases and three positive

cases were included in this study. Seurat package (version 4.0) was

used for cell normalization and regression to obtain the scaled data.

Harmony is used to integrate data. PCA was constructed to identify

high variable genes based on the scaled data and top 15 principals

were used for tSNE construction. we calculated the cluster marker

genes by FindAllMarkers function with wilcox rank. And the

clusters of same cell type were selected for re-tSNE analysis

and annotation.
Analysis of TME scores

We employed the “estimate” R package (14) for immune/

stromal/estimate scoring. The optimal cutoff point was calculated

and the Kaplan–Meier survival curves were plotted via the

“survminer” package. Pearson method was used to assess

correlations between H. pylori infection status and TME scores.
Weighted gene co-expression network
analysis and differentially expressed gene
analysis

WGCNA (15) helped identify co-expressed gene modules

related to H. pylori infection and immune/stromal/estimate

scores. The analysis, including functions for network

construction, module detection, gene selection, calculations of
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topological properties, data simulation and visualization was based

on the “WCGNA” R package. DEG between groups were identified

through Wilcoxon test. Results from DEG analysis and WGCNA

formed the input for LASSO-penalized Cox regression analysis.
LASSO-penalized Cox regression analysis
and development H. pylori-associated
prognostic index development

LASSO-penalized Cox regression analysis is based on the penalty

method for variable selection of sample data. By compressing the

original coefficients, the small coefficients are compressed to 0, thus

directly discarding unimportant variables (16). Analysis facilitated the

elimination of lesser impactful genes, allowing us to compute a

prognostic risk value based on the remaining DEGs and construct

the H. pylori-associated prognostic index (HPI) as follows: HPI

=∑bi*Expi, with bi being each gene’s coefficient, and Expi is gene

expression value. The function and performance of the model,

including the determination of the best cutoff value and Kaplan–

Meier survival analysis, was utilized by the “survminer” package.
Prediction of TME signatures and
therapeutic sensitivity

The immune cell and stromal cell infiltrating levels were

assessed using the “CIBERSORT” (17), “EPIC”, “TIMER” (18)

and “XCELL” (19) algorithms in R. Additionally, HPI’s predictive

capability for chemotherapy/targeted therapy response. was

examined by determining the 50% inhibitory concentration

(IC50) value with the “pRRophetic” algorithm (20).
Sample collection

Gastric tumor tissues with or without H.pylori infection(n = 10,

respectively) were collected during surgical resection at the

Affiliated Zhongshan Hospital of Xiamen University (Fujian

Province, China) between 2022 and 2023. This study was

approved by the Ethics Review Committee of the Affiliated

Zhongshan Hospital of Xiamen University(xmzsyyky-2022-160).
Cell lines and culture conditions

In this study, the GC cell lines HGC-27 and MKN45 were

purchased from Cobioer Biotechnology Company (Jiangsu, China).

They were both maintained in RPMI 1640 (Procell, China)

supplemented with 10% fetal bovine serum (Gibco, USA) at 37°C

in a humid environment containing 5% CO2 and 95% air.
Cell viability assessment and drug
sensitivity assessment

To assess the cytotoxic effects of 5-fluorouracil and paclitaxel,

vector-, siHSPB2- and siACSM5-transfected HGC-27 and MKN45
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cells were exposed to 5-Fu (50 mM) and PTX (2.5 nM) for 24 h.

