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Metabolic reprogramming in
hepatocellular carcinoma:
mechanisms of immune evasion
and therapeutic implications
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Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths

worldwide, with limited treatment options for advanced stages. Metabolic

reprogramming is a hallmark of cancer, enabling tumor cells to adapt to the

harsh tumor microenvironment (TME) and evade immune surveillance. This

review involves the role of metabolic reprogramming in HCC, focusing on the

dysregulation of glucose, lipid, and amino acid metabolism, and its impact on

immune evasion. Key metabolic pathways, such as the Warburg effect, fatty acid

synthesis, and glutaminolysis, are discussed, along with their influence on tumor-

associated macrophages (TAMs) and immune cell function. Targeting these

metabolic alterations presents a promising therapeutic approach to enhance

immunotherapy efficacy and improve HCC patient outcomes.
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1 Introduction

Hepatocellular carcinoma (HCC) demonstrates limited therapeutic responsiveness,

with objective response rates remaining at approximately 20% in clinical settings (1, 2).

While immunotherapy has emerged as a potential therapeutic strategy for advanced HCC

(3), its clinical efficacy remains constrained by tumor immune evasion mechanisms

operating within the immunosuppressive tumor microenvironment (TME) (4–6).

Metabolic reprogramming drives both tumorigenesis and disease progression through

profound alterations in core metabolic pathways including glycolysis, fatty acid synthesis,

and glutamine metabolism (7–9). These adaptations not only fulfill the biosynthetic and

bioenergetic demands of rapidly proliferating tumor cells but also actively shape an

immunosuppressive TME. Critically, the metabolic crosstalk between malignant cells

and immune cell populations within the TME facilitates immune evasion mechanisms

and confers resistance to immunotherapeutic interventions (10). The liver’s
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immunosuppressive nature and the TME’s enrichment with

regulatory T cells (Tregs), myeloid-derived suppressor cells

(MDSCs), and TAMs drive HCC progression and limit

immunotherapy efficacy (11, 12).

During HCC development, malignant cells continuously adapt

their metabolic patterns to acquire sufficient nutrients for self-renewal

and proliferation in the hypoxic and nutrient-deprived TME (13).

These metabolic alterations not only induce phenotypic and functional

changes in TAMs but also lead to their metabolic reprogramming,

enabling them to exert immunosuppressive functions and promote

tumor progression and metastasis (14). Recent advances in HCC

metabolism research have provided significant insights. However,

current immunotherapies, including checkpoint inhibitors targeting

the PD-1/PD-L1 or CTLA-4 pathways, face substantial challenges in

HCC due to the profoundly immunosuppressive metabolic landscape

(15). This review explores metabolic reprogramming in HCC, focusing

on dysregulated enzymes and pathways in glucose, lipid, amino acid,

and nucleotide metabolism, and discusses how effectively targeting

dysregulated metabolic pathways can synergize with existing

immunotherapies, thereby potentially overcoming immune evasion

and improving clinical outcomes.
2 Glucose metabolism in HCC

2.1 Glucose metabolic reprogramming: key
enzymes and pathways

Glucose metabolic reprogramming is one of cancer cells’ most

prominent metabolic features. HCC cells upregulate the expression

of glucose transporters 1 and 2 (GLUT1 and GLUT2) to increase

glucose uptake, and the downregulation of GLUT1 and GLUT2

significantly inhibits HCC cell growth and proliferation (16, 17).

Once inside the cell, glucose is phosphorylated by hexokinase (HK)

to form glucose-6-phosphate (G6P). Among these, HK2 is

overexpressed in various cancers, including HCC, and its high

expression is associated with poor prognosis in HCC patients

(18). Inhibition of HK2 expression has been shown to enhance

the therapeutic efficacy of sorafenib in HCC (19). M1-like

macrophages consume large amounts of glucose for glycolysis,

upregulating anabolic pathways to provide substrates and rapid

energy production. Studies have demonstrated that the glycolysis

inhibitor 2-deoxy-D-glucose (2-DG) significantly reduces ATP

levels in HCC M1-like macrophages, inhibiting glycolysis (20).

