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Dietary phosphorus restriction
induced phospholipid deficiency,
endoplasmic reticulum stress,
inflammatory response and
gut microbiota disorders in
Lateolabrax maculatus
Zixiang Wu1,2, Jiarong Guo1,2, Kangle Lu1,2, Kai Song1,2,
Ling Wang1,2, Ruijuan Ma1,2, Chunxiao Zhang1,2

and Xueshan Li1,2*

1State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen, China,
2Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Fisheries College, Jimei
University, Xiamen, China
This study evaluated the effects of low phosphorus on spotted seabass

(Lateolabrax maculatus) from the perspective of phospholipid content and

function, endoplasmic reticulum (ER) stress, inflammatory response and gut

microbiota. Two diets were prepared to contain available phosphorus levels of

0.37% (low-phosphorus, LP) and 0.75% (normal-phosphorus, NP) and feed fish

(3.53 ± 0.34 g) to satiety twice daily for 10 weeks. Compared with fish fed the NP

diet, fish fed the LP diet showed lower body weight gain and higher abdominal fat

percentage. Further studies showed that the LP diet decreased the content of

phospholipid in the serum, liver, and abdominal fat tissue and induced ER stress

and disruption of lipid metabolism in both of the liver and abdominal fat tissue

and inflammatory responses in abdominal fat tissue. Furthermore, compared

with fish fed the NP diet, the LP diet reduced microbial diversity in the gut. In

contrast to fish fed the NP diet, fish fed the LP diet exhibited a decrease in the

abundance of potential metabolically promoted probiotics (e.g., Lactococcus

lactis) and an increase in the abundance of potential pathogenic bacteria (e.g.,

Plesiomonas) in the gut. The results of PICRUSt2 functional prediction also

validated the metabolic disorders occurring in fish fed the LP diet as well as

the reduced metabolic capacity. These results suggested that the LP diet

decreased phospholipid content, induced ER stress and inflammatory

responses then disturbed lipid metabolism and gut microbiota in spotted

seabass. These negative effects contributed to poorer growth and higher

percentage of abdominal fat in spotted seabass fed the LP diet than those of

spotted seabass fed the NP diet.
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1 Introduction

Being indispensable for animal physiology, phosphorus not

only ensures proper bone development and maintenance but also

drives fundamental biological processes including phospholipid

production, genetic material synthesis, cellular communication,

and systemic metabolism regulation (1–4). Teleosts primarily rely

on dietary phosphorus due to limited physiological capacity to

absorb dissolved phosphorus from water (5). The content of

phosphorus in commercial feed is important for both the

environment and economy (6). Phosphorus homeostasis in

aquaculture systems presents critical environmental and

physiological trade-offs. Excessive dietary phosphorus inputs

contribute to aquatic eutrophication through effluent discharge

(7), driving the aquaculture industry toward precision nutrition

strategies. While the formulation of low-phosphorus (LP) feeds has

gained prominence for ecological sustainability, insufficient

phosphorus provision induces multisystemic dysfunction in

aquatic species. Chronic phosphorus deficiency manifests as

growth retardation, and metabolic dysregulation characterized by

adipose tissue accumulation and skeletal mineralization defects (8,

9). As a critical regulatory factor in lipid metabolism, phosphorus

availability modulates adipose deposition patterns in fish (10, 11).

Within intensive aquaculture systems, excessive abdominal fat

accumulation reduces dress-out percentage and compromises feed

conversion efficiency, thereby elevating production costs (12).

Investigating the molecular interplay between phosphorus

deficiency and lipid metabolism not only advances ecological

conservation objectives but also establishes a theoretical

foundation for precision nutritional management in aquaculture

practices. Therefore, the role of phosphorus in various metabolic

processes of organisms is worth investigating, which can contribute

to the development of low-phosphorus feeds and few

phosphorus emissions.

The endoplasmic reticulum (ER) serves as a central hub for

multiple cellular processes, orchestrating calcium ion homeostasis,

lipid metabolic regulation, and the synthesis, post-translational

modification, and intracellular trafficking of proteins (13–15). In

teleost species, phosphorus assumes critical importance in

phospholipid biosynthesis, with the ER serving as the principal

site for phospholipid anabolism. This organelle facilitates the

enzymatic conversion of inorganic phosphorus into structural and

functional phospholipid molecules through coordinated

biochemical pathways (16). Phospholipids are essential

components of the membranes of the ER and must be present in

regular levels to maintain correct ER function (17). Abnormalities

in the composition or fluidity of the ER membrane may

compromise ER function and induce ER stress (18). ER stress can

cause a range of negative effects such as insulin resistance,

disruption of lipid metabolism as well as inflammatory responses

(19–21). Furthermore, the unfolded protein response (UPR)

triggered by ER stress activates caspase-2-mediated NLRP3

inflammasome assembly (22), establishing a molecular bridge

between ER stress and systemic inflammation. However, the
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association involving phosphorus and ER stress should be

investigated further.