Next, CCK-8 reagent (10 ml/well) (Topscience, China) was added and

incubated for an additional 2 h at 37°C. The absorbance was detected at

450 nm in a Bio-Rad microplate reader (Bio-Rad, CA, USA).
Immunohistochemistry

Tissue microarrays were obtained from Shanghai OUTDO

Biotechnology Co., Ltd. (HStmA180Su30, Shanghai, China). The

studies were conducted in accordance with the International Ethical

Guidelines for Biomedical Research Involving Human Subjects

(CIOMS), and the research protocols were approved by the Ethics

Review Committee of the Affiliated Zhongshan Hospital of Xiamen

University (xmzsyyky-2022-160). After deparaffinization and

rehydration, gastric enzyme (Maxim, DIG-3009, Fujian, China) was

used to repair antigens. Then, the Ultrasensitive SP kit (KIT-9730,

Maxim, Fujian, China) was utilized to block endogenous peroxidase

activity in the tissue microarray for subsequent immunohistochemistry

analysis. The following antibodies were applied at 4°C overnight: anti-

ACSM5 (1:4000, Proteintech, 67334–1-lg, Hubei, China) and anti-

HSPB2 (1:500, Proteintech, 21755–1-AP, Hubei, China). Later, the

secondary antibody in the Ultrasensitive SP kit was utilized. An

enhanced DAB chromogenic kit (Maxim, DAB-2032, Fujian, China)

was employed to complete the detection. Finally, hematoxylin and

eosin staining were performed on the tissue microarray, and the

samples were mounted and observed under a microscope.

Immunofluorescence

According to the manufacturer’s instructions, gastric enzyme

(Maxim, DIG-3009, Fuzhou, China) was used for antigen repair,

similar to the protocol for IHC. The Ultrasensitive SP kit (Maxim,

KIT-9730, Fujian, China) was employed to restore endogenous

peroxidase activity for immunofluorescence experiments. The

following antibodies were applied at 4°C overnight: CD80 (1:250,

ab270113, Abcam, Cambridge, USA) and iNOS (1:200, ab3523,

Abcam, Cambridge, USA). The corresponding secondary antibodies

with fluorescence were applied next: goat anti-rabbit IgG (1:1000,

ab150077, Abcam, Cambridge, USA). After three washes with PBS,

the slices were stained with DAPI to detect nuclei (1:1000, F6057,

Sigma–Aldrich) and visualized with confocal Microscope.

siRNA and transfection

The Specific siRNAs against human HSPB2 and ACSM5 were

purchased from the Public Protein/Plasmid Library (Nanjing, China).

They were transfected into cells by utilizing Lipofectamine 3000

Reagent (Invitrogen) according to the directions. The transfection

efficiency was examined by western blotting after 48 h of transfection.

Western blotting

The HGC-27 and MKN45 GC cell lines were harvested and lysed

at 4°C. Quantitative analysis of protein was performed with the Pierce
frontiersin.org
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BCA Protein Assay kit (23227, Thermo Scientific, Shanghai China).

Proteins were separated by SDS–PAGE, and the following primary

antibodies and secondary antibodies were applied based on the

instructions: ACSM5 (1:500, 67334–1-lg, Proteintech, Hubei, China),

HSPB2 (1:500, 21755–1-AP, Proteintech, Hubei, China), b-actin
(1:1000, Cat#3700, CST, USA), anti-mouse secondary antibodies

(1:1000, 1706516, Bio-Rad, Hercules, CA) and anti-rabbit secondary

antibody (1:1000, ab150077, Abcam, Cambridge, USA). Enhanced

chemiluminescence (Bio-Rad, USA) was utilized for detection.
Flow cytometry

The tumor tissues and adjacent normal tissues were cut into

small pieces of approximately 1 mm3 and digested with trypsin-

EDTA solution (2122153, BI, Israel) for 10 mins at 37°C. The

digestion was subsequently terminated with Hank’s buffer

(1803241, Procell, China). Then, the digested tissues were

incubated for 1 h at 37°C in Hank’s buffer containing type IV

collagenase (2357210, Gibco, USA), hyaluronidase (37326-33-3,

Sigma-Aldrich, USA) and dispase (2309419, Gibco, USA). The

dissociated cell suspensions were ground and filtered through an

80 mm cell filter (22131209, Biosharp, China), and red cells were

lysed with ACK lysis buffer (R1010, Solarbio, China) to obtain a

single cell suspension. The cells were stained with anti-human CD45

(1:200, 2317050, clone H130, Invitrogen, USA), anti-human CD11b

(1:200, 2191966, clone ICRF44, Invitrogen, USA), anti-human

CD15 (1:200, 301904, clone H198, Biolegend, USA), anti-human

CD16 (1:200, 302012, clone 3G8, Biolegend, USA), anti-

human CD273 (1:200, 316718, clone 5G8, Biolegend, USA), and

anti-human siglec 8 (1:200, 347104, clone 7C9, Biolegend, USA)

antibodies and fixable viability dye (1:200, 2365395, Invitrogen,

USA) cocktails for 30 min. The stained cells were analyzed by the

Fortessa-X20 (BD).

