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Hidradenitis Suppurativa (HS) is a chronic multifactorial inflammatory skin disease

with a debilitating impact on quality of life. Here, we review the complex interplay

of innate and adaptive immune dysregulation in HS pathogenesis, in the context

of microbial dysbiosis, genetic predisposition, cellular dysfunction and epigenetic

factors. Hyperactivation of the innate system triggered by follicular occlusion

leads to a cascade of activated signaling pathways leading to persistent

inflammation as the disease progresses. This immune hyperactivation is further

complicated by microbiome dysbiosis, which is associated with dysregulation of

inflammasomes and altered expression of host antimicrobial peptides.

Keratinocytes, fibroblasts, macrophages, and neutrophils exhibit altered

functions, and contribute to the inflammatory cascade and disease chronicity

in HS. Epigenetic mechanisms including DNAmethylation, histonemodifications,

and non-coding RNAs modulate immune responses and contribute to aberrant

cytokine and chemokine expression that drive the persistent inflammatory state

in HS pathogenesis. We highlight the need for future research to explore the

concept of epigenetic memory in epidermal stem cells and inflammasome

activation to gain a better understanding of these mechanisms and pave the

way for development of future novel therapeutic targets and strategies to disrupt

the persistent chronic inflammation cycle in this debilitating condition.
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Introduction

Hidradenitis Suppurativa (HS) is a chronic inflammatory

disease that presents with painful lesions, including deep nodules,

abscesses, tunnels, and fibrotic scars in intertriginous areas of the

skin (1). HS has a global prevalence of up to 4%, with an estimated

prevalence of 0.10% in the United States (2). This debilitating

condition disproportionately affects African American and

Hispanic women (3). However, the exact pathogenic mechanisms

involved in the development and progression of HS are not fully

understood. HS is believed to originate from the epithelium of hair

follicles involving both terminal and vellus hairs. Follicular

occlusion triggers a cascade in which ruptured follicles attract

significant infiltrates to the affected area (Figure 1). When

multiple follicles or cysts rupture, it leads to autoantigen exposure

and inflammation (4). This environment becomes susceptible to

bacterial colonization, ultimately resulting in abscess and tunnel

formation (5).

In the more advanced stages of HS, Hurley Stages 2 and 3, the

condition is marked by extensive immune cell infiltration, including

neutrophils, macrophages, dendritic cells, and T cells, which produce

pro-inflammatory cytokines such as IL-1b and TNF (Figure 2). This
Frontiers in Immunology 02
inflammatory response results in recurrent abscesses accompanied by

scarring and the formation of sinus tracts in Stage 2, and widespread

involvement with interconnected sinus tracts and abscesses covering

an entire region in Stage 3 (6).

Current treatment of HS typically involves a combination of

medical therapies such as antibiotics, retinoids, and biologics,

alongside lifestyle modifications and surgical interventions

tailored to the severity of the disease. Biologics, particularly those

targeting TNF-a and IL-17, have shown considerable promise.

TNF-a inhibitors like adalimumab have demonstrated efficacy in

reducing inflammation, decreasing the size of lesions, and

improving clinical outcomes, especially in severe cases (7).

Clinical trials such as the PIONEER I and II studies underscore

adalimumab’s ability to achieve significant response rates compared

to placebo (8). However, challenges such as recurrence post-

treatment and potential tolerance development remain (9). In

addition to anti-TNF therapies, recently anti-IL-17 agents like

secukinumab and bimekizumab, were recently FDA-approved.

(10–12). IL-17A is highly expressed in HS lesions, where it

contributes to the inflammation and pathogenesis of the disease

(13). Studies have shown that IL-17A is produced by various

immune cells, including T cells, neutrophils, and mast cells,
FIGURE 1

Schematic of signaling pathways in early stage of HS pathogenesis. The early events of HS pathogenesis include significant changes in perivascular
and perifollicular immune cell infiltration, hyperkeratosis, and hyperplasia of the infundibular epithelium. Follicular occlusion and stasis promote
bacterial proliferation and follicular dilation leading to rupture of the hair follicle, triggering release of pro-inflammatory mediators and recruitment
of immune cells.
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within the affected skin (13–15). Secukinumab showed significant

improvement in clinical outcomes for moderate-to-severe HS in the

SUNSHINE and SUNRISE phase 3 trials, with rapid efficacy

observed by week 2 and sustained through week 52. Over 75% of

patients who responded by week 16 maintained their clinical

improvements, underscoring secukinumab’s potential as an

effective treatment option (16). In addition, recent clinical trials

demonstrated that dual inhibition of IL17A and IL17F with

bimekizumab showed greater clinical improvement compared to

placebo control groups (12, 17). These studies underscore the

importance of IL17 signaling in HS pathogenesis and support the

use of anti-IL17 biologics for the treatment of patients with

moderate-to-severe HS.

In this review, we provide a comprehensive synthesis of

emerging evidence on the interplay between innate immunity and

epigenetic regulation in the pathogenesis of hidradenitis

suppurativa. We explore how epigenetic mechanisms, such as

DNA methylation, histone modifications, and non-coding RNAs,

modulate immune cell activation, cytokine production, and barrier

dysfunction, contributing to the chronic inflammatory state

characteristic of HS. Special attention is given to the concept of

epigenetic memory and its role in priming keratinocytes, fibroblasts,
Frontiers in Immunology 03
and immune cells toward persistent inflammatory responses. We

also highlight the involvement of distinct immune cell subsets,

including innate lymphoid cells, NK cells, and mast cells, as well as

the contribution of fibroblast heterogeneity and inflammasome

activation to disease progression. Environmental factors such as

smoking, obesity, and diabetes are discussed as modulators of the

epigenome, potentially reinforcing inflammatory circuits and

impaired wound healing. This integrative framework identifies

novel molecular targets and provides new insights into the

mechanisms underlying HS chronicity and treatment resistance.
Innate immune mechanisms involved
in HS pathogenesis

Innate immune mechanisms are thought to play a significant

role in the pathogenesis of HS and contribute to the complex

interplay of inflammatory responses associated with this

challenging and complex skin condition. Follicular occlusion

leads to activation of the innate immune system. Toll-like

receptors (TLRs) expressed by keratinocytes and Langerhans cells

are activated by pathogen-associated molecular patterns (PAMPs)
FIGURE 2

Schematic of signaling pathways in advanced stages of HS pathogenesis. The advanced stage of HS pathogenesis is characterized by an intense
inflammatory response, leading to the destruction of hair follicles and the formation of abscesses and sinus tracts. Epithelialized tunnels are formed
that harbor microbial colonization with pro-inflammatory mediators and immune cells that are contained within the lumen of the tunnels. The
presence of tunnels further exacerbates the inflammatory response and contributes to disease chronicity and treatment resistance.
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and damage-associated molecular patterns (DAMPs) (18). This

activation prompts the release of pro-inflammatory cytokines,

including tumor necrosis factor (TNF)-a, interferon (IFN)-a,
interleukin (IL)-1b, IL-6 or IL-8 which activate dendritic cells.

