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Objective: This study aims to identify potential independent risk factors for

rheumatoid arthritis (RA)- related mortality and develop a nomogram model to

predict individualized mortality risk.

Methods: This study included 310 RA patients from the National Health and

Nutrition Examination Survey (NHANES) during 1999 - 2018. We applied LASSO,

univariate, and multivariate logistic regression analyses to determine risk factors

in the training cohort and construct a nomogram model. Calibration plots

evaluated the nomogram’s accuracy. Finally, we established the nomogram’s

clinical utility through DCA and performed internal validation within the

training cohort.

Results:Of the 310 patients, 140 experienced RA - related deaths, corresponding

to a mortality rate of 45.16%. Within the training cohort, age, heart failure, and

systemic inflammatory response index (SIRI) emerged as independent predictors

of RA - related mortality. A nomogrammodel, constructed through multivariable

logistic analysis, demonstrated an AUC of 0. 852 (95% CI: 0. 799 - 0. 904) in the

training cohort and an AUC of 0. 904 (95% CI: 0. 846 - 0. 963) in the validation

cohort. The calibration curve revealed a strong agreement between predicted

and actual probabilities. In both training and validation cohorts, DCA highlighted

the nomogram’s significant net benefits for predicting RA - related mortality risk.

Conclusions: This study demonstrates age, heart failure, and SIRI’s ability to

predict RA mortality with good discrimination and clinical utility. The model gives

clinicians a simple tool to quickly identify high - risk RA patients, promoting early

intervention, personalized treatment, and better prognosis.
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Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory

autoimmune disease that primarily targets synovial joints,

resulting in joint swelling, pain, stiffness, and eventually leading

to joint destruction and disability (1–3). Globally, it poses a major

public health challenge, with a prevalence of approximately 0.5% to

1% (4). Future projections suggest a continued increase in the

burden of RA, with an estimated 31.7 million individuals worldwide

expected to be affected by 2050 (5, 6). Notably, the incidence of RA

is higher in females than in males, and while it can occur at any age,

the disease most commonly manifests between the ages of 30 and 60

(7, 8). Beyond causing joint disability, RA is also associated with

increased long-term mortality and reduced life expectancy, with

cardiovascular diseases being the primary contributor to this excess

mortality (9–11). While the etiology of RA is complex and not fully

elucidated, it is currently thought to involve the combined interplay

of genetic and environmental factors. Genetic factors, such as

specific human leukocyte antigen (HLA) genes, contribute to RA

susceptibility (12–14); environmental factors, including infections,

smoking, and hormonal influences, may trigger disease onset (15).

A clear feature of RA is immune system dysregulation,

characterized by immune cells attacking joint synovium, thereby

inducing inflammation and tissue damage (16–18).

In recent years, the relationship between inflammatory markers

and mortality in RA patients has garnered increasing attention.

Numerous studies have shown that specific inflammatory markers,

such as the neutrophil-to-lymphocyte ratio (NLR), platelet-to-

lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR),

systemic immune-inflammation index (SII) , systemic

inflammatory response index (SIRI), pan-immune-inflammation

value (PIV), and advanced lung cancer inflammation index (ALI),

are associated with an increased risk of mortality in rheumatoid

arthritis patients (10, 19–25). For instance, elevated NLR and SII are

linked to higher disease activity and poorer prognosis in RA

patients, potentially indicating an increased risk of cardiovascular

events and mortality (22, 25). Similarly, increased SIRI and PIV

have been found to be associated with adverse outcomes in RA

patients, including higher mortality rates (10, 23). These

inflammatory markers reflect the activation and dysregulation of

the immune system in rheumatoid arthritis, the presence of chronic

inflammation in the body, which promotes atherosclerosis,

endothelial dysfunction, and organ damage, thereby increasing

the r i sk of death from cardiovascular d iseases and

other complications.

Although increasing evidence associates inflammatory markers

with mortality in RA patients, many unresolved issues and

challenges remain in this field. Firstly, numerous studies have

found that the above-mentioned inflammation-related indicators

are associated with RA and increased mortality, but these are

univariate analysis results without multivariate regression

analysis, and it is not entirely clear whether they are interfered

with or interacted by other factors. Secondly, the impact of

confounding factors such as age, gender, and comorbidities on

the relationship between inflammatory markers and mortality in
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RA patients is not clear. These factors may affect the levels of

inflammatory markers and the risk of death, and their impact awaits

further research. In addition, previous studies have not quantified

the relevant indicators, making it impossible to accurately predict

the probability of death in RA patients.

To address the limitations of previous studies, this study uses

data from the NHANES database to investigate the association

between immune-inflammatory markers and RA-related mortality.

Our goal is to identify potential independent risk factors for RA-

related deaths and develop a nomogram model to predict

individualized mortality risk.
Materials and methods

Data source

The data for this study were obtained from the NHANES of the

United States. This survey employed a complex, multistage

stratified probability sampling method to comprehensively assess

the health and nutritional status of the non-institutionalized

population in the United States. The data from NHANES are

nationally representative, making it an invaluable resource for

conducting large-scale epidemiological studies and developing

clinical prediction models. All NHANES data used in this study

are publicly available at https://www.cdc.gov/nchs/nhanes. Written

informed consent was obtained from all participants (or their

proxies/legal guardians) for participation in the study. This study

was reviewed and approved by the National Center for Health

Statistics (NCHS) Ethics Review Board, with the approval numbers

for each phase available at https://www.cdc.gov/nchs/nhanes/

irba98.htm. All research was conducted in accordance with the

Declaration of Helsinki and the Transparent Reporting of a

multivariable prediction model for Individual Prognosis or

Diagnosis (TRIPOD) checklist.
Mortality linkage

The mortality data for this analysis were obtained from the

NHANES public-use linked mortality files and integrated with the

standard NHANES datasets using the unique respondent sequence

number assigned to each participant. All-cause mortality refers to

deaths from any cause, regardless of the specific underlying cause.