The vertebrate gastrointestinal tract constitutes a complex

microbial ecosystem harboring dynamic symbiotic communities

that exert essential influences on host nutritional assimilation and

physiological homeostasis (23, 24). This intricate microbiota-host

interface coordinates metabolic cross-talk through enzymatic

diversification, micronutrient biosynthesis, and immunoregulatory

signaling cascades. Many metabolic illnesses have been linked to

alterations in the gut micro-ecosystem (25, 26). Dietary variables,

such as macronutrients and micronutrients, can alter the

composition and functionality of the gut microbiota (27).

Phosphorus is necessary for both the host animal to maintain the

normal metabolism and for the microbiota colonizing the animal’s

GIT (28). The deficiency of phosphorus can reduce the ratio of

probiotic/pathogenic bacteria (29). Emerging evidence underscores

the critical role of probiotic microbiota in enhancing nutrient

assimilation, preserving intestinal barrier integrity, and

modulating immune responses (30, 31). Conversely, ecological

perturbations within the intestinal microbiota significantly

increase disease susceptibility, manifesting as metabolic

dysregulation, chronic stress responses, and growth impairment

(32, 33). Despite these advances, the mechanistic interplay between

dietary phosphorus availability and microbial community dynamics

remains poorly characterized, particularly in aquatic vertebrates.

The immune system employs both innate and adaptive

mechanisms to maintain physiological homeostasis against

pathogenic challenges (34, 35). Notably, nutritional imbalances can

dysregulate NF-kB and JAK-STAT signaling pathways, compromising

phagocytic activity of macrophages and neutrophil recruitment

efficiency (36, 37). Emerging evidence from recent studies highlights

the critical involvement of phospholipid metabolic homeostasis in

modulating immune system functionality, underscoring its pivotal

regulatory role in immunophysiological processes (38). However, the

association involving phosphorus and ER stress should be investigated

further, particularly regarding how phosphorus deficiency-induced

phospholipid depletion modulates these inflammatory cascades in

aquatic species.

The spotted seabass (Lateolabrax maculatus), a carnivorous

teleost species widely farmed in China, exhibits distinct nutritional

requirements for sustainable aquaculture. Our laboratory

established 0.72% available phosphorus as the optimal dietary

level for freshwater-reared specimens through rigorous dose-

response trials (39). Strategic reduction of dietary phosphorus

content presents a viable approach to mitigate aquaculture-

derived phosphorus emissions, yet requires precise calibration to

avoid compromising fish health and growth performance. However,

the effects of low phosphorus diet on growth, metabolism and gut

microbiota of spotted seabass remain to be studied. The present

study is conducted to investigate the effects of low phosphorus on

spotted seabass from the perspective of phospholipid content and

function, ER stress, lipid metabolism and gut microbiota. This study

also serves as a theoretical reference point for the application of low-

phosphorus feeds and strategies to reduce phosphorus emissions.
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2 Materials and methods