Activated dendritic cells secrete IL-12 and IL-23, with IL-23

playing a crucial role in T helper (Th)17 activation. HS is

characterized by a pronounced Th1 and Th17 inflammatory

profile (19). IL-23 facilitates keratinocyte proliferation and

stimulates release of TNFa, IL-22, IL-1b, and IL-17. IL-17, in

turn, stimulates keratinocytes to produce proinflammatory

proteins (S100A8/A9) and activate the NLRP3 inflammasome, as

well as the release of chemokines such as CXCL1, CXCL8, and

CCL20 (20). Furthermore, IL-17 binding to IL-17RA receptor

activates nuclear factor (NF)-kB leading to increased pro-

inflammatory gene expression. In addition to these dendritic cell

and T cell-mediated pathways, natural killer (NK) cells also

contribute significantly to the innate immune dysregulation

observed in HS. CD56+ NK cells co-localize with IL-32 in lesional

skin and, in early disease, exhibit enhanced production of IFN-g and
granzyme B, both of which amplify local inflammation (21, 22).

This heightened cytotoxic activity suggests that NK cells may play a

prominent role in disease initiation. Notably, NK cell numbers

appear to inversely correlate with time since disease onset, implying

that their influence may diminish with chronicity (21). Beyond NK

cells, another player in the innate immune landscape of HS is the

innate lymphoid cell (ILC) population. ILCs are significantly

expanded in HS and exhibit high CD2 expression, localizing to

lesional skin regions involved in inflammation, fibrosis, and tunnel

formation (23). These cells contribute to disease pathogenesis

through cytotoxic activity and the secretion of pro-inflammatory

cytokines. Notably, their activation can be attenuated by blocking

the CD2:CD58 interaction, suggesting a potential therapeutic target

(23). Further characterization of ILC subsets revealed total ILCs,

particularly ILC2 and ILC3, are enriched in non-lesional compared

to lesional HS skin (24). The presence of ILC3s, which produce IL-

17 and IL-22 and are associated with Notch signaling and sebaceous

gland regulation, supporting a role in early lesion formation and HS

pathogenesis (24). While ILC1 levels were not elevated in non-

lesional HS skin, they were the predominant ILC population in

lesional skin, possibly contributing to ongoing inflammation (24).

Additionally, anti-TNF treatment appeared to normalize ILC levels

in blood, supporting the idea that ILCs migrate to the skin and may

initiate or sustain inflammation in HS (24).

Increasing evidence supports a role for the NLRP3

inflammasome in contributing to the pathogenesis of HS (25, 26).

Inflammasomes are multi-protein complexes that are activated in

response to various stimuli that include microbial ligands, danger-

associated molecular patterns (DAMPs) and pathogen-associated

molecular patterns (PAMPs), all of which are highly induced in HS

(26). Activation of NLRP3 triggers cleavage of pro IL-1b (26). In

addition, inflammasome activation promotes cleavage of gasdermin

D (GSDMD) by caspase-1 triggering pyroptosis, an inflammatory

form of cell death resulting in cell rupture and release of pro-

inflammatory contents into the surrounding environment (27).

NLRP3 has been shown to be induced in HS (28), supporting a
Frontiers in Immunology 04
role for inflammasomes in fueling the chronic inflammatory response

in HS. This cascade results in the recruitment of inflammatory

cytokines to both the follicular unit and the skin surrounding

the lesions (Figure 3). Elevated levels of IL-1 family cytokines,

particularly IL-1b and IL-36, have been observed in both lesional

and non-lesional HS skin, suggesting that persistent inflammasome

activation underlies systemic immune dysregulation in HS. This

has led to the investigation of several IL-1–targeted therapies,

including anakinra (IL-1 receptor antagonist), bermekimab (anti–

IL-1a), canakinumab (anti–IL-1b), lutikizumab (dual IL-1a/b
blockade), and IL-36 receptor inhibitors such as spesolimab and

imsidolimab, as promising therapeutic strategies to mitigate chronic

inflammation (29).

Antimicrobial peptides (AMPs) are key defensive molecules

produced by epithelial and immune cells with direct antimicrobial

properties (30). In HS, the expression of several AMPs is altered.

One such AMP is Cathelicidin (LL-37), derived from hCAP18

encoded by the Cathelicidin antimicrobial peptide (CAMP) gene

(31). LL-37 is induced in follicular keratinocytes and neutrophils in

HS, contributing to inflammation and potentially fostering bacterial

resistance (32). Furthermore, LL-37 promotes Th1/Th17 cell

maturation and upregulates aforementioned pro-inflammatory

cytokines like TNF-a and IL-17 (33). Human b-defensin (hBD)-2

levels are increased in HS, promoting inflammation and

keratinocyte growth, whereas hBD-1 is decreased, possibly leading

to microbial imbalance (34, 35). Furthermore, HS is associated with

microbial dysbiosis, particularly in skin folds (36). This imbalance

between beneficial and harmful bacteria exacerbates inflammation

and promotes biofilm formation. Moreover, pathogens commonly

found in HS lesions include Staphylococcus aureus and anaerobic

bacteria such as Porphyromonas and Prevotella species, and biofilms

allow bacteria to evade the innate immune response, and chronic

biofilm formation in tunnels drive chronicity in this condition (37).