To evaluate drug sensitivity, the vector, siHSPB2 and siACSM5 cell

lines of HGC-27 and MKN45 cells were exposed to 5-fluorouracil (50

mM) and Paclitaxel (2.5 nM) for 24 h. Next, the cells were digested with

trypsin-EDTA solution for 2 min at 37°C. Harvested cells were stained

with the Annexin V/PI apoptosis detection kit (BD Pharmingen, USA)

for 10 min at room temperature in the dark according to the

manufacturer’s protocols and then measured on the CytoFlex S (BD,

USA). Three replicate experiments were performed to analyze

apoptosis levels.
Statistical analysis

For bioinformatic analysis, R software (version 4.0.4) was utilized.

Correlation coefficients with absolute values greater than 0.2 and/or p<

0.05 were deemed to indicate statistical significance. For external

experimental verifications, Wilcoxon test was utilized to assess the

significance of the differences between different groups. GraphPad

Prism 8.0.1 software was employed for statistical analysis.
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Results

Comparison of TME scores between H.
pylori positive and negative GC patients

H. pylori infection is a well-known driver of alterations in the

tumor microenvironment, precipitating chronic inflammation in

gastric cancer (21, 22). Microenvironment cell infiltration can be

assessed according to the expression levels of relevant molecules in

immune and stromal cells, and this approach is widely used to predict

changes in the TME (23, 24). To assess whether TME composition

differs in patients with vs. without H. pylori infection, we evaluated the

TME scores, including stromal, immune, and estimate scores), using

the “estimate” R package across 348 GC samples in the TCGA

database. Tumor stromal scores ranged from -1856.53 to 2051.31,

immune scores from -1049.88 to 3136.08, and ESTIMATE scores from

-2460.62 to 4888.88. TME scores showed significantly distributional

disparities between the H. pylori+ and H. pylori- GC patients

(Supplementary Figure 1A). Notably, H. pylori+ patients exhibited

higher TME scores than their H. pylori- counterparts, suggesting an

intricate microenvironment in H. pylori+ subgroup. Subsequent

analysis revealed that patients with elevated stromal scores

experienced poorer outcomes (p=0.009, Supplementary Figure 1B).

Despite the lack of survival differences between the immune score and

the estimate score groups (Supplementary Figures 1C, D), higher scores

in these categories tend to correlate with poorer prognosis.
Identification of DEGs related to H. pylori
infection in the GC TME

We further probed the TME score’s relationship with clinical

characteristics, particularly H. pylori infection status, applying

weighted gene co-expression network analysis (WGCNA). The

optimal soft threshold of WGCNA was determined as 6

(Supplementary Figure 2A). We identified gene sets associated with

pink, turquoise, yellow, and gray modules based on TME score

correlations with H. pylori infection status (Figure 1A). Correlation

analyses indicated these integrated modules had robust positive links

with TME scores and H. pylori infection status (Figure 1B,

Supplementary Figure 2B). In detail, the pink and turquoise modules

were positively correlated, whereas yellow and gray modules showed

negative associations with TME scores and H. pylori infection status

(Figure 1C, Supplementary Figure 2C). When crossing DEGs from

WGCNA, TCGA, and TME scores, we then singled out 20 genes

indicative of their collective relevance to TME scores and H. pylori

infection status (Figure 2A). Following LASSO Cox regression analysis,

heat shock protein B2 (HSPB2) and acyl-CoA synthetase medium-

chain family member 5 (ACSM5) were identified as the most

significant genes associated with tumor microenvironment (TME)

alterations and Helicobacter pylori infection. These genes were

selected based on their coefficients corresponding to the minimal

lambda value in the LASSO model, with HSPB2 and ACSM5

exhibiting values of 0.1874 and 0.2132, respectively (Figure 2B).
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Establishment and validation of a
prognostic index for TME and H. pylori
infection