2.1 Animal policy and ethics

The study protocol received ethical approval (2011–58) from

Jimei University’s Animal Ethics Review Board, with all procedures

conducted in strict accordance with established animal

welfare standards.
2.2 Diets and feeding experiment

Diets were formulated to contain either 0.37% available

phosphorus (low-phosphorus, LP) or 0.75% available phosphorus

(normal-phosphorus, NP). The specific composition and

formulation details of these diets are documented in

Supplementary Table S1. The feed preparation was informed by

prior research conducted within our laboratory (40). Utilizing a

recirculating aquaculture system (RAS) at Jimei University, the

feeding trial was conducted in six 200-L fiberglass tanks. Healthy

spotted seabass (Lateolabrax maculatus) with an initial mean body

weight of 3.53 ± 0.34 g were procured from a commercial hatchery

in Zhangzhou, Fujian Province, China. Following a 7-day

acclimation period, 180 fish of uniform size were randomly

allocated to the tanks (30 fish per tank). Fish were fed their

respective experimental diets (LP or NP) to apparent satiation

twice daily (08:00 and 17:00) for 10 weeks. The RAS maintained

optimal water quality through continuous aeration and a 40% daily

water exchange regimen. Key parameters were monitored and

stabilized as follows: temperature 26–27°C, dissolved oxygen >6.5

mg/L, pH 6.9–7.2, and total ammonia nitrogen <0.2 mg/L. Tank

assignments followed a completely randomized design to eliminate

spatial bias.
2.3 Sample collection

After 24 hours of food deprivation, fish weight was measured to

calculate growth metrics. Prior to tissue collection, fish were sedated

with MS-222 anesthetic (60 mg/L solution, Sigma). From each tank,

we obtained blood samples from 12 individuals through tail vein

puncture using 27-gauge needles. These samples clotted overnight

at 4°C before centrifugation (1,283 × g, 10 minutes) to isolate serum

for −80°C storage. Four jejunal samples were pooled per tank for

microbiome analysis, with each specimen immediately flame-

sterilized using an alcohol burner post-collection to mitigate

cross-contamination risks. Liver, intestinal, and abdominal fat

tissues were flash-frozen in liquid nitrogen and archived at −80°C

for subsequent analyses.
2.4 Measures of biochemical parameters

Serum biochemical parameters, including alkaline phosphatase

(ALP) activity, triacylglycerol (TG), phosphorus (P), and calcium
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(Ca) concentrations, were analyzed using commercial diagnostic

kits (Jiancheng Bioengineering Institute, Nanjing, China).

Quantification of phosphoglyceride (PG) and sphingomyelin

(SM) levels in serum, hepatic, and adipose tissues was performed

via enzyme-linked immunosorbent assay (ELISA) kits (Hengyuan

Biotechnology, Shanghai, China). Liver enzymatic activities of

choline phosphotransferase 1 (CHPT1) and ethanolamine

phosphotransferase 1 (EPT1) were assessed using specific ELISA

kits (Meimian Biological Technology, Yancheng, China).
2.5 Real-time quantitative PCR

Liver, jejunum, and abdominal fat tissue samples underwent

triplicate RNA extraction using the established protocol from our

established methodology (41). Subsequently, reverse transcription

quantitative PCR (RT-qPCR) was performed on a QuantStudio 6

Pro system (Applied Biosystems) under optimized conditions: 95°C/

10min initial denaturation, 40 cycles of 95°C/15s, and 60°C/1min.

Primer design specifically targeted conserved regions within the spotted

seabass transcriptome, with all oligonucleotides (Supplementary Table

S2) exhibiting 90-110% amplification efficiency validated through

standard curves (R²>0.99). Gene expression normalization employed

the DDCt algorithm, utilizing b-actin (CV<5% across biological

replicates) as the endogenous control.
2.6 Liver histologic analysis and Oil Red O
staining

Liver sections (5 mm) were cryosectioned and stained with H&E

(5% acetic acid differentiation) and ORO (0.3% in isopropanol)

following established protocols (42, 43). Bright-field imaging used a

Leica DM5500B microscope (40×/NA 0.75) with Köhler

illumination. For TEM, glutaraldehyde-fixed tissues were

osmicated, dehydrated, and embedded in EPON 812 resin.

Ultrathin sections (70 nm) stained with uranyl acetate/lead citrate

were analyzed on a JEOL JEM-1400 TEM at 80 kV (44).
2.7 Illumina high-throughput sequencing

Jejunal microbial DNA was extracted using HiPure Soil DNA

Kits (Magen Biotechnology) with bead-beating lysis. DNA quality

(A260/A280 = 1.82 ± 0.05) was verified by NanoDrop 2000. The 16S

rRNA V3-V4 regions were amplified with 338F/806R primers,

purified using AxyPrep kits, and quantified via Qubit assays.

Paired-end sequencing (2×250 bp) was performed on an Illumina

MiSeq platform (GeneDenovo Biotechnology), yielding ~85,000

reads/sample.

Bioinformatics processing involved (1): Raw sequence

demultiplexing and quality filtering using QIIME v1.9.1 with

truncation parameters set at Q20 over 50-bp sliding windows (2);

Chimera removal via reference-based detection using UCHIME

algorithm against the SILVA 138 database (3); Operational
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1592806
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1592806
Taxonomic Unit (OTU) clustering at 97% similarity threshold using

UPARSE v7.1 (4); Taxonomic assignment based on Greengenes 13_8

reference database. Microbial community analyses included: a-
diversity indices (Simpson and Pielou) calculation, b-diversity
visualization through principal coordinates analysis (PCoA) based

on Bray-Curtis dissimilarity using vegan v2.5-7, differential taxa

identification via LEfSe (LDA score >2.0), and functional prediction

through PICRUSt2 with KEGG pathway annotation. All

visualizations were generated using ggplot2 v3.3.5 in R v4.1.2.
2.8 Statistical analysis