Unlike inducible peptides such as human cathelicidins and

beta-defensins, which mainly act in response to injury and

inflammation, dermcidin is an integral component of the innate

defense mechanism of human skin, functioning continuously rather

than being triggered by external factors. Dermcidin is produced in

the eccrine glands, released into sweat, and carried to the surface of

the epidermis (38). Dermcidin levels are reduced in HS, possibly

allowing for the overgrowth of certain bacteria (39).

S100 Proteins are a family of calcium-binding proteins involved

in regulating various cellular processes, including cell growth and

differentiation, protein phosphorylation, enzyme activities, and

cytoskeleton dynamics (40). S100A4, S100A7, S100A8, S100A9,

S100A12, and S100A15 are elevated in HS. Among these, S100A8

and S100A9 may serve as predictive biomarkers for adalimumab

response in HS patients, while S100A15 could be a potential marker

for disease severity and progression (41–45). Moreover,

ribonuclease 7 (RNase 7) an epithelial-derived peptide with

antimicrobial activity against Gram-positive bacteria, Gram-

negative bacteria, and the yeast Candida albicans (46) is

significantly elevated in HS patients (34, 47). Altered AMP

production patterns, including elevated expression of the

aforementioned S100A7, RNase7, and S100A8, along with an
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impaired response to microbial stimulants like muramyl dipeptide

(MDP) and Pam2CSK4, result in elevated production of

proinflammatory cytokines (IL-1b , IL-6, IL-8, TNF-a),
contributing to continuous inflammation (47).

The complement system, a crucial part of the innate immune

response, assists in tagging pathogens for destruction and

promoting inflammation. The role of the complement system in

HS pathogenesis is still under investigation, with conflicting

evidence regarding local and systemic activation (48). Direct

immunofluorescence (DIF) of HS lesions have found no

significant local deposition of complement components C1q, C3c,

C4d, and properdin. However, increased presence of C5aR1 positive

neutrophilic granulocytes in HS lesions warrants further

investigation (49).
Keratinocytes

In addition, for being primary structural cells, keratinocytes also

have profound immune functions (15, 45, 47, 50–53). Different

layers of the skin in HS are associated with distinct inflammatory

profiles, reflecting specific cellular compositions. In early lesions

and/or at the surface of HS, keratinocytes in the epidermis act as key

initiators of inflammation, by producing chemokines such as CCL3,
Frontiers in Immunology 05
CXCL3, and IL-8, which recruit immune cells, including

neutrophils, CD8 T cells, and natural killer cells, to the epidermis.

This localized inflammatory response establishes the early

microenvironment that drives the progression of HS lesions (51).

A unique feature of HS is the presence of epithelialized tunnels

present in the dermis that are characterized by a cylinder of

keratinocytes with a central lumen. Tunnels are an active source

of inflammation in HS that promote disease progression and drive

the inflammatory response, leading to the production of

chemokines and cytokines and immune cell infiltration (37). In

HS dermal tunnel keratinocytes, it was shown that IL17C and IL1A

were expressed at higher levels in the stratum corneum; IL6 was

expressed at higher levels in the stratum spinosum, and IL-1b was

expressed at higher levels in the stratum basale when compared to

controls. Both HS epidermis and HS dermal tunnel keratinocytes

expressed higher levels of IL1RL1 (ST2) compared to controls, with

HS epidermis keratinocytes having even higher levels than HS

dermal tunnel keratinocytes (54).

Keratinocyte hyperplasia in the outer root sheath (ORS) of hair

follicles is a consistent feature in HS, often marked by increased

expression of K19, indicative of hyperplastic keratinocytes in the

infundibulum (55). Whether keratinocyte hyperplasia initiates

inflammation or whether it is a consequence of inflammation has

not been resolved. Additionally, abnormal keratinocyte responses,
FIGURE 3

Schematic of inflammasome activation. Step 1: Priming involves binding of PAMPs and DAMPs to TLRs initiating NF-kB activation and upregulation of
inflammasome signaling molecules. Step 2 involves NLRP3 inflammasome assembly that triggers cleavage of IL-1b and gasdermins by caspase-1
resulting in inflammation and pyroptosis, leading to cell rupture and release of pro-inflammatory mediators into the surrounding environment.
NLRP3 has been shown to be induced in HS (28), supporting a role for fueling the highly inflammatory response.
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including epithelial-mesenchymal transition (EMT) and dermal

presence of free keratinocytes, suggest involvement in tissue

remodeling and wound healing processes. Inflammation drives

keratinocyte proliferation across both interfollicular epidermis

and follicular ORS, with follicular occlusion as a subsequent

effect. Elevated matrix metalloproteinase levels (MMP-2, MMP-9)

during the inflammatory response contribute to tissue degradation

and remodeling. Dysregulation of keratinocyte function in HS is

further underscored by reduced expression of keratin maturation

markers (K2e, K10, K19) and adhesion molecules desmoglein 1

(DG1) and desmocollin 1(DSC1) in inflamed epithelium, alongside

decreased ICAM-1 levels and altered TGF-b receptor ratios on

fibroblasts, thus impairing wound healing and promoting

hypertrophic scarring (19).

The chemokines produced by keratinocytes recruit immune

cells such as neutrophils, macrophages, and T cells to the lumen of

tunnels. This influx of immune cells is particularly pronounced in

more advanced stages of HS. Once immune cells are present in the

epidermis, they produce a set of cytokines, such as IFN-g and IL-

17A, further perpetuating an inflammatory cycle (51). Treatment

with Brodalumab, an IL-17RA antagonist leads to significant

downregulation of epithelial proliferation, differentiation, and

inflammatory cytokine production. This finding suggests that

targeting IL-17 signaling effectively reduce the keratinocyte-

mediated inflammatory loop in HS (56).

The chronic inflammation observed in HS lesions may be

driven by the interaction between certain anaerobic bacteria,

particularly Fusobacterium nucleatum (FN) and Prevotella species,

and keratinocytes (57). This interaction results in the upregulation

of several genes. Keratinocytes stimulated with FN show a distinct

profile of upregulated genes, including IL-17 pathway-related genes

(IL17C), pro-inflammatory cytokines (IL-6, TNF), and chemokines

(CXCL1-8, CCL20). This profile is more pronounced and diverse

compared to stimulation by Gram-positive bacteria, indicating a

unique immune activation pattern specific to GNAs.