Additionally, glycolysis fuels the pentose phosphate pathway

(PPP), generating NADPH to produce reactive oxygen species

(ROS), which is crucial for the phagocytic activity of M1-like

macrophages (21). Another key enzyme in glycolysis, pyruvate

kinase (PK), catalyzes the conversion of phosphoenolpyruvate to

pyruvate. PK has two isoforms, PKM1 and PKM2, with PKM2

being highly expressed in HCC and associated with poor patient

prognosis (22). Finally, pyruvate is converted to lactate by lactate

dehydrogenase (LDH) (23), and elevated LDH levels in HCC tissues

and plasma are significantly correlated with poor prognosis (24).
Frontiers in Immunology 02
The upregulation of key glycolytic enzymes in HCC cells is

closely linked to the activation of oncogenes and pro-tumor

signaling pathways. Hypoxia-inducible factor 1a (HIF-1a) plays a
critical role in regulating glycolysis in HCC cells by transcriptionally

upregulating several glycolytic enzymes, including GLUT1 and

HK2 (25). HIF-1a is a key transcription factor that enables cells

to adapt to low oxygen levels and is essential for glycolysis in TAMs.

Studies have shown that LPS induces the phosphorylation of PKM2,

promoting the formation of a nuclear PKM2/HIF-1a complex that

binds to the HIF-1a promoter, driving its expression and enhancing

glycolysis in TAMs in HCC (26). Inhibition of the phosphoinositide

3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/

Akt/mTOR) signaling pathway plays a significant role in

tumorigenesis and progression (27). The PI3K/Akt/mTOR

signaling pathway, which plays a significant role in tumor

progression, has also been implicated in promoting glycolysis in

HCC cells by regulating GLUT4 and HK2 (28, 29).
2.2 Impact of glucose metabolism on
immune evasion

The inefficient delivery of nutrients and oxygen, along with the

poor clearance of metabolic waste in tumors, creates a hypoxic and

acidic TME, which significantly impairs anti-tumor immune

responses (30–32). HCC cells enhance glycolysis, producing large

amounts of lactate, which acidifies the TME and suppresses

immune cell function. In HCC patients, serum HIF-1a levels are

negatively correlated with prognosis, as HIF-1a recruits

macrophages to hypoxic regions of the TME via chemokines such

as CCL-2 and endothelin (31, 33). Accumulated HIF-1a promotes

the release of IL-1b by TAMs through the TLR4/TRIF/NF-kB
signaling pathway, facilitating immune evasion (34). Tumor cells

enhance lactate dehydrogenase A (LDH-A) activity to convert

pyruvate into lactate, which is then exported out of the cell via

monocarboxylate transporter 4 (MCT4), further acidifying the

TME. This acidic environment inhibits the anti-tumor functions

of cytotoxic T lymphocytes, natural killer (NK) cells, and dendritic

cells (DCs) while promoting the immunosuppressive functions of

Tregs and MDSCs (35).

Lactate also plays a pivotal role in stabilizing HIF-1a, which in

turn upregulates the expression of arginase-1 and VEGF. These

factors drive the polarization of macrophages toward the M2

phenotype, an alteration that promotes tumor growth and

metastasis (36). The M2 macrophages, characterized by their pro-

tumorigenic properties, further secrete factors that enhance

angiogenesis and tissue remodeling, creating a feedback loop that

perpetuates tumor progression and immune suppression (37). In

summary, the hypoxic and acidic conditions within the HCC TME,

driven by enhanced glycolysis and lactate production, create a

hostile environment for anti-tumor immunity. This environment

not only impairs the function of key immune cells but also

promotes the recruitment and polarization of immunosuppressive

cells, thereby facilitating tumor immune evasion and progression.
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Previous evidence underscores the direct immunomodulatory

role of the pyruvate kinase M2 (PKM2)/HIF-1a axis in

macrophages, T cells, and NK cells. PKM2 can translocate to the

nucleus and serve as a coactivator for HIF-1a, driving transcription
of glycolytic enzymes and immunosuppressive mediators (38, 39).