Statistical analyses were stratified by data type. For microbial

community data, b-diversity dissimilarity matrices were subjected

to permutational multivariate analysis (PERMANOVA) with 999

permutations using the Adonis function in the vegan package

(v2.5.3). Differential taxa identification was performed through

Welch’s two-sample t-tests on operational taxonomic units

(OTUs) exhibiting >0.1% relative abundance. PICRUSt2-derived

functional profiles and a-diversity indices (Shannon, Simpson)

were compared between groups using Welch’s unequal variances

t-test in R v4.1.2. Statistical analyses of non-microbiome data were

performed using independent two-tailed t-tests in SPSS 25.0 (IBM,

USA), with results presented as mean ± SEM. Significance

thresholds were set at *P<0.05, **P<0.01, and ***P<0.001.
3 Result

3.1 Growth performance and abdominal fat
percentage

The growth performance analysis revealed marked disparities

between dietary regimens. Fish fed the LP diet attained a final body

weight of 38.50 ± 0.66 g, representing a 44.8% reduction compared to
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fish fed the NP diet (69.78 ± 2.29 g; P < 0.001; Figure 1A). This growth

retardation was further corroborated by weight gain (WG) metrics,

where fish fed the LP diet demonstrated 63.2% lower values relative to

fish fed the NP diet (P < 0.001; Figure 1B). However, fish fed the LP diet

exhibited a 2.1-fold elevation in abdominal fat percentage (3.82 ±

0.15%) versus fish fed the NP diet (1.79 ± 0.09%, P < 0.001; Figure 1C).
3.2 Phosphorus absorption and
phospholipid content

Serum biochemical profiling revealed distinct metabolic responses

to dietary phosphorus availability. Fish fed the LP diet exhibited 58.3%

higher serum phosphorus concentrations compared to fish fed the NP

diet (P < 0.01; Figure 2A), while serum calcium levels remained stable

between the two dietary groups (P = 0.366; Figure 2B). Concurrently,

alkaline phosphatase activity in fish fed the LP diet showed a 39.7%

elevation relative to fish fed the NP diet (P < 0.05; Figure 2C).

Molecular analysis of intestinal transporters demonstrated

phosphorus-specific regulation, with fish fed the LP diet displaying

2.1- to 2.8-fold upregulation in napi-iib, pit1, and pit2 mRNA

expression compared to fish fed the NP diet (P < 0.05; Figure 2D).

In contrast, napi-iia expression showed no dietary modulation (P =

0.304). Systemic phospholipid quantification identified consistent

depletion patterns in fish fed the LP diet across all examined tissues.

Phosphoglyceride (PG) levels decreased by 36-57% and sphingomyelin

(SM) by 28-43% in serum, liver, and abdominal fat tissues compared to

fish fed the NP diet, with all intergroup differences reaching statistical

significance (P < 0.05; Figures 2E–J).
3.3 ER stress, lipid metabolism and
inflammatory response

In abdominal fat tissue, fish fed the LP diet exhibited 2.3- to 3.1-

fold upregulation of ER stress markers (grp78, perk, atf6, xbp1s)
FIGURE 1

Comparative analysis of growth parameters in fish fed LP versus NP diets revealed distinct patterns in: (A) Final body weight; (B) Weight gain
percentage*; (C) Abdominal fat percentage*. *Calculations: Weight gain (%) = [(Final - Initial body weight)/Initial body weight] × 100. Abdominal fat
percentage (%) = (Abdominal fat mass/Final body weight) × 100. Data represent mean ± SEM values (n=9/group). Asterisks indicate statistically
significant intergroup differences determined by two-tailed t-tests (*P<0.05, **P<0.01, ***P<0.001).
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compared to fish fed the NP diet (P < 0.05; Figure 3A). This activation

pattern extended to liver tissue, with 1.8- to 2.4-fold elevation in

corresponding gene expression (P < 0.05; Figure 3E). Notably, ire1

mRNA expression levels remained stable in both abdominal fat tissue

(P = 0.469) and liver (P = 0.774) across dietary groups.