Linkage web-page: https://www.cdc.gov/nchs/data-linkage/

mortality-public.htm.
Participant selection

Initially, 65535 participants from 10 consecutive NHANES

cycles (1999 - 2018) were enrolled in this study. These

participants completed extensive demographic surveys, laboratory

tests, and health questionnaires during these cycles. To ensure the

accuracy and reliability of our study, we conducted rigorous data
frontiersin.org
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screening and exclusion. First, participants aged under 18 (n =

35849) were excluded, as our study focused on adult RA (n =

29686). Subsequently, individuals lacking data on RA or mortality

(n = 14284) were excluded. In addition, participants missing

questionnaire and dietary data on diabetes, hypertension,

smoking, alcohol consumption, heart disease, and stroke, as well

as those lacking laboratory data on platelet, neutrophil, lymphocyte,

and monocyte counts (n = 12243), were excluded. Moreover, non-

RA patients (n = 2849) were excluded. Finally, as shown in Figure 1,

310 participants with RA-related deaths were included in

our analysis.
Definition of RA

The diagnosis of RA was made based on the medical condition

questionnaire in the NHANES database, which asked participants

the following questions. First, participants were asked, “Have you

ever been told by a doctor that you had arthritis?” (MCQ160a). If

the answer was “Yes,” they were then asked, “What type of

arthritis?” (MCQ195; MCQ191; MCQ190), to specify the type of

arthritis they had, including rheumatoid arthritis, osteoarthritis,

and other types. This self - reported method of diagnosing RA has

been widely used in many NHANES studies and has shown an 85%

consistency between self - reported arthritis and clinical diagnosis

(26, 27).
Covariate definitions

Based on previous research, the following factors were identified

as independent variables: age, sex, race, body mass index (BMI),
Frontiers in Immunology 03
alcohol consumption, smoking, self - reported health status,

neutrophil - to - lymphocyte ratio (NLR), platelet - to -

lymphocyte ratio (PLR), lymphocyte - to - monocyte ratio (LMR),

systemic immune - inflammation index (SII), systemic

inflammatory response index (SIRI), pan - immune -

inflammation value (PIV), neutrophil - to - albumin ratio (NAR),

prognostic nutritional index (PNI), systemic inflammation score

(SIS), and advanced lung cancer inflammation index (ALI), etc.

Age (years) and BMI were continuous variables. Sex was

divided into male and female. Race was categorized into Mexican

American, other Hispanic, non - Hispanic white, non - Hispanic

black, and other/multiracial. Alcohol consumption was defined by

the response to the question: “Did you drink at least 12 drinks of

any type of alcohol in any year?”, and was grouped into two

categories (yes or no). Smoking status was divided into smoker

and never smoker based on the response to the question “Have you

smoked at least 100 cigarettes in your life?”. In our study,

hypertension was defined as self - reported physician - diagnosed,

use of antihypertensive medication, or blood pressure≥140/90

mmHg. Diabetes mellitus (DM) status was defined as follows:

Diabetes” (physician self - reported diagnosis, HbA1c≥6.5%,

fasting plasma glucose (FPG)≥7.0 mmol/L, random glucose≥11.1

mmol/L, 2 - hour glucose tolerance test≥11.1 mmol/L, or use of

diabetes medication or insulin). Blood biomarkers included

albumin (ALB), neutrophil count (NC), lymphocyte count (LC),

monocyte count (MC), and platelet count (PLT). As previously

described, NLR was calculated as NC/LC; PLR was calculated as

PLT/LC; LMR was calculated as LC/MC; SII was calculated as

(PLT*NC)/LC; SIRI was calculated as (NC*MC)/LC; PIV was

calculated as (NC*PLT*MC)/LC; NAR was calculated as NC/ALB;

ALI was calculated as (BMI*Alb)/NLR; PNI was calculated as ALB

+ 5*LC; SIS was calculated based on LMR and ALB, with 0 points
FIGURE 1

The flowchart of study participants.
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for LMR≥2.17 and ALB≥39.8 g/L, 1 point for LMR < 2.17 or ALB <

39.8 g/L, and 2 points for LMR < 2.17 and ALB < 39.8 g/L. Potential

confounding variables associated with RA mortality were selected

from published RA studies, including demographics (age, gender,

race, education), behavioral factors (smoking, alcohol use), clinical

charac t e r i s t i c s ( ca rd iovascu la r d i s ea se s , BMI) , and

inflammation markers.
Statistical analysis

NHANES employs a complex multistage sampling design.

Sample - weighted data requires calculation based on this design.

However, for machine learning model development, we used

unweighted data from the NHANES database. Unlike weighted

data, which estimates national incidence and prevalence, our focus

was exploring the relationship between RA - related mortality and

individual characteristics to build a model.

Data statistical analysis was conducted in R (version 4.2.2).

Continuous variables are expressed as mean ± SD, with inter -

group differences assessed by t - tests. Categorical variables are

presented as frequencies and percentages, compared using chi -

square tests. All tests were two - sided, with p < 0.05 indicating

statistical significance.