To reveal the relationship of ACSM5 and HSPB2 with the

prognosis of GC patients, a TME based prognostic index was

developed with the following formula: HPI = 0.1874*ACSM5 +
Frontiers in Immunology 05
0.2132*HSPB2. This index stratifies GC patients into high- and low-

HPI groups based on an optimal cutoff value of 1.077131. We observed

that H. pylori-infected patients, exhibiting higher ACSM5 and HSPB2

expression (Figure 2F, Supplementary Figure 3), faced inferior overall

survival (OS) outcomes (Figures 2C, D). Moreover, patients in the

high-HPI group presented with poorer OS (Figure 2E). Assessing the

HPI’s relationship with clinical attributes, we revealed that patients
FIGURE 1

Identification of the H. pylori-associated TME module. (A) WGCNA to screen the significant gene modules associated with the TME and H. pylori
infection. The gray, pink, turquoise and yellow modules were finally selected. (B) Correlation between significant module membership and stromal
scores and H. pylori infection. (C) Correlation between the single significant module membership (gray, pink, turquoise and yellow module) and
stromal scores and H. pylori infection.
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afflicted with H. pylori infection, alongside higher T grades or stages,

had a dismal prognosis (Supplementary Figure 3), reinforcing theHPI’s

utility in outcome prediction. We then corroborated the efficacy and

universality of the HPI through univariate and multivariate Cox
Frontiers in Immunology 06
regression analyses highlighting the HPI as a robust, independent

prognostic factor in forecasting OS (Supplementary Figure 4). These

results solidified both individual genes and the composite HPI as

accurate prognosticators of GC patient outcomes.
FIGURE 2

Development of the H. pylori-associated index and validation of its prognostic value. (A) Venn diagram shows the intersection of DEGs between the
TME score, significant gene modules of WGCNA analysis and H. pylori infection groups in the TCGA. (B) LASSO analysis for identifying the most
important genes. The minimal lambda value of HSPB2 is 0.1874 and ACSM5 is 0.2132. (C) Overall survival of ACSM5 expression groups in the TCGA
and GSE62254 datasets. (D) Overall survival of the HSPB2 expression groups in the TCGA and GSE62254 datasets. (E) Overall survival of the low and
high HPI groups in the TCGA and GSE62254 datasets. (F) Immunohistochemical staining of ACSM5 and HSPB2 on HP negative and positive patients.
ns, not significant; *P < 0.05; **P < 0.01.
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The H. pylori-associated prognostic index
predicts therapeutic effects

Chemotherapy remains a crucial component in extending the

survival of gastric cancer patients. Whether H. pylori infection affects

the chemotherapy response of patients has yet to be fully understood.

Here, we computed IC50 values for several commonly anticancer drugs

based on the HPI (Figure 3A). We revealed that patients with lower

HPIs were more responsive to numerous anticancer agents, including

5-fluorouracil, docetaxel, doxorubicin, etoposide, gefitinib, paclitaxel

and vinorelbine, implying that patients with low HPIs may achieve

better chemotherapy outcomes than those with high HPIs. The high-

HPI group showed less efficacy to 5-fluorouracil and paclitaxel, the

commonly used drugs for gastric cancer treatment (Figure 3B).

Given that the HPI is contingent upon ACSM5 and HSPB2

expression, and we previously found drug resistance in the high-

HPI group, we also noticed that a positive association between these

genes’ expression and resistance to key therapies like 5-fluorouracil

and paclitaxel (Figure 3C). We subsequently verified the efficacy of

siRNA with western blotting experiments and selected the best

siRNA for subsequent drug sensitivity experiments in HGC-27 and

MKN45 cells (Figure 3D). Compared with controls, cells transfected

with siRNA demonstrated heightened sensitivity to therapeutic

agents and increased rates of apoptosis (Figures 3E, F), signifying

that silencing HSPB2 and ACSM5 augmented drug susceptibility.