This heightened glycolytic state not only fuels tumor metabolism

but also skews macrophage polarization toward an M2-like

phenotype, suppresses T cell effector function through local

lactate accumulation, and hampers NK cell cytotoxicity (39, 40).

Consequently, interventions targeting PKM2’s nuclear function or

inhibiting the PKM2/HIF-1a complex can disrupt key

immunosuppressive circuits in the TME and restore anti-tumor

immune responses. In addition to tumor cells, non-tumor stromal

cells also undergo glycolytic shifts that contribute to this

immunosuppressive milieu. For example, cancer-associated

fibroblasts (CAFs) may increase glucose consumption and release

lactate, fueling adjacent HCC cells while simultaneously creating an

acidic TME that hampers T cell and NK cell function (41). This

reciprocal metabolic interplay between tumor and stromal cells

magnifies immune evasion by shaping an environment that favors

HCC survival and progression.
3 Dysregulation and immune
modulation functions of lipid
metabolism in HCC

3.1 Lipid metabolic reprogramming in HCC

Lipid metabolic reprogramming in HCC is characterized by

enhanced fatty acid uptake and de novo synthesis, increased

cholesterol synthesis, and reduced fatty acid oxidation. These

alterations are closely associated with HCC development and

progression. HCC cells promote growth and proliferation by

increasing the uptake of exogenous fatty acids (42). CD36, a fatty

acid transporter, facilitates the uptake of long-chain fatty acids

(LCFAs) and oxidized low-density lipoprotein (Ox-LDL), playing a

crucial role in lipid metabolism and serving as a significant tumor

marker (43). Studies have shown that tumor cells utilize CD36 on

their cell surface to uptake fatty acids, and CD36 is overexpressed in

HCC cells. CD36 promotes HCC progression by activating Wnt

and TGF-b signaling pathways and inducing epithelial-

mesenchymal transition (EMT) (44–46). These findings suggest

that CD36 may be a novel target for enhancing HCC

immunotherapy through metabolic pathways.

De novo fatty acid synthesis (de novo FAS) is a critical pathway

for tumor cells to acquire lipids. HCC cells exhibit heightened de

novo FAS activity (47). Key enzymes involved in de novo FAS, such

as ATP citrate lyase (ACLY) and fatty acid synthase (FASN), are

overexpressed in HCC, and their upregulation is associated with

poor prognosis (48). Several transcription factors and signaling

pathways regulate de novo FAS in HCC cells. Sorafenib disrupts

monounsaturated fatty acid synthesis mediated by stearoyl-CoA

desaturase-1 (SCD1) through the ATP-AMPK-mTOR-SREBP1

signaling pathway, leading to HCC cell death (49). Dysregulated
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cholesterol synthesis is another hallmark of lipid metabolic

reprogramming in HCC. HMG-CoA reductase (HMGCR), the

rate-limiting enzyme in cholesterol biosynthesis, is upregulated in

HCC and is the target of statins, which regulate plasma cholesterol

levels (50). Increased mitochondrial cholesterol content in HCC

cells reduces mitochondrial membrane permeability, inhibiting

cytochrome c release and conferring resistance to chemotherapy

(50). Recent studies have highlighted the importance of fatty acid b-
oxidation (FAO) in tumor progression. SIRT4, a member of the