Studies in murine models and HS patient biopsies demonstrate

that GNAs, particularly FN, induce a local inflammatory response

resembling features observed in HS lesions. This response includes

the recruitment of neutrophils and macrophages, as well as the

production of IL-17 and other inflammatory mediators. Inhibition

studies using TLR4 and JAK inhibitors show that blocking these

pathways can attenuate the inflammatory response in keratinocytes

stimulated by GNAs. These findings highlight potential therapeutic

targets for mitigating HS-associated inflammation (57).

In summary, keratinocytes play an important role in the

inflammatory response and overall pathophysiology of HS and

should be considered in therapeutic targeting.
Macrophages

The inflammatory response in HS involves significant infiltrates

of macrophages and neutrophils to the affected area after follicular

rupture (5, 58). Macrophages can be identified by CD68 positivity

and are key producers of several pro-inflammatory cytokines
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including IL-1b, TNF-a, and IL-23 (59). In addition, upregulation

of TLR2 on macrophages and dendritic cells in HS lesions has been

observed. TLR2 activation leads to increased production of TNF-a
and IL-12, contributing to the inflammatory cascade (60).

Metalloproteinases (MMPs), particularly MMP-2 and MMP-9,

are upregulated in HS. These enzymes, produced by macrophages

and other cells, degrade extracellular matrix components, leading to

tissue destruction and chronic wound formation (61). Differentially

expressed genes associated with macrophage functions, such as

phagocytosis and Fc receptor-mediated signaling, are significantly

elevated in HS. HS lesions show a predominance of M1

macrophages, characterized by the upregulation of M1 markers

like HLA-DRB5 and STAT1 and downregulation of M2 markers

such as CD163 and MRC1 (62). Chronic inflammation and

impaired wound healing in HS may be partly due to this

transcriptional profile of macrophages. Genes related to

phagocytosis and respiratory burst, such as Fc gamma receptor 1a

(FCGR1A), Fc gamma receptor 1b (FCGR1B), formyl peptide

receptor 1 (FPR1), and superoxide dismutase 2 (SOD2) are also

upregulated in macrophages within HS lesions suggesting enhanced

microbial killing and clearance of cellular debris. HS lesions exhibit

upregulation of interferon-stimulated genes with both type I and II

IFN activation sites, indicating that both IFN-a/b and IFN-g
pathways are active in HS macrophages. Genes involved in Fc

receptor signaling, which are crucial for antibody-dependent

cellular cytotoxicity (ADCC) and other immune responses, are

also upregulated in HS macrophages (62). This upregulation

suggests that Fc receptor-mediated signaling pathways may play a

significant role in the heightened inflammatory state and chronicity

of HS lesions. Dysregulation of these pathways contributes to

persistent macrophage activation, impaired wound healing, and

prolonged tissue damage (62). Therapeutically, targeting Fc

receptor signaling or its downstream effects could represent a

novel strategy to modulate immune responses and reduce

inflammation in HS (6, 62). Furthermore, genes associated with

Fc receptor signaling could serve as biomarkers for disease activity

or treatment response (62). Overall, the inflammatory response in

HS is driven by dysregulated macrophage activity, characterized by

the overproduction of pro-inflammatory cytokines, upregulation of

Fc receptor signaling pathways, and an imbalance between M1 and

M2 macrophages, which collectively contribute to chronic

inflammation, impaired wound healing, and tissue damage.
Fibroblasts

The role of fibroblasts in HS is multifaceted and significant in

the disease’s pathogenesis. Research on ligand-receptor interactions

has revealed that fibroblasts in HS skin produce various

chemokines, including CCL19, CCL20, CXCL2, and CXCL12.

These chemokines bind to receptors on myeloid cells, indicating

that fibroblasts play a significant role in attracting immune cells to

the HS infiltrate (63).

Research analyzing the upregulation of canonical pathways and

enriched Gene Ontology biological processes has identified two
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specific fibroblast subtypes, secreted frizzled-related protein 4

(SFRP4) and C-X-C motif chemokine ligand 13 (CXCL13) that

significantly contribute to the immune response and fibrosis

observed in HS (63). Notably, the SFRP4 fibroblast subtype is

influenced by signaling from the Hippo pathway, which plays a

profibrotic role in HS (63). Secreted frizzled related protein 2

(SFRP2) and C-X-C motif chemokine 12 (CXCL12+) fibroblast

populations have been demonstrated to be expanded in HS lesional

tissue compared to non-lesional tissue and healthy controls (64).

These changes in fibroblast subpopulations are linked to the severity

of HS and the presence of epithelialized tunnels. The expansion of

SFRP2+ fibroblasts, which play a role in dermal homeostasis and

inflammatory cell retention, may contribute to the formation of

tertiary lymphoid structures (TLOs) and other histological features

such as dermal layer thickening, fibrosis, and inflammatory cell

accumulation. Increased CXCL12+ fibroblasts, associated with

immune surveillance and Th2 immune responses, are found in

severe disease stages and in tissues with epithelialized tunnels,

indicating a role in heightened inflammation. SFRP1+ fibroblasts,

which are important for extracellular matrix remodeling, are

reduced in advanced HS, possibly due to the destruction of

follicular units (64).

Despite these insights, several questions remain unanswered

regarding the precise mechanisms by which these fibroblast

subpopulations interact with other cell types within the HS

microenvironment. Further research is needed to elucidate the

functional roles of these fibroblast subtypes in chronic

inflammation and fibrosis, as well as their potential as therapeutic

targets in HS management.
Neutrophils

Neutrophils play a crucial role in HS and are a primary source of

IL-17 in HS lesions, despite their lower IL-17 expression levels

compared to Th17 cells. The abundance of neutrophils results in

substantial IL-17 release, which sustains and amplifies inflammation,

creating a positive-feedback loop that enhances the production of

additional proinflammatory molecules like S100A8 and S100A9 (15).

While Th17 cells also produce IL-17, the deep infiltrates in HS lesions

predominantly consist of IL-17+ neutrophils. Additionally,

neutrophils contribute to inflammation through the formation of

neutrophil extracellular traps (NETs), which are linked to increased

immune dysregulation and inflammation (65–69).