The results implied that H. pylori infection-associated genes not

only affect the efficacy of conventional chemotherapy agents but

also contribute to suboptimal patient outcomes.
The H. pylori-associated prognostic index
was related to immune cell infiltration

Tumor microenvironment remodeling can induce chemotherapy

response and confer drug resistance in gastric cancer patients (25).

Confirming this, we found the HPI satisfyingly correlated with higher

TME scores (Figure 4A). Human leukocyte antigens (HLAs), an

independent factor for tumor-associated antigen presentation, play a

critical role in the antitumor immune response and neoplastic tumor

progression (26). Immune checkpoints, as regulators of T cells, can

reflect T cell exhaustion in the TME (27). We assessed the expression

of 24 HLA family genes and 48 immune checkpoint genes across

patient specimens, revealing that 18 HLA family genes and 37

immune checkpoint genes were upregulated in the high-HPI

subgroup (Supplementary Figure 5). Classic T cell exhaustion

markers, including PD-1, CTLA-4, TIM-3, TIGHT, BTLA, and

LAG3, were found at elevated levels in the high-HPI group,

implicating their role in the exacerbated clinical outcomes

associated with H. pylori infection.

To validate the main cell infiltration involved, we estimated the

infiltration levels using various algorithms (TIMER, EPIC,

CIBERSORT and xCell). There was a clear differential expression

among stromal cells, notably cancer associated fibroblast (CAFs),
Frontiers in Immunology 07
endothelial cells, and epithelial components (Figure 4B). The high-

HPI group exhibited increased infiltration of CAFs and endothelial

cells in comparison to epithelial cells. Furthermore, adaptive

immune T cell subsets, B cell and innate immune cells like M0

and M1 macrophages, alongside eosinophils, were enriched in the

high-HPI cohort (Figure 4C).
Myeloid immune cell infiltration in H. pylori
infected gastric cancer

Reaffirming previous findings, we reanalyzed single-cell profiles

from selected HP-negative and positive samples. t-Stochastic Neighbor

Embedding (tSNE) discerned nine cellular clusters, including T and

NK cells, B cells, plasma cells, myeloid cells, mast cells, endothelial cells,

fibroblast cells, epithelial cells, and endocrine cells (Figures 5A–C). In

addition, we compared the cell distribution based on the H. pylori

infected status. The distribution of myeloid and mast cells markedly

varied based on H. pylori status (Figures 5D, E), profound

heterogeneity in H. pylori-infected gastric cancer.

Given that the myeloid composition was profoundly altered in

HP infected tumors, we identified 4 myeloid subpopulations:

monocytes, macrophages, monocytes derived dendritic cells and

plasmacytoid dendritic cells (pDC) (Figures 6A–C). Monocytes and

macrophages dominated in H. pylori-infected samples (Figure 6D),

with monocytes predominantly expressing APOBEC3A and

THBS1, while macrophages were characterized by CD80 and

SPP1 (Figure 6E). Consistent with studies linking alterations in B-

cell, LAG3-expressing T-cell, dendritic cell and macrophage (TAM)

infiltration with chemotherapy insensitivity (21, 26, 28), we found

increased macrophage infiltration in H. pylori+ GC specimens

(Figure 6F). H. pylori infection been documented to induce

eosinophil accumulation (29), implicated in gastritis in murine

models (30). Despite the focus on eosinophils in allergic

conditions, their role in cancer remains underexplored. We

verified their heightened presence in H. pylori-infected GC

specimens (Figure 6G). These findings underscored the variance

in TME components and their contribution to the more severe

pathology in H. pylori-infected GC patients.
Discussion

H. pylori infection is recognized as the primary risk factor

implicated in the etiology of gastric cancer, where it disrupts cellular

signaling and engenders chronic inflammation of the gastric mucosa,

thereby remodeling the local microenvironment (2). In this study, we

first reported that TME scores are elevated in H. pylori+ GC patients,

correlating with poorer clinical outcomes. We developed the

Helicobacter pylori Prognostic Index (HPI) to evaluate its influence

on TME complexity in GC and demonstrated its prognostic

significance. Unlike previous models, our index uniquely integrates

H. pylori-associated gene expression with TME-related features,
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thereby combining microbial infection status with immune infiltration

signatures. This dual-layered approach offers a novel prognostic tool

that simultaneously captures microbial and immunological dynamics

in GC. Furthermore, our findings indicate thatH. pylori infection alters
Frontiers in Immunology 08
the composition of immune and stromal cell populations within the

TME, which may contribute to the development of chemoresistance.