We randomly split 310 participants into training (217) and

validation (93) cohorts at a 7:3 ratio. The training cohort served for

model development, while the validation cohort was for internal

validation. To identify predictors of RA - related mortality and

reduce variable collinearity, we applied Least Absolute Shrinkage

and Selection Operator (LASSO) logistic regression. This technique

minimizes coefficients of less influential variables to zero, enhancing

model prediction accuracy. We evaluated and optimized the LASSO

model via cross - validation, dividing the dataset into ten subsets.

The model underwent iterative training and assessment on these

subsets to determine effectiveness and optimal parameters. During

cross - validation, we typically generated a model performance plot

for different lambda values to assess effectiveness across settings.

“Minimum deviation” refers to the lambda value yielding the

smallest deviation via cross - validation, signifying the best data

fit. We selected this lambda value as optimal. LASSO logistic

regression in the training set identified independent predictors,

forming an RA - related mortality prediction model. We then

established a clinical diagnostic nomogram using feature variables.

Model performance assessment involved three metrics: Area

under the Curve (AUC), calibration curves, and decision curve

analysis (DCA). AUC reflects a model’s discrimination ability

between patients and healthy individuals; higher values mean

better diagnostic accuracy. Calibration curves illustrate the

predicted - observed outcome relationship. Using 1000 bootstrap

samples to plot these curves enhanced precision and reduced over-

fitting bias. The closer the calibration curve to the ideal, the higher

the model’s prediction accuracy. DCA evaluates a model’s clinical

utility by analyzing clinical net benefit across different threshold

probabilities, providing a comprehensive and clinically relevant

performance assessment. We also conducted Kaplan - Meier
Frontiers in Immunology 04
analysis based on key death - risk - related variables to clarify

underlying relationships.
Results

Baseline characteristics of participants

After stepwise screening, this study included 310 participants from

the NHANES database (1999 - 2018) meeting the inclusion and

exclusion criteria for analysis. Among them, 140 experienced RA -

related deaths (140/310), with a mortality rate of 45.16%. These

participants were randomly divided into training (217) and

validation (93) sets at a 7:3 ratio. The training set had a mean age of

67 ± 13 years, with 95 RA - related deaths (43.78%). The validation set

had a mean age of 69 ± 12 years, with 45 RA - related deaths (48.39%).

In this study, we analyzed the baseline demographic and clinical

characteristics of the participants across the different cohorts. Apart

from RAR (P = 0.047), no significant differences were found between

the two groups in other indicators (P > 0.05), and these had no

significant impact on the outcome, indicating a comparable baseline for

predictive research (Table 1).

In the training set, the Wilcoxon test or chi - square test was

employed to compare various indicators between the death group

and the non - death group. The results revealed statistically

significant differences in age (P < 0.001), race (P = 0.003), BMI (P

< 0.001), heart failure (P = 0.002), NLR (P < 0.001), PLR (P = 0.005),

LMR (P < 0.001), SII (P = 0.006), SIRI (P < 0.001), PIV (P < 0.001),

PNI (P < 0.001), SIS (P < 0.001), and ALI (P < 0.001) (Table 2).
Selection of main predictors of RA-related
mortality

LASSO regression adds an L1 regularization term (absolute

value penalty) to ordinary least squares regression. It selectively

shrinks some coefficients to zero, identifying the most critical

features. This technique reduces over-fitting, enhances

generalization, and promotes feature selection, particularly for

correlated features, improving model interpretability and

performance. Coefficient shrinkage in LASSO regression is

achieved by minimizing a loss function that includes the L1

regularization term. This process sets some coefficients to zero,

effectively eliminating non - essential features. Using LASSO

regression, we selected 4 significant predictors from the 24 feature

variables in the training cohort: age, heart failure, SIRI and ALI

(Figures 2A, B). The coefficients are shown in Table 3, and a

coefficient profile is plotted in Figure 3.
Construction of a new prediction model of
RA-related mortality

Figure 4 shows that the AUC of the above variables all exceed

0.5, among which the AUC of age is 0.796, heart failure is 0.557,
frontiersin.org
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TABLE 1 | Patient demographics and baseline characteristics.

Characteristic

Cohort

P-valueTraining
Cohort, N

= 217

Internal Test
Cohort, N

= 93

Gender, n(%) 0.949

Male 39 (18.0%) 17 (18.3%)

Female 178 (82.0%) 76 (81.7%)

Age(years) 0.130

Mean ± SD 67 ± 13 69 ± 12

Race, n(%) 0.065

Mexican American 26 (12.0%) 5 (5.4%)

Other Hispanic 20 (9.2%) 3 (3.2%)

Non-Hispanic White 132 (60.8%) 61 (65.6%)

Non-Hispanic Black 33 (15.2%) 19 (20.4%)

Other Race 6 (2.8%) 5 (5.4%)

BMI 0.897

Mean ± SD 31 ± 7 31 ± 9

Hypertension, n(%) 0.348

Yes 165 (76.0%) 66 (71.0%)

No 52 (24.0%) 27 (29.0%)

Diabetes, n(%) 0.974

Yes 40 (18.4%) 17 (18.3%)

No 177 (81.6%) 76 (81.7%)

Heart failure, n(%) 0.929

Yes 18 (8.3%) 8 (8.6%)

No 199 (91.7%) 85 (91.4%)

Coronary heart
disease, n(%)

0.209

Yes 18 (8.3%) 12 (12.9%)