Specifically, triacylglycerol (TG) content in serum and liver of

fish fed the LP diet showed 38-42% elevation compared to fish fed

the NP diet (P < 0.05; Figures 3C, G). Notably, liver total cholesterol

(TC) content in fish fed the LP diet reached 2.1-fold higher levels

than those fed the NP diet (P < 0.001; Figure 3H), while serum TC

concentrations remained comparable between groups (P = 0.970;

Figure 3D). Intriguingly, coordinated lipid metabolic shifts were

observed across tissues. In both liver and abdominal fat tissue, fish

fed the LP diet exhibited 45-62% downregulation of lipolysis genes
Frontiers in Immunology 05
(pgc-1, atgl, cpt-1), whereas lipogenesis genes (fas, acc1, acc2) and

regulatory factors (srebp-1, pparg) demonstrated 1.8- to 3.0-fold

upregulation relative to fish fed the NP diet (P < 0.05; Figures 3B, F).

Nevertheless, chrebp-1 expression remained stable in both tissues (P

= 0.598). Of particular interest, liver CHPT1 activity in the fish fed

the LP diet surged to 3.2 times those fed the NP diet (P < 0.001;

Figure 3I), contrasting sharply with unaltered EPT1 activity (P =

0.170; Figure 3J).

Additionally, proinflammatory mediator analysis revealed

tissue-specific responses. Fish fed the LP diet exhibited 2.4- to

2.8-fold upregulation of il-1b and tnf-a transcripts compared to fish

fed the NP diet (P < 0.01). In contrast, il-6 expression levels in

abdominal fat tissue showed minimal variation between fish fed the

LP diet and fish fed the NP diet (P = 0.433; Figure 3K).
FIGURE 2

Comparative analysis of phosphorus metabolism biomarkers in fish fed LP versus NP diets revealed: (A) Serum phosphorus concentration; (B) Serum
calcium level; (C) Alkaline phosphatase (ALP) activity; (D) Intestinal phosphorus transporter mRNA abundance*; (E) Serum phosphoglyceride (PG)
content; (F) Serum sphingomyelin (SM) level; (G) Liver PG concentration; (H) Liver SM content; (I) Abdominal fat tissue PG level; (J) Abdominal fat
tissue SM quantity. *Gene nomenclature detailed in Supplementary Table S2. Data represent mean ± SEM values (n=9/group) with asterisks
indicating intergroup significance (*P<0.05, **P<0.01, ***P<0.001) determined by two-tailed independent t-tests. ns, non-significant.
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3.4 Histology of liver and abdominal fat
tissue

The ORO sections revealed that the spotted seabass fed the LP

diet had a greater fat accumulation in liver compared to those fed

the NP diet (Figures 4A vs B, I). In H&E sections, the liver

vacuolization of spotted seabass fed the LP diet was more serious

than that of spotted seabass fed the NP diet (Figures 4C vs D, J). In

addition, under the ultrastructure, it was observed that the liver

endoplasmic reticulum structure of spotted seabass fed the LP diet

was severely damaged, the endoplasmic reticulum was loosely

stacked, and the mitochondria-associated membranes (MAMs)

was disorganized (Figures 4E vs F). Meanwhile, the abdominal fat

tissue of spotted seabass fed the LP diet showed adipocyte

hypertrophy under H&E staining (Figures 4G vs H).
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3.5 Gut bacterial communities

Microbial community analysis revealed phosphorus-dependent

structural shifts. Venn diagram quantification identified 56 shared

operational taxonomic units (OTUs) between groups, with fish fed

the LP diet harboring 13 unique OTUs compared to 29 in fish fed

the NP diet (Figure 5A). Alpha diversity metrics demonstrated

significantly reduced community heterogeneity in fish fed the LP

diet, exhibiting 28% lower Simpson index and 31% decreased Pielou

evenness relative to fish fed the NP diet (P < 0.05; Figures 5B, C).

Multivariate analysis confirmed distinct clustering patterns, with

principal coordinates analysis (PCoA) based on Bray-Curtis

distances revealing significant separation between gut microbiota

profiles of fish fed the LP diet and fish fed the NP diet (P < 0.05;

Figures 5D, E).
FIGURE 3

Comparative analysis of phosphorus metabolism biomarkers in fish fed LP versus NP diets revealed: (A) Abdominal fat tissue ER stress marker mRNA
abundance; (B) Abdominal fat tissue lipid metabolism regulator expression; (C) Serum Triglyceride (TG) concentration; (D) Serum total cholesterol
(TC) concentration; (E) Liver ER stress-related gene expression levels; (F) Liver lipid metabolism-related gene expression levels; (G) Liver TG
concentration; (H) Liver TC content; (I) Liver choline phosphotransferase 1 (CHPT1) activity; (J) Liver ethanolamine phosphotransferase 1 (EPT1)
activity; (K) Abdominal fat tissue pro-inflammatory cytokine levels. Gene nomenclature and inflammatory factor details are provided in
Supplementary Table S2. Data represent mean ± SEM (n=9/group) with asterisks indicating significance (*P<0.05, **P<0.01, ***P<0.001) determined
by two-tailed t-tests. ns, non-significant.
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At the phylum level, Proteobacteria and Firmicutes dominated