Drug therapy remains a cornerstone in the treatment of GC. In this

study, we first observed elevated expression levels of ACSM5 and
FIGURE 3

H. pylori infection induces drug resistance based on the HPI. (A) Comparison of the distribution of IC50 values for common chemotherapy drugs
between the low- and high-HPI groups. (B) Association between the HPI and predicted IC50 values of 5-fluorouracil and paclitaxel. (C) Relationship
of the expression of ACSM5 and HSPB2 with the predicted IC50 values of 5-fluorouracil and paclitaxel. (D) Western blotting was used to verify the
gene knockout efficiency of ACSM5 and HSPB2 siRNA in HGC-27 and MKN45 gastric cancer cell lines. (E) Cell viability assessment after siACSM5 and
HSPB2 in HGC-27 and MKN45 gastric cancer cell lines treated with 5-fluorouracil and paclitaxel. (F) Apoptosis rate detection after siACSM5 and
HSPB2 in HGC-27 and MKN45 gastric cancer cell lines treated with 5-fluorouracil and paclitaxel. The Wilcoxon test was used to calculate the
significant difference between two groups. ns, not significant; *P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001.
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HSPB2 in Helicobacter pylori-positive GC patients compared to those

without the infection. The expression of ACSM5 has been previously

linked to tumor aggressiveness and poor prognosis (31), and its role in

fatty acid metabolism suggests it may contribute to tumor energy

homeostasis and survival (32). In parallel, HSPB2 overexpression has
Frontiers in Immunology 09
been implicated in the inhibition of apoptosis by suppressing the

extrinsic apoptotic pathway-specifically through inhibition of apical

caspase-8 and -10 activation-thus preventing Bid cleavage and

subsequent caspase-3 activation, conferring resistance to TRAIL- and

TNF-a-induced apoptosis (33). Together, these findings suggest that
FIGURE 4

Correlation between TME features and H. pylori infection. (A) Relationship of TME scores and tumor purity with HPI. (B) Heatmap of marker expression for
tumor microenvironment-associated cells in the different HPI groups. The TME scores, tumor purity and H. pylori infection status are also illustrated under
the heatmap. (C) Association between the HPI and the infiltration of macrophages/eosinophils predicted by CIBERSORT and the xCell algorithm. The
Wilcoxon test was used to assess the significance of differences between two groups. *P < 0.05; **P < 0.01; ***P < 0.001, ****P < 0.0001.
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ACSM5 and HSPB2 may serve as prognostic biomarkers and potential

therapeutic targets in GC. Consistently, our functional experiments

demonstrated that silencing ACSM5 and HSPB2 increased the

sensitivity of GC cells to standard chemotherapeutic agents, further

supporting their involvement in drug resistance mechanisms.

Moreover, we detected the upregulation of ACSM5 and HSPB2 in

H. pylori+ GC patients, underscoring the need for tailored therapeutic

strategies for H. pylori-infected GC patients based on ACSM5 and
Frontiers in Immunology 10
HSPB2 expression levels. In addition, the prognosis and

immunotherapy outcome of patients with H. pylori infection is

controversial (34–37), implying an intricate microenvironmental

components warrants further investigation.