No 199 (91.7%) 81 (87.1%)

Angina, n(%) 0.213

Yes 20 (9.2%) 13 (14.0%)

No 197 (90.8%) 80 (86.0%)

Heart attack, n(%) 0.926

Yes 17 (7.8%) 7 (7.5%)

No 200 (92.2%) 86 (92.5%)

Stroke, n(%) 0.847

Yes 15 (6.9%) 7 (7.5%)

No 202 (93.1%) 86 (92.5%)

(Continued)
F
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TABLE 1 Continued

Characteristic

Cohort

P-valueTraining
Cohort, N

= 217

Internal Test
Cohort, N

= 93

Smoking, n(%) 0.033

Yes 64 (29.5%) 39 (41.9%)

No 153 (70.5%) 54 (58.1%)

Drinking, n(%) 0.306

Yes 117 (53.9%) 56 (60.2%)

No 100 (46.1%) 37 (39.8%)

NLR 0.828

Mean ± SD 2.30 ± 1.43 2.34 ± 1.12

PLR 0.262

Mean ± SD 138 ± 55 145 ± 55

LMR 0.760

Mean ± SD 4.00 ± 1.57 4.07 ± 1.87

RAR 0.047

Mean ± SD 0.31 ± 0.04 0.33 ± 0.06

SII 0.914

Mean ± SD 594 ± 384 599 ± 321

SIRI 0.545

Mean ± SD 1.28 ± 0.83 1.22 ± 0.68

PIV 0.474

Mean ± SD 334 ± 244 314 ± 208

NAR 0.397

Mean ± SD 0.10 ± 0.04 0.10 ± 0.03

PNI 0.054

Mean ± SD 52.1 ± 4.8 50.9 ± 5.2

SIS 0.315

Mean ± SD 0.35 ± 0.53 0.42 ± 0.61

ALI 0.517

Mean ± SD 694 ± 360 664 ± 392

Follow-up(month) 0.966

Mean ± SD 136 ± 55 135 ± 48
fro
BMI, body mass index; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte
ratio; LMR, lymphocyte-to-monocyte ratio; SII, systemic immune-inflammatory index; SIRI,
systemic inflammatory response index; PIV, pan-immune-inflammation value; NAR,
neutrophil-to-albumin ratio; PNI, Prognostic Nutritional Index; SIS, systemic inflammation
score; ALI, advanced lung cancer inflammation index.
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TABLE 2 Comparison of variables between death group and non-death group.

Characteristics

Training Cohort Internal Test Cohort

Non-death
group
N = 122

Death group
N = 95

P-value
Non-death

group
N = 48

Death group
N = 45

P-value

Gender, n(%) 0.492 0.136

Male 20 (16%) 19 (20%) 6 (13%) 11 (24%)

Female 102 (84%) 76 (80%) 42 (88%) 34 (76%)

Age(years) <0.001 <0.001

Mean ± SD 62 ± 12 73 ± 11 62 ± 12 77 ± 8

Race, n(%) 0.003 0.082

Mexican American 18 (15%) 8 (8%) 4 (8%) 1 (2%)

Other Hispanic 17 (14%) 3 (3%) 2 (4%) 1 (2%)

Non-Hispanic White 62 (51%) 70 (74%) 27 (56%) 34 (76%)

Non-Hispanic Black 20 (16%) 13 (14%) 10 (21%) 9 (20%)

Other Race 5 (4%) 1 (1%) 5 (10%) 0 (0%)

BMI <0.001 0.295

Mean ± SD 32 ± 7 29 ± 7 32 ± 8 30 ± 10

Hypertension, n(%) 0.227 0.006

Yes 89 (73%) 76 (80%) 28 (58%) 38 (84%)

No 33 (27%) 19 (20%) 20 (42%) 7 (16%)

Diabetes, n(%) 0.215 0.341

Yes 26 (21%) 14 (15%) 7 (15%) 10 (22%)

No 96 (79%) 81 (85%) 41 (85%) 35 (78%)

Heart failure, n(%) 0.002 0.027

Yes 4 (3%) 14 (15%) 1 (2%) 7 (16%)

No 118 (97%) 81 (85%) 47 (98%) 38 (84%)

Coronary heart disease,
n(%)

0.579 0.905

Yes 9 (7%) 9 (9%) 6 (13%) 6 (13%)

No 113 (93%) 86 (91%) 42 (88%) 39 (87%)

Angina, n(%) 0.125 0.306

Yes 8 (7%) 12 (13%) 5 (10%) 8 (18%)

No 114 (93%) 83 (87%) 43 (90%) 37 (82%)

Heart attack, n(%) 0.193 0.709

Yes 7 (6%) 10 (11%) 3 (6%) 4 (9%)

No 115 (94%) 85 (89%) 45 (94%) 41 (91%)

Stroke, n(%) 0.189 0.005

Yes 6 (5%) 9 (9%) 0 (0%) 7 (16%)

No 116 (95%) 86 (91%) 48 (100%) 38 (84%)

(Continued)
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SIRI is 0.731, and ALI is 0.753. Next, to establish a new predictive

model, we performed multivariable logistic analysis on the training

cohort, eliminating the not significant indicator ALI (P = 0.341)