intestinal communities across both dietary regimens. Fish fed the

LP diet exhibited a 1.4-fold higher relative abundance of

Proteobacteria (93.12% vs 66.47%) and 80.3% lower Firmicutes

representation (6.56% vs 33.31%) compared to fish fed the NP

diet (P < 0.05; Figures 6A, B).

At the genus level, fish fed the LP diet were dominated by the

bacterial taxa Plesiomonas (81.13%), Acinetobacter (11.45%), and

Bacillus (4.96%) (Figure 6C). In fish fed the NP diet, Plesiomonas

(48.08%), Lactococcus (27.82%), Acinetobacter (17.02%) and
Frontiers in Immunology 07
Bacillus (5.16%) were dominant bacterial taxa. Potential

pathogenic bacteria, such as Plesiomonas, were significantly more

abundant (P < 0.05), while the abundance of potential probiotics,

like Lactococcus, was significantly lower in fish fed the LP diet

compared to those fed the NP diet (P < 0.05; Figure 6D).

LEfSe analysis revealed that fish fed the LP diet had significantly

higher levels of Plesiomonas, Ruminococcaceae, Gammaproteobacteria,

Lachnospiraceae , Fusobacteriales , Enterobacteriales , and

Clostridium_sensu_stricto_1. In contrast, fish fed the NP diet had

significantly enriched levels of Lactococcus, Desulfovibrionales,
FIGURE 4

Comparative histopathological characterization of fish fed LP versus NP diet groups revealed: (A, B) Oil Red O-stained lipid deposition (Scale bar =
200 mm); (C, D) H&E-stained parenchymal architecture (Scale bar = 400 mm); (E, F) TEM visualization of endoplasmic reticulum (Original
magnification ×7,000; Scale bar = 0.5 mm); (G, H) H&E-stained adipocyte morphology (Scale bar = 100 mm); (I) Vacuolization area of liver tissue (n =
3 fish, 3 visual fields/fish); (J) Lipid droplets area of liver tissue (n = 3 fish, 3 visual fields/fish). Data represent mean ± SEM (n=9/group) with asterisks
indicating significance (*P<0.05, **P<0.01, ***P<0.001) determined by two-tailed t-tests.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1592806
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1592806
Lactococcus_lactis, Bacillus, Lactobacillales, Streptococcaceae,

Acidobacteriales, and Prevotella_7 (P < 0.05; LDA > 3.6; Figures 7A, B).

At KEGG hierarchy levels 2 and 3, 13 pathways were

significantly enriched in fish fed the NP diet compared to fish fed

the LP diet (P < 0.05). These encompassed lipid metabolism
Frontiers in Immunology 08
modules (fatty acid/phospholipid/glycerolipid metabolism,

unsaturated fatty acid biosynthesis), energy transduction systems

(insulin signaling), and membrane transport mechanisms

(phosphotransferase system). Additional enriched pathways

spanned carbohydrate metabolism (citrate cycle, pyruvate
FIGURE 5

Comparative 16S rRNA phylogenetic profiling of fish fed LP versus NP diet groups revealed: (A) Venn diagrams comparing the OTUs of gut bacterial
communities. (B, C) Alpha diversity evaluation using the Simpson and Pielou indices. (D, E) Bray-Curtis distance and corresponding beta diversity
index results for the gut microbiota, analyzed with Adonis and Welch’s t-test.
FIGURE 6

Comparative taxonomic stratification of gut microbiota infish fed LP versus NP diet groups revealed:Phylum-Level Profiling; (A) Stacked bar chart of
bacterial composition; (B) Phylum abundance distribution; (C) Taxonomic composition bar plot; (D) Genus abundance comparison. Differences were
assessed using Welch’s t-test.
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metabolism), cofactor/vitamin processing (vitamin B6), amino acid

biosynthesis (valine-leucine-isoleucine), cellular homeostasis

(growth/death, replication/repair), signal transduction cascades,

glycan biosynthesis, environmental adaptation, translational

machinery, and immune regulation (Figures 7C, D).
4 Discussion

Based on our laboratory’s prior research establishing 0.72%

available phosphorus (NP) as the normative dietary phosphorus level

for Lateolabrax maculatus, whereas 0.37% available phosphorus (LP)