Neutrophils show increased infiltration in the dermal tunnels of

HS lesions compared to healthy controls. Immunohistochemical

analysis reveals clusters of neutrophils surrounding the epithelialized

tunnels, indicating active recruitment and migration towards the

tunnel lumen. Activated neutrophils in tunnels are evidenced by

strong staining for the neutrophil activation marker CD177.

Furthermore, elevated levels of CXCL1 and CXCL8 throughout the

tunnel epithelium suggest that these chemokines play a role in

recruiting neutrophils into the tunnels (37).

Treatment with brodalumab, an IL-17RA antagonist, results in

decreased expression in neutrophil-associated markers and
Frontiers in Immunology 07
pathways, including granulocyte chemotaxis and migration (56).

Patients treated with brodalumab show a marked reduction in

inflammatory cytokines like TNF and IL-8, indicating reduced

systemic neutrophilic inflammation in HS. Higher baseline levels

of LCN2, a neutrophil activity marker, in lesional skin correlate with

a greater decrease in inflammatory cytokines after brodalumab

treatment, suggesting LCN2 could be a biomarker for predicting

response to IL-17RA blockade (56).

HS patients show a distinct serum proteomic profile compared to

healthy controls, with elevated levels of neutrophil-related proteins

like IL-17A, CXCL1, and Cathepsin D. Moreover, enrichment analysis

revealed pathways significantly involved in neutrophil-mediated

inflammation, such as neutrophil chemotaxis and degranulation.

High serum levels of neutrophilic markers (LCN2, IL-17A) correlate

with clinical severity scores in HS, suggesting their potential as

biomarkers for disease activity. Elevated mRNA levels of CSF3 in

HS lesional and perilesional skin correlate with increased neutrophil-

related proteins in serum, indicating a skin-blood interaction driving

neutrophilic inflammation (70).

Both perilesional and lesional HS skin exhibit significant

neutrophilic infiltration, with upregulation of genes involved in

neutrophil chemotaxis, migration, and extravasation. Furthermore,

histological studies revealed no significant differences in leukocytic

infiltration between perilesional and lesional skin, both of which

have significantly higher infiltration than healthy control skin.

Similarly, perilesional and lesional skin presented activation of the

IL-17 pathway, with gene set variation analysis (GSVA) indicating

IL-17 signaling even in non-lesional skin, and high LCN2

expression in lesional and perilesional skin identifies a more

neutrophilic HS subtype, correlating with increased levels of

neutrophil-related genes and pathways (71).

HS lesions exhibit increased counts of plasma cells, CD8+ T cells,

neutrophils, and M0 and M1 macrophages compared to perilesional

skin and healthy donor skin, indicating a robust inflammatory

response. There is a significant correlation between the presence of

plasma cells and neutrophils in HS lesions. The cytokine B-cell

activating factor (BAFF) is highly expressed in HS lesions, with a

strong link to neutrophil markers. Single-cell RNA-Seq data indicate

that neutrophils are the primary source of BAFF in HS lesions.

Neutrophils activated by G-CSF, particularly in the presence of

bacterial components, produce high levels of BAFF, supporting the

persistence and activation of plasma cells in HS lesions (72). The

elevated expression of BAFF in HS lesions suggests its potential role in

perpetuating the inflammatory environment by supporting plasma

cell survival, migration, adhesion, and activation.

Recent studies have expanded the understanding of immune

cell involvement in hidradenitis suppurativa, highlighting the role

of mast cells in addition to other innate immune populations. Chu

et al. identified mast cells as a predominant source of IL-17A in HS

lesions, demonstrating their close interaction with IL-17 receptor-

expressing keratinocytes and their role in promoting keratinocyte

proliferation and disease-associated gene expression (73).

Additionally, Kashyup et al. noted that mast cells contribute to

the inflammatory microenvironment of HS, interacting with other

immune cell populations within the IL-17 signaling pathway,
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further supporting their involvement in chronic inflammation (74).

Flora et al. provided additional evidence by showing that mast cells

are significantly upregulated in HS lesions, particularly in

epithelialized tunnels and fibrotic regions, where they interact

with neutrophils, B cells, and plasma cells to drive persistent

inflammation (75). RNA sequencing and immunohistochemistry

revealed a shift from resting to activated mast cells in HS lesions,

with their numbers significantly reduced following treatment with

the spleen tyrosine kinase (SYK) inhibitor Fostamatinib, suggesting

a novel therapeutic approach (75). Together, these findings indicate

that mast cells play a role in the inflammatory and fibrotic

processes of HS and may represent a promising target for future

treatment strategies.
Molecular regulation of epigenetic
mechanisms in HS

Epigenetics explores the inherited and acquired changes that

affect gene activity without changing the DNA sequence. The

human epigenome, which includes DNA methylation, histone

modifications, and non-coding RNAs, regulates gene expression

and is crucial for managing many cellular functions in health and

disease states (50) (Figure 4).
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DNA methylation regulates gene expression by recruiting

proteins involved in gene repression or by inhibiting the binding

of transcription factors to DNA. DNA methylation is essential for

regulating tissue-specific gene expression, silencing retroviral

elements, genomic imprinting, and other functions that

contribute to cellular homeostasis. Studies have identified

significant differential methylation patterns between HS patients

and controls. These methylation sites are located in the promoter

region, gene regulatory elements, and coding regions of various

cytokine genes that encompass both pro-inflammatory and anti-

inflammatory genes. Specific cytokine genes with differential

methylation include chemokines (e.g., CXCL10), chemokine

receptors (e.g., CXCR6), growth factors (e.g., JAK2), interferons

(e.g., JAK1, STAT3), TNF family members (e.g., TNFSF10), and

interleukins (e.g., IL1F8, IL1R2, IL17F, IL5RA) (76). A study

conducted whole-genome DNA methylation sequencing on

lesional and unaffected skin samples from HS patients. The study

revealed that hypermethylation of the CXC chemokine ligand 16

(CXCL16) occurs. CXCL16 is a crucial mediator of innate

immunity in epidermal keratinocytes and attracts CXC

chemokine receptor (CXCR) 6-expressing cells, such as activated

T cells and Natural Killer (NK) T cells (77). This hypermethylation

led to decreased expression of CXCL16, potentially disrupting the

chemotaxis of CXCR6-bearing cells and impairing innate and
FIGURE 4

Schematic of the genetic and epigenetic alterations involved in the pathophysiology of HS. Pathogenic variants in genes, such as those in the
NCSTN gene, have been identified in HS patients, leading to dysregulated Notch signaling. Epigenetic factors, including DNA methylation,
hydroxylation, and disrupted miRNA expression result in abnormal regulation of gene expression that contributes to the development of
HS pathology.
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adaptive immune responses in HS patients. Furthermore, the

downregulation of CXCL16, given its antimicrobial properties,

could also facilitate bacterial colonization, thereby perpetuating

the inflammatory cycle (78).