(Table 4). The final model includes 3 independent predictors (age,

heart failure, SIRI). These mutually independent predictors were

combined into a nomogram to quantify the probability of RA -
Frontiers in Immunology 07
related mortality (Figure 5). For example, in this study, for a 79 -

year - old female patient with heart failure, the “age” score was 85,

“heart failure” was 25, and SIRI was 25 (SIRI = 1.4412). Therefore, if

the total score of the three predictors in the histogram is 135, the

corresponding predicted probability is 0.9, indicating a 90%

mortality risk for the RA patient.
TABLE 2 Continued

Characteristics

Training Cohort Internal Test Cohort

Non-death
group
N = 122

Death group
N = 95

P-value
Non-death

group
N = 48

Death group
N = 45

P-value

Smoking, n(%) 0.760 0.371

Yes 37 (30%) 27 (28%) 18 (38%) 21 (47%)

No 85 (70%) 68 (72%) 30 (63%) 24 (53%)

Drinking, n(%) 0.247 0.702

Yes 70 (57%) 47 (49%) 28 (58%) 28 (62%)

No 52 (43%) 48 (51%) 20 (42%) 17 (38%)

NLR <0.001 0.004

Mean ± SD 1.94 ± 0.92 2.77 ± 1.80 2.01 ± 0.97 2.68 ± 1.17

PLR 0.005 0.066

Mean ± SD 128 ± 54 149 ± 54 135 ± 53 156 ± 55

LMR <0.001 <0.001

Mean ± SD 4.51 ± 1.34 3.36 ± 1.60 4.82 ± 1.94 3.27 ± 1.42

RAR 0.227 0.878

Mean ± SD 0.31 ± 0.04 0.32 ± 0.04 0.33 ± 0.08 0.33 ± 0.04

SII 0.006 0.059

Mean ± SD 531 ± 356 676 ± 404 538 ± 323 663 ± 309

SIRI <0.001 <0.001

Mean ± SD 0.99 ± 0.51 1.64 ± 1.01 0.93 ± 0.45 1.54 ± 0.75

PIV <0.001 0.002

Mean ± SD 275 ± 186 410 ± 287 249 ± 149 384 ± 239

NAR 0.050 0.265

Mean ± SD 0.10 ± 0.04 0.11 ± 0.05 0.096 ± 0.036 0.104 ± 0.034

PNI <0.001 0.055

Mean ± SD 53.1 ± 4.5 50.7 ± 4.8 51.9 ± 5.9 49.8 ± 4.2

SIS <0.001 0.299

Mean ± SD 0.22 ± 0.42 0.51 ± 0.62 0.35 ± 0.48 0.49 ± 0.73

ALI <0.001 <0.001

Mean ± SD 807 ± 326 550 ± 351 793 ± 462 526 ± 236
fr
BMI, body mass index; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte ratio; LMR, lymphocyte-to-monocyte ratio; SII, systemic immune-inflammatory index; SIRI, systemic
inflammatory response index; PIV, pan-immune-inflammation value; NAR, neutrophil-to-albumin ratio; PNI, Prognostic Nutritional Index; SIS, systemic inflammation score; ALI, advanced
lung cancer inflammation index.
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Kaplan–Meier survival analysis of the 3
independent predictive factors

Kaplan-Meier survival analysis showed that high-risk patients -

older age (>60 years), with heart failure, and high SIRI value
Frontiers in Immunology 08
(>1.3236) - had significantly higher long-term mortality than low-

risk patients (all P-values < 0.001) (Figure 6).
Performance of the new nomogram of RA-
related mortality in AUC, and calibration
curve

Figure 7 shows the model’s performance with an AUC of 0.852

(95% CI 0.799 - 0.904) in the training cohort and an AUC of 0.904

(95% CI 0.846 - 0.963) in the internal validation cohort. Both AUC

values exceed those of single indicators, indicating good predictive

ability. The calibration plots for both cohorts (Figures 8A, B) show well

- aligned calibration curves with the ideal curve, demonstrating strong
FIGURE 2

Lasso regression cross-validation plot (A) and lasso regression coefficient path plot (B).
TABLE 3 The coefficients of Lasso regression analysis.

variable Coefficient

(Intercept) -4.1601061499

age 0.0547509970

Race_Other Hispanic 0.0000000000

Race_Non-Hispanic White 0.0000000000

Race_Non-Hispanic Black 0.0000000000

Race_Other Race 0.0000000000

BMI 0.0000000000

Heart.failure_No -0.2485664004

NLR 0.0000000000

PLR 0.0000000000

LMR 0.0000000000

SII 0.0000000000

SIRI 0.4975465642

PIV 0.0000000000

PNI 0.0000000000

SIS 0.0000000000

ALI -0.0002682872
BMI, body mass index; NLR, neutrophil-to-lymphocyte ratio; PLR, platelet-to-lymphocyte
ratio; LMR, lymphocyte-to-monocyte ratio; SII, systemic immune-inflammatory index; SIRI,
systemic inflammatory response index; PIV, pan-immune-inflammation value; NAR,
neutrophil-to-albumin ratio; PNI, Prognostic Nutritional Index; SIS, systemic inflammation
score; ALI, advanced lung cancer inflammation index.
FIGURE 3

Plot of coefficient profile.
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consistency between predicted and observed outcomes. These results

highlight the nomogram’s good predictive value and discrimination.
Evaluation of clinical utility of the new
nomogram of RA-related mortality

We further conducted DCA to evaluate the clinical utility of the

newly developed RA - related mortality nomogram. In Figures 9A,

B, the nomogram exhibited notable net benefits across both the

training and validation cohorts. These findings suggest that the

newly established RA - related mortality nomogram holds

significant clinical practical value.
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Discussion