demonstrated a significant deficiency relative to the optimal value for

investigating phosphorus deprivation effects, two experimental diets

were formulated accordingly (39). This experimental design specifically

replicated these established available phosphorus concentrations

(0.72% NP vs. 0.37% LP) to systematically examine phosphorus

deficiency manifestations. Consistent with established nutritional

physiology paradigms (45, 46), fish fed the LP diet exhibited

significantly poorer growth performance and elevated abdominal fat

deposition compared to fish fed the NP diet. Serum phosphorus levels

were markedly reduced in fish fed the LP diet, while alkaline

phosphatase (ALP) activity showed significant elevation, a

biochemical pattern aligning with observations in phosphorus-

deficient teleosts (47–49). This profile reflects enhanced osteoblastic

activity under phosphorus restriction, as previously documented in

mammalian models (50). Molecular analysis revealed significant
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upregulation of intestinal sodium-phosphate cotransporters (napi-iib,

pit1, pit2) in fish fed the LP diet compared to fish fed the NP diet,

consistent with the canonical phosphorus absorption pathway

mediated by Na-Pi transporters (NaPi-IIa/b/c, PIT1/2) (51). These

transcriptional adjustments mirror compensatory mechanisms

observed in terrestrial vertebrates under phosphorus scarcity (52, 53),

suggesting evolutionary conservation of adaptive responses to dietary

phosphorus insufficiency.

Phosphorus distribution in teleosts follows conserved physiological

patterns, with the majority of bodily phosphorus sequestered in

mineralized tissues as hydroxyapatite [Ca10(PO4)6;(OH)2] (54). The

liver and adipose tissue are central hubs for systemic lipid metabolism

in teleosts. The liver orchestrates de novo lipogenesis and phospholipid

synthesis, while adipose tissue serves as the primary site for lipid

storage and mobilization (55–57). Phospholipid-bound phosphorus

plays critical roles in biological membrane architecture, functional

maintenance, and metabolic regulation (58, 59). These amphipathic

molecules, classified into phosphoglycerides (PG) and sphingomyelins

(SM) based on backbone structures (60), are principally synthesized in

the endoplasmic reticulum (ER) where they maintain ER structural

integrity (61). Their compositional variations directly modulate

membrane fluidity, protein-lipid interactions, and vesicular

trafficking (62), with emerging evidence linking phospholipid

metabolism to ER stress responses (63, 64). Experimental data

revealed systemic phospholipid depletion in fish fed the LP diet

compared to fish fed the NP diet, with PG and SM levels

significantly reduced in serum, liver, and abdominal fat tissue.
FIGURE 7

Functional metagenomic characterization of gut microbiota in LP vs NP diet groups: (A) LEfSe cladogram highlighting phylogenetic disparities (LDA
score >3.5); (B) PICRUSt2-predicted MetaCyc pathway enrichment patterns; (C) KEGG level-2 pathway differential abundance (Welch’s t-test,
FDR<0.05) (D) Heatmap visualization of level-3 enzymatic activity variations. Differences were calculated using Welch’s t-test.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1592806
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1592806
Concurrently, ER stress markers (grp78, perk, atf6, xbp1s) showed

significant upregulation in fish fed the LP diet versus fish fed the NP

diet, suggesting phospholipid insufficiency-induced ER

membrane destabilization.

Interestingly, CHPT1 activity, catalyzing the terminal Kennedy

pathway step crucial for phospholipid homeostasis (65), was

significantly elevated in fish fed the LP diet. This elevation

coincided with ER stress activation, mirroring mammalian

models where xbp1-mediated pathways regulate chpt1 expression

under ER stress (66). These observations suggest a potential

compensatory mechanism wherein phospholipid biosynthesis is

upregulated to mitigate LP diet-induced ER stress.

Evidence in the literature showed that ER stress could induce

disturbed lipid metabolism, which resulted in abnormal fat deposition

in the organism (67). Furthermore, ER stress could promote the entry

of srebp1c into the nucleus and activate the expression of lipid

synthesis-related genes (fas and acc) expression (68). Xbp1 promoted

the expression of lipid synthesis transcription factors pparg (69), and
atf6 activation could also promote TG synthesis by increasing fas and

acc2 activity (70). In the current study, fish fed the LP diet exhibited

higher serum TG level, increased expression of lipogenesis-related

genes (fas, acc1, acc2), and key transcription factors of lipid

metabolism (srebp-1 and pparg), along with lower expression of

lipolysis-related genes (pgc-1, atgl, and cpt-1). As a result, the

alterations in lipid metabolism observed in fish fed the LP diet are

likely a consequence of ER stress.