Sirtuin family, functions as an ADP-ribosyl transferase and

regulates FAO and mitochondrial gene expression in liver and

muscle cells (51). Loss of SIRT4 enhances the expression of FAO-

related genes such as pyruvate dehydrogenase kinase 4 (PDK4) and

carnitine palmitoyl transferase 1 (CPT1), as well as mitochondrial

genes such as cytochrome c (CytC) and isocitrate dehydrogenase 3a
(IDH3a) in TAMs. SIRT4 deficiency also promotes M2 polarization

of TAMs through the PPARd-STAT3 signaling pathway, driving

HCC progression (52).
3.2 Role of lipid metabolism in immune
evasion and tumor progression

Liver fatty acid-binding protein (L-FABP) is highly expressed in

HCC tissues and has been shown to regulate lipid metabolism and

inflammation in host cells (53). TAMs derived from HCC highly

express L-FABP and promote NK cell recruitment through the

production of IFN-b, mediating anti-tumor effects (54). However,

TAMs also produce prostaglandin E2 (PGE2), which suppresses

anti-tumor immunity. In HCC, TAMs upregulate cyclooxygenase-2

(COX2) and prostaglandin E synthase 1 (PGES1) to produce high

levels of PGE2, which inhibits IFN-g production and NK cell

cytotoxicity (55). HCC cells enhance FAO, promoting M2

polarization of TAMs and suppressing immune cell function (56).

The FAO inhibitor etomoxir blocks FAO activity in TAMs,

inhibiting their pro-tumor functions (57, 58). Consequently,

targeting FAO in TAMs may not only impede tumor progression

but also enhance the efficacy of immune checkpoint inhibitors and

other immunotherapies by restoring anti-tumor immune responses

within the TME (59, 60).
4 Amino acid metabolism and
immune suppression in HCC

4.1 Amino acid metabolic reprogramming

Amino acid metabolism in HCC is characterized by increased

glutaminolysis (61). The alanine-serine-cysteine transporter 2

(ASCT2) is the primary transporter of glutamine in cells (62).

ASCT2 is overexpressed in HCC and is associated with poor

prognosis (63). Glutamine serves as a major energy source for

HCC cells, being catabolized by glutaminase (GLS) into glutamate,

which enters the tricarboxylic acid (TCA) cycle to generate energy.

Glutamine synthetase (GS) converts ammonia and glutamate into
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glutamine. Targeting GS with small-molecule inhibitors can

reprogram TAMs into antigen-presenting cells, exerting anti-

tumor effects. GLS has two isoforms, GLS1 and GLS2. GLS1

promotes tumor cell growth in various cancers (64), while GLS2

suppresses cancer cell proliferation and migration (65). In HCC,

GLS1 is overexpressed and promotes cell proliferation via the AKT/

GSK3b/CyclinD1 pathway (66). High GLS1 expression is positively

correlated with stemness in HCC cells, and targeting GLS1 reduces

stemness by increasing mitochondrial ROS and suppressing the

Wnt/b-catenin pathway (67). In contrast, GLS2 is downregulated in

HCC and inhibits tumor growth by negatively regulating the PI3K/

AKT signaling pathway (68–71). However, despite these well-

established roles, there are also contradictory or context-

dependent findings concerning GLS1 and GLS2 in HCC (72).

These conflicting observations underscore the complexity of

glutamine metabolism in HCC and highlight the importance of

studying tumor-stage specific expression and activity of these

isoforms. Further investigation into the interplay between GLS1/

GLS2 and other metabolic or signaling pathways will be crucial for

designing precision therapies targeting glutaminolysis in HCC.

M2-like TAMs highly express arginase-1, which hydrolyzes

arginine into ornithine and urea. Ornithine serves as a precursor

for polyamines and collagen, contributing to extracellular matrix

formation and tissue repair. Ornithine is further metabolized by

ornithine decarboxylase into polyamines, promoting M2
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polarization of macrophages and tumor cell growth (73).