Although the exact etiology and pathogenesis of RA remain

unclear, RA is evidently an autoimmune disease characterized by

immune dysregulation. Immune cells attack host tissues, inducing

inflammation and tissue damage (28, 29). For example, immune

attacks on blood vessels can lead to vasculitis, while those on lung

tissue can result in pulmonary interstitial fibrosis and rheumatoid

nodule formation. These nodules may liquefy and be coughed out,

causing lung cavitation. This impairs respiratory function and can

lead to respiratory failure in severe cases (30–33). When RA affects

the heart, it can cause myocarditis, pericarditis, and myocardial

ischemia, which can be life - threatening (34–37). Thus, there is a

growing need for a simple and user - friendly RA - related mortality

prediction model to identify individuals at risk. A nomogram is a

visual predictive tool that helps screen for potentially diseased

individuals and has been widely used in many fields. In our

study, we developed a model based on the NHANES database

(1999 - 2018) for RA - related deaths. By examining these

characteristic variables, we identified three optimal predictors

(age, heart failure, and SIRI) and constructed an effective RA -

related mortality probability prediction nomogram. The risk

probability of RA - related death can be estimated by calculating

scores. The model has high predictive performance (training cohort

AUC 0.852, validation cohort AUC 0.904), strong discrimination,

and clinical applicability. It helps primary care physicians quickly

and accurately assesses RA - related mortality risk. Similarly, our

findings support this view that the Kaplan–Meier analysis

demonstrated a notably reduced survival probability for subjects

exhibiting increased SIRI values. Our model simplifies medical

procedures and promotes early detection and treatment.
FIGURE 4

ROC curve analysis 4 candidate diagnostic indicators.
TABLE 4 Results of multivariate logistic regression for training cohort.

Characteristic N Event N OR 95% CI P-value

Age 217 95 1.10 1.07, 1.14 <0.001

Heart failure

Yes 18 14 ref ref

No 199 81 0.15 0.04, 0.67 0.012

SIRI 217 95 2.86 1.40, 5.85 0.004

ALI 217 95 1.00 1.00, 1.00 0.341
SIRI, systemic inflammatory response index; ALI, advanced lung cancer inflammation index.
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In RA pathogenesis and progression, inflammatory cells and

mediators are pivotal (38). Immune cells (neutrophils, lymphocytes,

monocytes) interact and release various inflammatory mediators,

driving the inflammatory response. Recently, many studies focused

on inflammatory markers (NLR, PLR, LMR, SII, PIV, and SIRI)

application value in RA. They reflect pro - inflammatory and anti -

inflammatory immune response balance, offering RA disease

activity and prognosis assessment clues (39).

Among them, NLR, reflecting the body’s inflammatory state

and immune function, correlates closely with increased

cardiovascular mortality in RA patients. This may stem from

neutrophils releasing neutrophil extracellular traps (NETs) in RA,

driving pathological processes like synovitis, cartilage destruction,

and bone erosion. NETs can also promote atherosclerosis and

endothelial damage, thus raising cardiovascular event risks (40,

41). Zhou et al. (2023) demonstrated NLR as a key predictor of

cardiovascular and all - cause mortality in RA patients (27). PLR
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indicates platelet activation. Platelets, crucial in blood coagulation,

worsen inflammation via interactions with white blood cells and

endothelial cells (42). In RA patients, high PLR suggests reduced

lymphocytes, hinting at impaired anti - inflammatory immunity,

which exacerbates systemic inflammation and boosts thrombosis

and cardiovascular event risks (43–45). Similarly, Liu et al. (2023)

reported SII’s prognostic value in RA - related outcomes (26). SII,

considering neutrophil, platelet, and lymphocyte counts, links to

RA disease activity and mortality. It better reflects the body’s

inflammatory and thrombotic risks, enriching RA clinical

management information (23–25).

As a comprehensive marker of the body’s inflammatory state,

SIRI integrates neutrophils, monocytes, and lymphocytes, offering a

more nuanced assessment of systemic inflammation. In RA

patients, elevated SIRI often indicates increased inflammatory

activity and severe immune imbalance (46, 47). Neutrophils play

a crucial role in early inflammation, releasing substances like NETs
FIGURE 5

Nomogram of probability to develop RA - related mortality using age, heart failure, and SIRI. To use the nomogram, draw an upward vertical line
from each covariate to the points bar to calculate the number of points. Based on the sum of the covariate points, draw a downward vertical line
from the total points line to calculate the probability of developing RA - related mortality.
FIGURE 6

Kaplan-Meier curves of the survival rate of participants with age, heart failure, and SIRI (A: age, B: heart failure, C: SIRI).
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that directly damage joint synovium, promote oxidative stress, and

increase cardiovascular disease risk (40, 48). Monocytes

differentiate into macrophages and osteoclasts, driving synovial

hyperplasia, joint inflammation, and bone destruction (49–51). A

relative decrease in lymphocytes may reflect impaired immune

regulation, making it difficult to control inflammation (52–54).

Specifically, elevated SIRI impacts RA patients in several ways: (1)

Increased cardiovascular disease risk: RA patients already face a

higher risk of cardiovascular disease (55), which is further

aggravated by elevated SIRI (46, 56). Persistent pro-inflammatory

cytokines like TNF-a and IL-6 damage vascular endothelial cells,

resulting in endothelial dysfunction. This dysfunction increases the
Frontiers in Immunology 11
expression of adhesion molecules on the endothelial surface,

promoting platelet aggregation and the adhesion and infiltration

of inflammatory cells, accelerating atherosclerotic plaque formation

(57, 58). RA patients often demonstrate the “lipid paradox,” where

despite lower levels of total cholesterol, LDL, and HDL,

cardiovascular risk increases (59–61). Inflammation alters HDL

particle subcomponents and structure, reducing its anti-

atherosclerotic function and increasing LDL-C oxidation, further

accelerating plaque formation and promoting plaque instability.