Moreover, our experiment found that the expression of

inflammatory factors in the abdominal fat tissues of spotted seabass

fed the LP diet was upregulated compared to those fed the NP diet. ER

stress was closely related to the inflammatory response (71). PERK

triggers the translocation of NF-kB into the nucleus, leading to the

transcription of various inflammatory factors, such as il-1b and tnf-a
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(72). In this experiment, the observed decreased growth performance

in spotted seabass fed the LP diet was probably due to ER stress

resulting from impaired phospholipid synthesis, which subsequently

triggered elevated inflammatory responses.

Dietary phosphorus availability exerts profound influence on

gut microbial ecosystems, as nutritional substrates directly shape

microbial community structure (73). Phosphorus’s essential role in

microbial proliferation was firstly demonstrated in rumen

microbiota studies (74, 75), with subsequent research confirming

its regulatory effects on fish intestinal microbiomes (76). Under the

current experimental conditions, fish fed the LP diet exhibited

reduced gut microbial diversity and ecological destabilization

compared to fish fed the NP diet.

Significant decreases in operational taxonomic unit richness

and alpha diversity indices were observed in fish fed the LP diet

compared to those fed the NP diet through microbial community

analysis. Such microbial simplification has been epidemiologically

linked to metabolic dysregulation and increased pathogenic

colonization risks across vertebrate taxa (77, 78). Multivariate

analysis through principal coordinates (PCoA) confirmed distinct

clustering patterns between dietary groups, indicating phosphorus-

dependent microbiome restructuring.

At the phylum level, Proteobacteria and Firmicutes dominated

intestinal communities in both groups, aligning with teleost gut

microbiota baselines (79, 80). However, genus-level shifts emerged

under phosphorus restriction: fish fed the LP diet showed

significant reduction in Lactococcus abundance and marked

elevation of Plesiomonas compared to fish fed the NP diet. LEfSe

biomarker analysis corroborated these compositional changes.

The microbial profile alterations carry functional implications.

Plesiomonas, identified as a potential opportunistic pathogen in

aquatic species (81), may compromise intestinal barrier integrity
FIGURE 8

LP led to decreased content of phospholipid, ER stress, inflammatory responses and disruption of lipid metabolism as well as gut microbiota. These
negative effects contributed to poorer growth and higher percentage of abdominal fat in spotted seabass fed the LP diet.
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and large-scale death of aquatic animals. As a Gram-negative

bacterium, its surface contains lipopolysaccharide (LPS),

which has been extensively documented to induce intestinal

immune dysregulation (82, 83). Conversely, Lactococcus lactis

demonstrates probiotic properties through growth promotion and

pathogen inhibition (84–86), with proven capacity to modulate

intestinal immunity. This dual shift, pathogenic proliferation

combined with probiotic depletion, likely disrupt the intestinal

mucosal immunity of fish fed the LP diet and contribute to the

growth retardation observed in fish fed the LP diet.

The gut microbiota functions as a symbiotic metabolic interface,

critically modulating host nutrient processing and homeostasis

(87). Functional metagenomic prediction revealed significant

depletion of lipid and phospholipid metabolic pathways in fish

fed the LP diet compared to fish fed the NP diet, aligning with

observed systemic lipid dysregulation. Concurrent reductions

occurred in carbohydrate metabolism, amino acid cycling, energy

transduction, and vitamin processing pathways – all essential for

organismal growth and development.

This microbial metabolic impairment corresponds with

physiological observations, as optimal microbiota composition

enhances host nutrient assimilation and metabolic efficiency (88,

89, 90, 91). Notably, the reduced abundance of Lactococcus lactis in

fish fed the LP diet versus fish fed the NP diet may compromise

nutrient bioavailability, given this species’ documented capacity to

upregulate intestinal growth factors and nutrient absorption

mechanisms (84, 85). These collective microbial shifts likely

contribute to the metabolic inefficiency and growth retardation

observed under phosphorus restriction.
5 Conclusion

In this study (Figure 8), LP led to the decreased content of

phospholipid and in spotted seabass, which in turn induced ER

stress, disturbed lipid metabolism and inflammatory response.

Additionally, the LP diet resulted in reduced microbial diversity and

modifications in the gut microbiota composition, thereby

compromising intestinal immune competence. These negative

changes likely contributed to the poorer growth and higher

abdominal fat percentage observed in spotted seabass fed the LP diet.
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