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Lung cancer is a prevalent malignant tumor and the leading cause of cancer-

related mortality worldwide. LC is a complex respiratory condition that poses

significant challenges for both clinicians and researchers. Crucially, dysregulation

of molecular signaling pathways is a key message point in LC. Numerous reviews

have highlighted effective treatments for LC by targeting disrupted signaling

pathways. Understanding the roles and interconnections of various signaling

pathways in LC is crucial. Therefore, this paper reviews the pathogenesis,

biological functions and their important interactions in lung cancer. Frist, we

reviewed relevant signaling pathways involved in LC, including Wnt, PI3K/Akt,

Notch, PD-1/PD-L1, NF-kB, Hippo, MAPK, Hedgehog, AMPK. Immediately

thereafter, we further explored the biological functions of LC in this area of

pathophysiology, such as apoptosis, metastasis and proliferation. In conclusion,

after our deeper understanding of the interactions of these signaling pathways in

LC. And we must recognize that the interactions between the above signaling

pathways can lead to comprehensive as well as novel therapeutic approaches

for LC.
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Introduction

Lung cancer (LC) is one of the most prevalent malignant tumors in the world, noted for

its high incidence and mortality rates (1, 2). The main reasons for this outcome are the

absence of early symptoms of LC and the insufficient emphasis on cancer prevention

strategies in developing countries, leading to unexpected global harm (1, 3). Although

surgical resection has some clinical efficacy in early-stage LC, treatment options and

survival are limited by late symptom onset, restricted screening platforms, and limitations

of conventional radiotherapy and chemotherapy for advanced LC (4).
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LC is a complex respiratory condition that poses significant

challenges for both clinicians and researchers (5). Various studies

have shown that Inflammation, dysbiosis of lung and gut

microbiota, genetic mutations, metabolic disorders, immune

dysfunction, epigenetic modifications, oxidative stress, genetic

factors and aberrant hormone expression are major risk factors

for LC (6–13). During host defense or therapeutic injury, various

molecular mechanisms are modified, such as mitophagy (14),

mucin expression anomalies (15), epithelial–mesenchymal

transition (EMT) (16), reactive oxygen species (ROS) generation

(17), angiogenesis (18), abnormal glycosylation (19), and processes

like cell apoptosis, proliferation, survival, metastasis, and invasion.

The dysregulation of molecular mechanisms alone appears

insufficient to fully explain the origins and progression of LC, and

it is reasonable to suspect that genetic and epigenetic events have

had an impact on genetic aspects (20, 21).

The functions and interactions of molecular pathways are

involved in a wide range of cancers and have significant effects.

Research indicates that the dysregulation of various signaling

pathways, including Wnt (22), PI3K/Akt (23, 24), Notch (25),

PD-1/PD-L1 (4), NF-kB (26), Hippo (27), MAPK (17, 28),

Hedgehog (Hh) (29), AMPK (30), can facilitate LC progression

and metastasis. Furthermore, the interactions between these

pathways are precise and complex. Numerous studies indicate

that genetic and epigenetic disturbances both contribute to and

result from the development of LC (31, 32). Cristian et al. found that
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arsenic ingestion can cause cancer by producing epigenetic

modifications and disrupting normal microRNAs (miRNAs)

expression (33). Gao et al. the study indicated that radicicchioidin

(SFN) could potentially prevent LC by restoring miR-9–3 levels

through the inhibition of DNMTs, HDACs, and the target gene

CDH1 protein levels (34). Yang and colleagues elucidate the role of

epigenetic generation in LC progression (35).

In the current review, we provide a deep understanding and

summary of the formation of the molecular mechanisms of these

studies and the impact they have on LC, which we believe will

provide a more effective and comprehensive therapeutic strategy

for LC.
Multiple oncogenic and anticancer
intracellular pathways in LC

We summarize recent advances in LC in the desire to gain a

deep understanding of the molecular pathogenesis of LC (Table 1).

Research has shown that intracellular signaling pathways can

induce oncogenic effects, and targeting the driver genes within

these pathways is highly effective in tumor treatment. Furthermore,

expanding research on molecular diseases in LC offers crucial

insights into its carcinogenesis, elucidated by various molecular

mechanisms that function diversely across cancer development

stages or contexts.
TABLE 1 The roles of the following signaling pathways in LC and associated inhibitors and activators.

Signaling
pathways

Function Inhibitors Activators

Wnt
PI3K/Akt

Promoting metastasis, proliferation
Inhibition apoptosis (36, 37)
Regulation DC, T cell, B cell, NK cell
and macrophage functions (38)
Promoting proliferation,metastasis, survival
and angiogenesis (25, 39)
Regulation macrophage functions (40)

Atranorin

Thioridazine
hydrochloride

BML-284

ELA-32

Notch Promoting proliferation, metastasis, angiogenesis and EMT (41–43) DAPT Sodium
Valproate

Regulation T cell and B cell functions (44, 45)

PD-1/PD-L1 Promoting immune evasion, metastasis (46)
Regulation T cell functions (46)

Camrelizumab D18

NF-kB Promoting proliferation, survival, metastasis and angiogenesis and regulating inflammatory
response (47–49)
Regulation DC, T cell, B cell and macrophage functions (48, 50, 51)

Andrographolide TNF-a

Hippo Inhibition metastasis, proliferation, invasion and EMT and regulating organ size (52, 53)
Regulation macrophage functions (54)