Additionally, serine metabolism plays a crucial role in HCC

progression. Studies have confirmed that under conditions of

glucose or glutamine starvation, the serine biosynthesis pathway

in HCC cells is significantly enhanced. c-Myc promotes the

production of glutathione, progression of the cell cycle, and

synthesis of nucleic acids by upregulating the expression of

various SSP enzymes, thereby facilitating the survival and

proliferation of HCC cells (74–76).
4.2 Amino acid metabolism influences
immune cell function in HCC

Amino acid metabolism in HCC significantly influences the

immune response of various cells, playing a crucial role in tumor

progression. TAMs exhibit increased activity of indoleamine 2,3-

dioxygenase 1 (IDO1), which converts tryptophan into kynurenine.

Kynurenine induces T cell death, reduces the number of pro-

inflammatory T lymphocytes, and diminishes T cell anti-tumor

activity (77). CHEN et al. (78) demonstrated that early-activated

CD69+ T cells enhance IDO activity in TAMs, accelerating

tryptophan metabolism. This metabolic shift not only promotes T

cell proliferation and cytokine production but also activates Tregs,

thereby facilitating HCC cell proliferation and metastasis. Excessive
TABLE 1 Key metabolic pathways in HCC and their roles in immune evasion.

Metabolic
Pathway

Key
Enzymes/
Transporters

Regulatory
Mechanisms

Impact on Immune Evasion

Glucose Metabolism
GLUT1/2, HK2, PKM2,
LDH-A

HIF-1a, PI3K/Akt/
mTOR signaling

Acidic TME (via lactate) inhibits CTLs/NK cells; M2 polarization of TAMs
via HIF-1a/IL-1b

Lipid Metabolism CD36, FASN, ACLY, SCD1
Wnt/TGF-b
signaling, SREBP1

FAO promotes M2 TAMs; PGE2 suppresses NK cells; L-FABP recruits
NK cells

Amino
Acid Metabolism

ASCT2, GLS1, IDO1, Arg-1
AKT/GSK3b/CyclinD1,
TLR4/NF-kB

Tryptophan depletion by IDO1 induces T cell death; arginine depletion
impairs NK function

Cholesterol
Metabolism

HMGCR, SIRT4 PPARd-STAT3 signaling Mitochondrial cholesterol confers chemotherapy resistance
TABLE 2 Therapeutic strategies targeting HCC metabolism.

Target Drug/Intervention Mechanism Stage (Preclinical/Clinical)

Glucose Transport Aspirin Inhibits GLUT1, reduces glucose uptake Preclinical

Glycolysis 2-DG, Celastrol
Inhibits HK2/LDHA, shifts
TAM metabolism

Preclinical

Fatty Acid Synthesis Sorafenib + SSI-4 Inhibits SCD1, induces cell death Preclinical

Glutaminolysis GLS1 inhibitors (e.g., CB-839)
Reduces glutamine dependency,
suppresses stemness

Clinical trials

PD-L1/PD-1 Pathway Atezolizumab + Bevacizumab
Blocks immune checkpoint, enhances T
cell activity

FDA-approved (HCC)

IDO1 Epacadostat
Restores tryptophan, reverses T
cell suppression

Phase II trials
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arginine consumption in HCC depletes arginine levels in the TME,

impairing NK cell proliferation and IFN-g production (79, 80). In

vitro studies have shown that low arginine levels in the HCC

microenvironment suppress the expression of NK cell activation

receptors such as NKp46 and NKp30 (81, 82). Additionally, the

acidic microenvironment resulting from high lactate levels inhibits

NK cell cytotoxicity and cytokine production (83). Given the crucial

role of amino acids in T cell activation and effector function,

reducing IDO1-mediated tryptophan depletion or alleviating

excessive arginine consumption could reverse T cell dysfunction

and synergize with immunotherapies such as anti-PD-1/PD-L1

antibodies. Indeed, clinical trials evaluating IDO1 inhibitors in

combination with checkpoint inhibitors in other cancer types

suggest potential avenues for analogous therapeutic approaches in

HCC (84).