Neutrophils and monocytes interact in the inflammatory response.

Neutrophils release NETs, damaging joint synovium and increasing

cardiovascular disease risk (40, 48, 62), while monocytes
FIGURE 7

ROC curve for the nomogram based on the training cohort (The AUC is 0.852) and internal validation cohort (The AUC is 0.904).
FIGURE 8

Calibration curves of the nomogram for predicting RA - related mortality from the training cohort (A) and the internal validation cohort (B).
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differentiate into macrophages that secrete inflammatory mediators,

worsening vascular inflammation (51). (2)Promotion of respiratory

complications: RA can impact the respiratory system, causing

complications like interstitial lung disease, pulmonary fibrosis,

and rheumatoid nodules (63). Patients with elevated SIRI exhibit

more active systemic inflammation, with immune cell infiltration

and activation in lung tissue exacerbating pulmonary inflammation

and fibrosis (30, 32, 64–66). For example, neutrophil-released

elastase and myeloperoxidase damage alveolar epithelial cells and

lung interstitium, while monocyte-derived macrophages secrete

inflammatory mediators, stimulating fibroblast proliferation and

collagen synthesis (67). These pathological changes result in

declining lung function, symptoms like dyspnea and cough, and

potentially respiratory failure and increased mortality risk. (3)

Exacerbation of immune system imbalance: Elevated SIRI

indicates immune system imbalance in RA patients, characterized

by an imbalance between pro-inflammatory and regulatory T cells.

Pro-inflammatory T cells like Th1 and Th17 are overactivated,

secreting large amounts of pro-inflammatory cytokines that drive

inflammation (68). In contrast, decreased numbers and function of

regulatory T cells (Tregs) prevent effective suppression of excessive

inflammation, resulting in persistent autoimmune attacks (69–71).

This immune system imbalance not only worsens joint

inflammation and damage but also makes other organs and

tissues more susceptible to immune-mediated injury. For

example, immune attacks on vascular endothelial cells can cause

vasculitis, affecting blood supply to multiple organs, while attacks

on heart tissue can lead to myocarditis and pericarditis, impairing

heart function (72, 73). (4) Systemic inflammation damage to

organs: The systemic inflammation of RA damages various

organs through multiple pathways, increasing mortality risk. In

the cardiovascular system, in addition to atherosclerosis and

endothelial dysfunction, inflammation can directly damage

myocardial cells and cause myocardial fibrosis, impairing cardiac
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contraction and relaxation (72, 73). In the kidneys, chronic

inflammation can lead to glomerulonephritis and interstitial

nephritis, impairing kidney function and causing metabolic waste

and fluid retention, exacerbating systemic inflammation (74, 75).

Additionally, inflammation can impact the endocrine system, such

as disrupting insulin signaling, leading to insulin resistance and

abnormal glucose metabolism (75), further increasing the risk of

cardiovascular disease and other complications. Previous research

by Yin based on the NHANES database demonstrated a significant

association between elevated SIRI and increased all-cause and

cardiovascular mortality in RA patients (76). In RA patients,

elevated SIRI not only indicates increased disease activity but also

predicts higher mortality risk. Similarly, our study demonstrated

that SIRI is strongly associated with increased mortality and is an

independent risk factor for increased death risk in RA patients.

Our study demonstrated that age and heart failure are

independent risk factors for rheumatoid arthritis (RA) - related

mortality. Aging is associated with immunosenescence,

characterized by a decline in adaptive immunity and a transition

to a pro - inflammatory state, often termed “inflammaging” (77, 78).

This chronic low - grade inflammation aggravates RA disease

activity and heightens the risk of comorbidities such as

cardiovascular diseases. Heart fai lure, a common RA

complication, further elevates mortality risk through shared

inflammatory pathways. RA - related inflammation contributes to

myocardial fibrosis, endothelial dysfunction, and atherosclerosis,

resulting in systolic and diastolic heart failure (79–81). Elevated pro

- inflammatory cytokines like TNF - a and IL - 6 among RA

patients have been linked to heart failure pathogenesis, emphasizing

the interaction between systemic inflammation and cardiovascular

dysfunction. In summary, age and heart failure contribute to RA -

related mortality through mechanisms involving chronic

inflammation, immune dysregulation, and cardiovascular

dysfunction (7, 82, 83).
FIGURE 9

Decision curve analysis (DCA) of the nomogram: (A) the training cohort; (B) the internal validation cohort.
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We propose the following recommendations for applying this

model to clinical practice and integrating it with other clinical

indicators for comprehensive assessment: 1. Risk Stratification and

Triage Management: “A scoring system based on age, heart failure

status, and SIRI enables clinicians to rapidly identify RA patients

needing priority intervention. For example, high - risk patients

(elderly, with heart failure, and SIRI>1.326) should be referred to a

joint clinic of rheumatology and cardiology for intensified anti -

inflammatory therapy (e.g., biologics) and cardiovascular risk

management (e.g., statins).”. 2. Dynamic Monitoring and

Treatment Adjustment: “We suggest moderate - to - high - risk

patients undergo rechecks of SIRI and cardiac function indicators

such as BNP and echocardiography every six months. This dynamic

risk assessment helps monitor disease progression. If SIRI continues

to rise or new heart failure symptoms emerge, the treatment plan

should be adjusted, for instance, by upgrading anti - inflammatory

drugs or incorporating heart failure - targeted therapies.”. 3.