The role of telomere-related genes (TRGs) in the pathogenesis

of HS has been explored, revealing significant disruptions in DNA

methylation patterns that highlight their involvement in critical

cellular processes. TRG’s are involved in DNA repair, telomere

maintenance, mismatch repair, and cell cycle control. Researchers

analyzed the methylomes of TRGs in genomic DNA derived from

the whole blood of HS patients. They identified 585 differentially

methylated sites in these genes, with 474 being hypomethylated and

111 hypermethylated (79). The disruption in gene function leads to

telomere shortening, which is linked to the progression of HS,

aging, cellular senescence, and an elevated risk of cancer.

Gene Ontology (GO) and KEGG pathway analyses based on

epigenome-wide DNA methylation profiling of blood samples from

24 hidradenitis suppurativa (HS) patients and 24 age-, sex-, and

ethnicity-matched controls, have identified several dysregulated

pathways associated with HS, such as cytokine-cytokine receptor

interaction, JAK-STAT signaling, MAPK signaling, chemokine

signaling, TNF signaling, and IL-17 signaling (76). The

dysregulation in cytokine gene methylation may explain various

HS-associated comorbidities, including non-alcoholic fatty liver

disease (NAFLD), depression, anxiety disorders, and wound

healing impairment. In addition, adalimumab, the only TNF-a
antagonist approved by the FDA and the European Medicines

Agency (EMA) for moderate-to-severe HS, highlights mTORC1’s

involvement in HS pathogenesis and its potential role on the

efficacy of TNF-a inhibition (80).

Recent research has also explored the role of DNA hydroxylation

in HS, shedding light on its potential impact on gene expression

and disease progression. It has been reported that mRNA levels

of Tet1/2/3 and IDH1/2/3a/3b are notably reduced in HS lesional

areas compared to normal skin. Additionally, IDH1 and IDH2

expression was diminished in HS perilesional skin, and Tet3

levels were significantly lower in HS lesional regions in contrast

to HS perilesional areas (81). Another study found that 5-

hydroxymethylcytosine 5-(hmC) levels were significantly lower in

both lesional and perilesional HS skin compared to healthy controls,

with no significant difference between the lesional and perilesional

HS skin. These findings suggest that DNA hydroxymethylation

imbalances may contribute to the pathogenesis of HS, highlighting

the need for further research on this mechanism and its regulatory

enzymes to better understand the inflammatory processes in

HS (82).

Histone acetylation has emerged as another key epigenetic

mechanism implicated in HS pathogenesis. Dysregulated histone

acetylation patterns have been linked to persistent inflammation,

defective wound healing, and immune dysregulation (83). For

instance, abnormal acetylation in genes associated with cytokines

and chemokines, such as IL-1b and TNF-a, contributes to the

regulation of inflammatory responses. Moreover, aberrant

acetylation of genes involved in extracellular matrix remodeling,

angiogenesis, and keratinocyte proliferation can impair the
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resolution of lesions and perpetuate tissue damage (83). For

example, inhibition of histone deacetylases (HDACs) has shown

potential in modulating inflammatory responses in HS and other

inflammatory skin disorders (84). Targeting these mechanisms with

precision epigenetic therapies, such as HDAC inhibitors could offer

promising avenues for intervention in HS. In addition to histone

modifications and DNA methylation, recent studies highlight the

role of long non-coding RNAs (lncRNAs) in the epigenetic

regulation of HS (85). The differential methylation of lncRNAs in

patients with HS suggests that these molecules may critically

influence inflammation, keratinocyte differentiation, and immune

responses, thereby contributing to HS pathogenesis (86).
MicroRNAs

In the skin of HS patients, miRNAs present significant decrease

in the expression of key miRNA maturation regulators. Drosha is a

nuclear RNase III enzyme required for the maturation of miRNAs

(87). Studies have demonstrated that Drosha is downregulated in

HS lesional skin. In addition, DGRC8, a cofactor for Drosha in

primary miRNA processing, shows decreased expression in

seemingly healthy perilesional skin of HS patients (88). This

indicated their potential role in an underlying subclinical

inflammatory response.

RNA-induced silencing complex (RISC) process pre-

microRNAs into mature miRNAs. A study examined the

expression levels of RISC components, including trans-activation

response (TAR) RNA binding protein 1 (TRBP1), TRBP2, protein

Activator of the interferon-induced protein kinase (PACT),

Argonaute RISC Catalytic Component-1 (AGO1), Component-2

(AGO2), metadherin, and staphylococcal nuclease and Tudor

domain-containing-1 (SND1). The results revealed a significant

reduction of these components in HS lesional skin compared to

healthy controls, indicating the involvement of miRNAs in the

pathogenesis of HS (89).

Notable differences between HS patients and healthy controls

have been identified in 60 CpG sites corresponding to 65 unique

microRNA genes. Among these differences, 54 CpG sites were

hypomethylated, and 6 were hypermethylated. Some of the

critical microRNAs identified for skin function included miR-29,

miR-200, miR-205, miR-548, and miR-132. The miR-200c gene

plays an essential role in regulating skin repair after injury and may

influence age-related changes in wound healing and miR-132 shows

significant upregulation during the inflammatory phase of wound

healing, boosting the activity of the STAT3 and ERK pathways,

which are crucial for keratinocyte proliferation (90).