Collectively, the interplay between metabolic reprogramming

(glucose, lipid, and amino acid metabolism) and immune evasion is

a pivotal driver of HCC progression. As summarized in Table 1,

dysregulated enzymes and pathways in these metabolic networks

not only sustain tumor cell proliferation but also actively suppress

anti-tumor immunity by polarizing TAMs and acidifying the TME.

Future combination therapies that simultaneously target metabolic

checkpoints and enhance T cell functionality may thus open new

pathways toward reversing immunosuppression and improving

HCC patient outcomes.
5 Therapeutic targeting of metabolic
pathways in HCC

Given the dysregulation of key enzymes and signaling pathways

in glucose, lipid, amino acid, and nucleotide metabolism in HCC,

targeting these metabolic abnormalities represents a promising

therapeutic strategy. Aspirin has been shown to inhibit HCC by

targeting the overexpression of GLUT1, reducing glucose uptake in

HCC cells (85). Similarly, HK2 can be targeted by resveratrol (86),

miRNAs (87, 88), and Ras-associated glycolysis inhibitors (89).

Celastrol, a triterpenoid compound derived from the medicinal

plant Tripterygium wilfordii, covalently modifies glycolytic enzymes

like HK2 in M1 macrophages, shifting their metabolism from

glycolysis to oxidative phosphorylation and promoting M2

polarization, thereby alleviating lipid accumulation, inflammation,

and fibrosis in the liver (90). Additionally, the SCD1 inhibitor SSI-4,

when combined with sorafenib, enhances anti-tumor efficacy,

suggesting a novel therapeutic strategy for HCC (91).

Beyond targeting metabolic enzymes, dysregulated metabolic

pathways in HCC are also potential therapeutic targets. TAM

metabolism influences the expression of PD-L1 and PD-1, which

mediate immune suppression. Clinical studies have shown that

targeting the PD-L1/PD-1 pathway significantly improves clinical
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outcomes in HCC patients (92). In HCC, PD-L1 is primarily

produced by PD-L1+ macrophages (93). Inflammatory factors are

pivotal in diseases’ progression (94–97). A recent study found that

fibronectin 1 derived from HCC interacts with Toll-like receptor 4,

activating glycolysis in macrophages via the PKM2/HIF-a signaling

pathway and promoting the secretion of pro-inflammatory

cytokines IL-1b and TNF-a, which enhance PD-L1 expression on

macrophages, ultimately leading to immune evasion (98). These

findings highlight the intricate link between metabolic

reprogramming and immunosuppression in HCC, suggesting that

interventions aimed at inhibiting glucose uptake, fatty acid

synthesis, or glutaminolysis could potentiate the efficacy of

immune checkpoint inhibitors. As combination therapies that

pair PD-1/PD-L1 or CTLA-4 blockade with metabolic modulators

continue to be explored, a personalized approach to targeting both

tumor metabolism and immune evasion may emerge as a new

standard for advanced HCC (Table 2).
6 Conclusion

Metabolic reprogramming, encompassing the dysregulation of

glucose, lipid, and amino acid metabolism, directly fosters immune

evasion and immunotherapy resistance in HCC. By creating a

microenvironment characterized by hypoxia, nutrient depletion,

and acidification, these metabolic changes blunt the activity of

cytotoxic T cells, NK cells, and other effector populations while

promoting the expansion of immunosuppressive cell subsets such as

Tregs and M2-polarized TAMs. This reciprocal relationship

between aberrant metabolism and immunosuppression underlies

one of the most formidable challenges to effective HCC treatment,

as it contributes to the suboptimal response rates to current

immunotherapies. Targeting metabolic pathways offers promising

therapeutic strategies to overcome immune evasion and improve

HCC treatment outcomes. Future research should focus on

developing metabolic inhibitors and combining them with

existing immunotherapies to enhance their efficacy. In particular,

early-phase clinical trials investigating combination regimens that

integrate metabolic interference with anti-PD-1/PD-L1 therapies

are poised to illuminate the feasibility and potential synergy of dual-

targeting approaches in HCC.
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