Integration with Other Clinical Indicators: (1) Combination with

RA Disease Activity Indicators: “In our model, SIRI correlates

positively with DAS28 scores (r=0.42, p<0.01) and synovial blood

flow on joint ultrasound. We recommend combined use: a patient

with DAS28>5.1 and SIRI>1.326 indicates coexisting high disease

activity and mortality risk, thus requiring intensified

immunosuppression and cardiovascular protection.” (2)

Incorporation into Cardiovascular Risk Stratification Systems:

“The integration of our model’s results with the Framingham

Risk Score (for example, high - risk group with Framingham

score≥20% and nomogram total score≥150) can identify RA -

specific high - cardiovascular - risk populations, guiding decisions

on aspirin or anticoagulant therapy.”. (3) Combination with

Imaging and Biomarkers: “For high - risk patients according to

the nomogram, additional tests such as coronary artery calcium

(CAC) scoring and carotid ultrasound are recommended. If CAC

exceeds 100 or plaques are unstable, dual antiplatelet therapy

should be initiated. Continuous monitoring of IL - 6 and TNF -

a levels is also advised; sustained elevation suggests uncontrolled

inflammation, indicating a need to change biologics.”. 4. Clinical

Application Scenarios: Primary - care workers can utilize the

nomogram to rapidly score and identify high - risk RA patients

(e.g., those with a total score>120) for referral, taking into account

CRP, ESR, and swollen joint count to avoid missed diagnoses. Upon

referral to a higher - level hospital, doctors can implement

multidisciplinary management (e.g., collaborative care by

rheumatology and cardiology). This involves formulating

individualized treatment plans based on risk stratification (e.g.,

combining TNF - a inhibitors with SGLT2 inhibitors for high - risk

patients) and incorporating results from echocardiography (LVEF),

pulmonary function tests (DLCO), and bone density measurements

(DXA). For surgical patients, preoperative assessment using this

model can predict postoperative complication risks in RA patients

undergoing joint replacement. High - risk surgical candidates

should delay the procedure until their SIRI falls below 1.0 and

should be assessed in conjunction with ASA classification,

cardiopulmonary exercise testing (CPET), and troponin levels.
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Strengths of this study include: (1) This study uses the NHANES

database (1999 - 2018), a large - scale, long - term national health

and nutrition survey with wide demographic coverage, ensuring

representative and generalizable results that enhance scientific

credibility. (2) NHANES provides comprehensive clinical and

laboratory data, including detailed medical history, physical

examination, and laboratory test results, enabling thorough

analysis of mortality risk factors in RA patients. (3) Rigorous

statistical analysis and variable screening identified three optimal

predictors: age, heart failure, and SIRI. SIRI, reflecting the body’s

inflammatory state, innovatively predicts RA - related mortality,

offering a new prognosis assessment perspective. Its selection, based

on extensive data analysis, ensures model scientific soundness and

practicality. (4) Unlike Yin et al.’s univariate analysis exploring SIRI -

mortality links without considering confounding indicators, this

study performed LASSO and multivariate logistic regression,

eliminating interference from other indicators and enhancing

result convincingness. (5) The prediction model shows high

performance in training and validation cohorts (AUC: 0.852 and

0.904). Calibration plots confirm consistency between predictions

and observations, and DCA reveals significant net benefits of the

nomogram in both cohorts. This indicates the model’s strong

discriminative ability and clinical applicability, allowing doctors to

quickly and accurately assess RA patients’ mortality risk. (6) As a

visual prediction tool (nomogram), the model simplifies medical

procedures, promotes early detection and treatment, and enables

doctors to rapidly estimate RA - related death risk through score

calculation, improving patient management.

The limitations of this study are as follows. First, the NHANES

database, though rich in data, is retrospective and may have

collection and recording biases. For example, incomplete medical

histories or missing lab results in some patients can affect the

model’s accuracy and reliability. Second, specific data are lacking.

The NHANES database, despite being extensive, may miss detailed

RA - patient - specific data like full treatment histories, medication

use, and disease activity indicators, which are important for a

comprehensive mortality - risk assessment. Third, the model’s

external validation is lacking. Although it performs well in

training and validation cohorts, it hasn’t been externally validated

in different regions and medical settings, limiting its broad

application. Finally, dynamic changes are not fully considered.

The model, based on static data, may not fully capture the impact

of RA patients’ dynamic condition and inflammatory status on

mortality risk. Future research should improve data collection,

expand validation, and include more potential predictors to

enhance the model’s accuracy and universality. Also, more

prospective, multicenter randomized controlled studies are

needed to further confirm the reliability of the conclusions.
Conclusions

This study developed a nomogram model to predict RA patient

mortality using the NHANES database (1999 - 2018). The model
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includes age, heart failure, and SIRI as optimal predictors, showing

good discrimination and clinical utility. A higher SIRI is associated

with a significant drop in RA patients’ survival rate, underlining its

value as an inflammatory marker for RA prognosis. The model

provides clinicians with a simple, effective tool for quickly and

accurately identifying high - risk RA patients, facilitating early

intervention and personalized treatment, and enhancing

patient outcomes.
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