Furthermore, differential expression patterns of specific

miRNAs have been observed in HS patients. One study found

overexpression of miRNA-21-5p, miRNA-31-5p, miRNA-155-5p,

and miRNA-223-5p, in HS patients compared to healthy controls

(91). Another study identified miR-338-5p overexpression in HS,

correlating with increased expression of IL-1a, IL-6, and COX2

(92). In contrast, miR-206, miR-338-3p, miR-24-1-5p, and miR-

26a-5p are reduced in peripheral blood leukocytes from HS patients
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(92). Studies have also found decreased expression of miRNA-146a-

5p in peripheral blood leukocytes and increased expression of

miRNA-146a-5p in HS lesional skin (91, 92). The study by Liang

et al. utilized gene expression profiles from control and HS skin

samples, employing machine learning to pinpoint molecular factors

contributing to HS pathophysiology (93). Key findings were the

identification of KYNU gene and a regulatory pathway involving

miR-382-5p, KYNU and MUC19 genes (93). KYNU, a critical

enzyme in the kynurenine pathway of tryptophan metabolism,

was found to play a pivotal role in the pathogenesis of HS by

linking metabolic processes to inflammation and immune

dysregulation (93). This process is further modulated by miR-

382-5p, a microRNA that interacts with KYNU and potentially

regulates its expression, where dysregulation may exacerbate

inflammatory pathways in HS (93). Additionally, MUC19, a

mucin-encoding gene, forms part of this RNA network, adding

complexity to the molecular mechanisms underlying HS and

shedding light on the epithelial barrier dysfunction associated

with the disease (93).

The dysbiotic microbiome in HS may contribute to miRNA

deregulation by influencing key pathways involved in immune

responses and inflammation. For example, increased abundance

of microbial species capable of activating TLR2 and TLR4 pathways

could lead to altered miRNA profiles, as these pathways are known

to regulate immune-related miRNAs (60, 94). Additionally,

dysbiotic genera like Prevotella and Porphyromonas have been

shown to induce cytokine production such as IL-1b and IL-6,

which in turn can modulate miRNA expression patterns (95–98).

This dysbiotic-induced miRNA dysregulation is supported by

findings showing differential miRNA expression patterns in HS

lesional and perilesional skin (88, 91). Dysbiosis may amplify

chronic inflammation and subclinical inflammatory responses

through its influence on miRNAs, creating a feedback loop that

perpetuates disease pathology.
Molecular regulation of genetic
mechanisms in HS

HS was initially thought to be a Mendelian autosomal inherited

disorder that was largely based on familial aggregation and genetic

analysis in multiple families (99, 100). The HS locus was first mapped

to chromosome 1p21.1–1q25.3 in a Chinese four-generation family

(101). Nicastrin (NCSTN) was identified as a specific gene at 1q23.2,

along with PSENEN (Presenilin Enhancer, 19q13.12) and PSEN1

(Presenilin 1, 14q24.2) (102). Additional pathologic variants of

NCSTN, PSEN1, and PSENEN have been identified in familial HS

patients (102–106). In addition, Gamma-secretase complex (GSC)

mutations that affect Notch signaling pathways crucial for epidermal

homeostasis and differentiation are implicated in HS pathogenesis.

Pathogenic variants in NCSTN, that codes for a subunit of GSC, result

in reduced miR-30a-3p levels, which subsequently increasing the

expression of Ras-Related Protein Rab-31 (RAB31). Elevated levels

of RAB31 were found to hasten the degradation of activated epidermal
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growth factor receptor (EGFR), causing abnormal keratinocyte

differentiation. From these observations, the authors inferred that

the NCSTN/miRNA-30a-3p/RAB31 axis in familial cases of HS likely

disrupts the EGFR signaling pathway, leading to irregular keratinocyte

differentiation (107). Moreover, data from a single family withNCSTN

polymorphisms showNotch and PI3K/AKT downregulation linked to

inflammation and keratinocyte hyperplasia (105). Genetic studies

have also identified pathogenic variants in MEFV and NOD2 genes

in familial HS, suggesting a polygenic presentation (108). Sporadic HS

cases have a significant genetic background involving immune

response genes like TNF and TLR4, contributing to disease

susceptibility (109). Recent polygenic score analyses reveal that

common variants, particularly those enriched in cell adhesion-

related genes, also contribute to the genetic architecture of sporadic

HS. (110). Recent genome-wide association studies (GWAS) have

further expanded our understanding of the genetic architecture of HS,

identifying genetic loci near the SOX9 and KLF5 genes, implicating

their roles in epidermal differentiation and follicular inflammation in

HS pathogenesis (111). Additionally, the study confirmed a strong

heritability component in HS, with siblings of affected individuals

having a nearly 20-fold increased risk of developing the disease. While

g-secretase complex mutations account for less than 5% of cases,

common genetic variants near these loci may play a larger role in

disease susceptibility (111). Syndromic HS forms, including Pyoderma

gangrenosum, Acne, and Suppurative Hidradenitis (PASH) and

Pyogenic Arthritis, Pyoderma gangrenosum, Acne, and Suppurative

Hidradenitis (PAPASH) syndromes, involve genetic changes in

PSTPIP1, NLRP3, and other autoinflammatory genes (112, 113).

Further supporting the role of autoinflammation in HS, Vural et al.

identified a significantly increased prevalence of MEFV gene

mutations in patients with complex HS, particularly those with

severe (Hurley stage III) disease or additional inflammatory

symptoms (114). These findings suggest that mutations in MEFV, a

gene associated with Familial Mediterranean Fever, may contribute to

dysregulated inflammasome activation in HS, reinforcing the

hypothesis that autoinflammatory mechanisms underlie certain HS

phenotypes. While these genetic findings highlight the role of

hereditary and autoinflammatory mechanisms in HS, the extent to

which genetics alone determines disease progression remains unclear.

Factors such as BMI and smoking have been more strongly associated

with disease progression than familial HS status, suggesting that

environmental influences significantly modify genetic susceptibility

in HS (115). This reinforces the need to consider both genetic and

non-genetic risk factors when evaluating disease trajectory.