H. pylori infection plays a pivotal role in reshaping the TME of

GC, fostering dynamic interactions among diverse stromal and

immune cell populations. Notably, patients with a high HPI

exhibited marked infiltration of CAFs, endothelial cells, and both
FIGURE 5

Profiling the the gastric cancer tumor microenvironment at single-cell level. (A) t-Stochastic Neighbor Embedding (tSNE) of 16653 single cells from
6 patients, allowing the visualization of 9 clusters. (B) Heatmap showing the differentially expressed genes for each cluster. (C) Dot plots showing
marker genes. (D) t-Stochastic Neighbor Embedding (tSNE) of the (H) pylori negative and positive samples. (E) the cell ratio of H. pylori negative and
positive samples.
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FIGURE 6

H. pylori+ samples withe more myeloid immune cell infiltration. (A)t-Stochastic Neighbor Embedding (tSNE) of the reclustered myeloid cells. (B) Dot
plots showing marker genes. (C) Violin plots of each cluster. (D) t-Stochastic Neighbor Embedding (tSNE) of the H. pylori negative and positive
samples in myeloid cells. (E) Violin plots of H. pylori negative and positive samples in myeloid cells. (F) The distribution of macrophages was
evaluated in H. pylori- and H. pylori+ samples by immunofluorescence (n=5, respectively). (G) The gating strategy and the number of eosinophils in
H. pylori- and H. pylori+ samples as determined by flow cytometry (n=10, respectively). The T-test was used to assess the significance of differences
between two groups. *P < 0.05.
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innate and adaptive immune cell subsets. The H. pylori-driven

transition of fibroblasts into CAFs is not only a key event in

promoting tumor invasion and chemoresistance (38–40), but also

contributes significantly to the orchestration of angiogenesis and the

recruitment of immune cells, thereby sustaining chronic

inflammation and tumor progression (41–47). Among the recruited

immune populations, tumor-associated macrophages (TAMs)

emerge as central mediators of immunosuppression within the

gastric TME, particularly in the context of chronic H. pylori-

induced gastritis (21). TAMs secrete a repertoire of cytokines—

including TNF-a, IL-1b, IL-4, IL-10, and IL-13-that collectively

promote tumorigenesis (42) and induce T-cell dysfunction, in part

through the upregulation of immune checkpoint molecules such as

PD-L1 (28, 48). In addition, TAMs facilitate endothelial cell

activation and survival by releasing pro-inflammatory and pro-

angiogenic factors, further supporting neovascularization and

tumor progression (49). Notably, previous studies have

demonstrated that H. pylori CagA-positive strains can activate the

NF-kB signaling pathway and induce the release of pro-inflammatory

cytokines, which may contribute to the polarization of macrophages

toward an M1-like phenotype (46). Eosinophils have also been

reported to increase in H. pylori-infected gastric mucosa (29), and

evidence from murine tumor models suggests that eosinophils

preferentially infiltrate hypoxic regions of tumors (50, 51).

Activated eosinophils are capable of secreting proangiogenic factors

in vitro (52), although their angiogenic functions in vivo remain less

well defined (49). Additionally, eosinophils have been shown to
Frontiers in Immunology 12
promote tumor cell migration and bone metastasis via the CCL6–

CCR1 signaling axis, and inhibition of this pathway significantly

reduces eosinophil-mediated tumor dissemination (53). Moreover,

eosinophil-derived Charcot-Leyden crystal protein/galectin-10 (CLC-

P/Gal10) has been implicated in chemoresistance in mesothelioma,

where elevated expression correlates with poor prognosis;

importantly, anti-eosinophil therapies have been shown to restore

chemosensitivity in preclinical models (54). Collectively, these

findings highlight that tumor-infiltrating myeloid cells-including

macrophages and eosinophils-can secrete CC-chemokine ligands,

receptors, and various cytokines to regulate the tumor

microenvironment and promote angiogenesis (49). In our study,

single-cell RNA sequencing revealed increased infiltration of both

macrophages and eosinophils in patients with high HPI scores, a

trend that was especially prominent in H. pylori-positive gastric

cancer cases. These results suggest that remodeling of the tumor

microenvironment in H. pylori-infected GC contributes to increased

immune cell complexity and may ultimately lead to enhanced

chemoresistance (Figure 7).