HS associated with other diseases like Dowling–Degos

disease (DDD), implicates genes such as POFUT1 (Protein O-

Fucosyltransferase 1), POGLUT1 (Protein O-Glucosyltransferase 1),

and PSENEN. These genes may increase disease susceptibility by

influencing Notch signaling (116, 117). A pilot study investigating

epigenetic age in HS found that immune-related changes in the skin,

rather than non-immune aging pathways, may accelerate epigenetic

aging in HS skin compared to control skin, and that increased

PhenoAge Acceleration in HS skin could serve as a biomarker for

current and future morbidity in HS patients (118, 119).
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Several other genes have been shown to exhibit significant changes

in expression. S100A7 is significantly elevated, and integrative

transcriptome analyses of HS lesions have demonstrated that

S100A15 is also a significantly upregulated gene found in lesional

HS skin (39, 43). Additionally, S100A8 and S100A9 proteins involved

in antimicrobial responses, psoriasis, and wound healing, are

overexpressed in HS (41). Moreover, b-defensin genes, including

DEFB4 and DEFB103, which encode for the proinflammatory

mediators human b-defensin–2 and human b-defensin–3
respectively, are strongly upregulated among HS patients (39, 120).

Furthermore, Oligoadenylate synthetase 2 (OAS2), an interferon-

stimulated gene with antiviral properties, has been identified as

being upregulated in HS lesional skin relative to HS non-lesional

skin (39). In contrast, DCD is one of the most significantly

downregulated genes in HS (39).
Conclusion

HS involves a multifactorial interplay between immune responses,

cellular dysfunction, and genetic predispositions. Recent

advancements in our understanding of HS have highlighted the

significant role of epigenetic mechanisms, particularly DNA

methylation, histone modifications, and non-coding RNAs, in

regulating the inflammatory responses characteristic of this disease.

These epigenetic changes contribute to the persistent activation of

immune cells and the aberrant expression of cytokines and

chemokines that drive the chronic inflammatory state observed in

HS lesions.

Inflammasomes, particularly the NLRP3 inflammasome, are

critical mediators of the inflammatory process in HS. The

dysregulation of inflammasome activity not only promotes the

release of pro-inflammatory cytokines but also perpetuates the

inflammatory milieu, contributing to the formation of the

characteristic abscesses and tunnels in HS. Thus, targeting

inflammasome pathways for the treatment of HS has emerged as

a potential therapeutic strategy, offering new avenues for mitigating

the inflammatory burden in HS patients.

Epigenetic memory refers to the heritable alterations in gene

expression that do not involve changes to the underlying DNA

sequence, driven by mechanisms such as DNA methylation, histone

modification, and non-coding RNA activity. These changes are

influenced by environmental and metabolic factors, which leave

lasting marks on gene regulatory networks. Emerging evidence

highlights the relevance of epigenetic memory in the context of

inflammatory skin diseases and its potential impact on recurrent and

chronic conditions like HS (121–124). In inflammatory skin diseases,

epigenetic memory plays a critical role in shaping the behavior of

epidermal stem cells and their response to environmental insults. For

instance, prior exposure to inflammatory stimuli can prime

keratinocytes and immune cells, altering their reactivity to subsequent

insults. This priming is often mediated by persistent histone

modifications and changes in chromatin accessibility, allowing rapid

transcriptional activation of inflammatory pathways upon re-exposure
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(124). Such mechanisms can contribute to defective barrier repair and

chronic inflammation in conditions like HS, where impaired epidermal

stem cell function perpetuates disease activity.

Factors such as smoking, obesity, and diabetes are known to

influence epigenetic landscapes and may exacerbate chronic

inflammatory conditions, including HS, by reinforcing epigenetic

memory of inflammatory and metabolic dysfunctions. Smoking

induces persistent epigenetic changes, primarily via alterations in

DNA methylation. For instance, genes such as AHRR, F2RL3, and

GPR15, which are associated with immune responses and metabolic

regulation, exhibit altered methylation patterns correlated with

smoking history (125). These epigenetic modifications are linked

to heightened levels of pro-inflammatory cytokines like IL-2 and IL-

13, which may exacerbate systemic and localized inflammation

(125). Moreover, the effects of smoking on DNA methylation and

cytokine profiles persist even after cessation, creating a durable

epigenetic memory that could influence chronic disease

progression (125).

Type 2 diabetes mellitus (T2DM) alters the epigenetic profile of

dermal fibroblasts, impairing their ability to respond to

inflammatory stimuli and repair wounds. Diabetic fibroblasts

retain epigenetic marks that drive pro-inflammatory cytokine

production and reduce their responsiveness to anti-inflammatory

signals. This phenomenon, referred to as “epigenetic metabolic

memory,” impacts barrier repair processes and likely contributes

to the poor healing outcomes observed in diabetic ulcers (126). For

example, T2DM fibroblasts show increased basal expression of pro-

inflammatory cytokines and reduced sensitivity to inflammatory

stimuli like TNF-a, which exacerbates chronic inflammation and

impairs wound healing (126). Such alterations may also influence

HS pathogenesis, as impaired wound healing and chronic

inflammation are hallmarks of the condition.

Obesity drives systemic inflammation and metabolic dysfunction

through epigenetic modifications, including altered methylation of

genes like PPARg and GLUT4 and changes in histone acetylation that

regulate metabolic pathways and inflammatory responses (127).

Obesity-induced epigenetic memory reprograms adipose-resident

macrophages to adopt a persistent pro-inflammatory state,

exacerbating systemic inflammation even after weight loss (128,

129). This phenomenon, characterized by the retention of

obesogenic memory, is particularly relevant to HS, as obesity-driven

epigenetic changes may amplify disease severity and recurrence.

Studies suggest that free fatty acids, such as stearic acid, induce

metabolic reprogramming and a pro-inflammatory state through

Toll-like receptor 4, further reinforcing these epigenetic

modifications (129).

Investigating epigenetic memory in HS could provide valuable

insights into the mechanisms underlying its recurrent nature and

identify novel therapeutic targets. These targets may focus on

modulating epigenetic memory to achieve sustained remission.

Moreover, the investigation of how epigenetic memory influences

inflammasome activation and other immune pathways in HS holds

promise for uncovering new strategies to disrupt the vicious cycle of

chronic inflammation in this debilitating condition.
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