This study establishes the HPI as a substantive tool for assessing

the impact of H. pylori infection on the TME in GC and highlights

the potential therapeutic relevance of targeting macrophages and

eosinophils in H. pylori-positive GC. While our findings offer

valuable insights, we acknowledge several limitations. First, the

availability of patient data specifying H. pylori infection status was

limited, which may constrain the generalizability of our

conclusions. Second, the large number of DEGs identified may
FIGURE 7

Schematic diagram of H. pylori induces TME remodeling and chemoresistance in gastric cancer.
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have inadvertently excluded other relevant candidates—such as

TP53, a well-established regulator of the TME (10, 55, 56). We

also acknowledge that the relatively small cohort used for single-cell

RNA sequencing may limit the generalizability of the observed

immune cell distribution patterns. Although our analysis provides

preliminary insight into H. pylori-associated myeloid remodeling at

single-cell resolution, validation in larger, independent patient

cohorts is necessary to substantiate and extend these findings.

Moreover, while we observed a strong association between high

HPI scores and increased infiltration of macrophages and

eosinophils, we did not independently assess the correlation

between individual gene expression levels of HSPB2 or ACSM5

and specific immune cell populations. Future studies will aim to

elucidate the distinct contributions of these genes to immune

remodeling in H. pylori-infected GC. Therefore, further

investigation is warranted to validate the prognostic accuracy and

clinical utility of the HPI in comparison with established

biomarkers , particularly in the context of predicting

immunotherapy response in GC. Our findings underscore the

translational potential of the HPI in refining prognostic

stratification and informing individualized therapeutic strategies

for H. pylori-positive GC patients. These results also reinforce the

broader clinical imperative of H. pylori eradication as part of

comprehensive GC management.

In summary, the HPI, constructed from newly identified and

complementary biomarkers, demonstrates a strong association with

the tumor microenvironment and serves as a robust predictor of

prognosis in gastric cancer patients. Comprehensive analyses of the

immune microenvironment, along with drug resistance profiling and

validation in both clinical samples and cell line models, underscore

the clinical utility of integrating biomarker and immune cell

assessment. These findings suggest that HPI-guided stratification

may enhance the precision of therapeutic strategies and ultimately

improve clinical outcomes in gastric cancer management.
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SUPPLEMENTARY FIGURE 1

TME scores are associated with H. pylori infection status and the outcome of
GC patients. (A) Difference analysis of the distribution of TME scores and

tumor purity inH. pylori- andH. pylori+CG patients. (B) Survival analysis based
on the best cutoff for stromal score. (C) Survival analysis based on the best
cutoff for immune score. (D) Survival analysis based on the best cutoff for

estimate score. (E) Correlation between stromal score and tumor purity
according to “estimate” algorithms. The Wilcoxon test was used to assess

the significance of differences between two groups. ns not significant;
*P < 0.05; **P < 0.01; ***P < 0.001.

SUPPLEMENTARY FIGURE 2

Determination of the soft threshold power and the correlations among

functional modules (A) Function distribution of the scale free fit index (y-
axis, left) and mean connectivity (y-axis, right) with the soft threshold power
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(x-axis). The cutoff value of the scale-free fit index is 0.9 (red line).

(B) Correlation between significant module membership and immune/

estimate score. (C) Correlation between membership in a single significant
module (gray, pink, turquoise and yellow modules) and immune/

estimate scores.

SUPPLEMENTARY FIGURE 3

Comparison of clinical feature distribution in different HPI groups. The
Wilcoxon test was used to assess the significance of differences between

two groups. ns not significant; *P < 0.05; **P < 0.01; ***P < 0.001.

SUPPLEMENTARY FIGURE 4

Assessment of the H. pylori-associated prognosis index. (A, B) Forest plot of
the univariate and multivariate analyses of clinical features and HPI in the

TCGA and GSE62254 datasets. (C, D) Time-dependent receiver operator
characteristic (ROC) value in the TCGA and GSE62254 datasets.

SUPPLEMENTARY FIGURE 5

Comparison of the distribution of HLA family- and immune checkpoint-

associated genes in the low- and high-HPI groups. The Wilcoxon test was
used to assess the significance of differences between two groups. ns not

significant; *P < 0.05; **P < 0.01; ***P < 0.001.
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