Verteporfin PY-60

MAPK Promoting self-renewal, metastasis (55, 56)
Regulation T cell and B cell functions (57, 58)

Curcumin N-
Methylparoxetine

Hedgehog Promoting proliferation, angiogenesis, metastasis (59, 60)
Regulation T cell and macrophage functions (61)

Cyclopamine SAG

AMPK Promoting apoptosis and Inhibition proliferation, metastasis and Regulating energy
matabolism (62–64)
Regulation DC, T cell, B cell, neutrophil and macrophage functions (65)

Dorsomorphin AICAR
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Wnt pathway

The Wnt pathway consists of two canonical and noncanonicall

types, one of which is the classical pathway in which Wnt binds to

the LRP-5/6 receptor (LDL receptor) and Frizzled receptor,

resulting in Disheveled (DVL) being phosphorylated, allowing the

complex (Axin, GSK-3b, CK1, APC) to inhibit the activity of GSK-

3b and reduce b-catenin ubiquitination and proteasomal

degradation, allowing enrichment of unphosphorylated b-catenin
(66–68). Unphosphorylated b-catenin translocated to the nucleus

binds to TCF/LEF and induces the expression of multiple target

genes (66–68).

When Wnt binds to Frizzled receptors and interacts with

Daam2, it initiates a Wnt non-canonical pathway called planar

cell polarity (PCP). This interaction activates small GTPases like

RhoA and Rac, subsequently triggering downstream stress kinases

JNK and ROCK, which play roles in cytoskeletal remodeling and

actin alignment (69). Wnt/Ca2+ pathway is another Wnt

noncanonicall pathway that is activated by Wnt5a and Fzd2

receptors, leading to G protein-mediated activation of PLC, which

allows for a large amount of Ca2+ inward flow. The increased

intracellular Ca2+ then stimulates calmodulin phosphatase and

CAMKII, which in turn promotes TCF phosphorylation, which

inhibits the Wnt classical pathway (70, 71).

The Wnt signaling pathway is a key regulator of LC

development, metastasis, and drug resistance, as identified in

previous studies (36, 37, 72). The study identified that isoform 1

of the neurogenesis-associated protein ASPM (ASPM-I1) plays a

crucial role in SCLC development by stabilizing the Hh

transcription factor GLI3 via a unique coding region in exon 3

and activating the Wnt-DVL3-b-catenin signaling pathway, which

sustains the transcription of the Hh pathway regulator Smoothened

(SMO) (73). Cisplatin (CP) is a widely used chemotherapeutic

agent, and studies have shown that miRNAs can trigger the Wnt/

b-catenin signaling pathway, leading to varying degrees of

resistance to this chemotherapeutic agent in LC cells (74). In

addition, it has been found that a variety of non-coding RNAs

(ncRNAs) can regulate the expression of the Wnt/b-catenin
signaling pathway, which affects the progression of LC to varying

degrees, and thus targeting ncRNAs appears to be a good gene

therapy (75). Studies have shown that Wnt can be mutually

promoted with PD-L1, suggesting that Wnt can be controlled by

PD-L1 (76), PD-L1 is important for lung tumorigenesis and

progression in mice by regulating Yes-associated protein (YAP)

(77). And it is the potential mechanism of the Wnt pathway on the

PD-1/PD-L1 pathway that makes non-small cell lung cancer

(NSCLC) patients somewhat resistant to immune checkpoint

inhibitors (ICIs), so it seems that the combination of Wnt

inhibitors and ICIs could be a new option for the treatment of LC

patients (78). The study revealed that fibronectin overexpression in

LC activates FAK and MAPK/ERK signaling pathways, which in

turn overactivate the Wnt pathway, facilitating tumor

progression (79).

Tumor metastasis is a leading factor in poor prognosis for LC

patients (80), with the Wnt signaling pathway significantly
Frontiers in Immunology 03
contributing to its development (36). In addition, metastasis of

cancer cells is not a one-sided problem, but requires the acquisition

of a series of conditions to realize this process (81). Among other

things, we found that tumor cells are mainly powered by uptake of

stromal cells and immune cells from the tumor environment during

this process (82, 83). Research indicates that the tumor

microenvironment (TME) significantly influences tumor

progression, with various specialized microenvironments within

the TME interacting with cancer (84). Notably, hypoxia is a

critical factor in tumor development (85). Research indicates a

link between cancer incidence and chronic inflammation, with

microenvironmental dysregulat ion causing persistent

inflammatory lesions, reinforcing the validation that TME after

tumor metastasis contributes to LC development (80, 86, 87). While

Wnt signaling seems to interact with TME by regulating different

components of TME (88). In addition, the Wnt signaling pathway

can be involved in the functioning of a variety of immune cells such

as dendritic cells (DCs), T cells, B cells, natural killer (NK) cells,

macrophages, granulocytes, etc, which is the main cause of cancer,

but it also provides us with a good strategy for immunotherapy (38).

Cancer stem cells (CSCs) can promote lung tumor metastasis, and

studies have found that by targeting the Wnt pathway associated

with CSCs, it seems to have good efficacy in the treatment of LC (29,

89). Latency competent cancer (LCC) cells are cells that can enter

the quiescent state very easily, and we found that the main

mechanism is that the Wnt signaling pathway leads to the ability

of LCC cells to escape from NK cell immunosurveillance through

autocrine DKK1 (90). In addition, overexpression of Metadherin

(MTDH) upregulates the Wnt pathway and depletes cytotoxic T

cells, which promotes LC metastasis and progression (91, 92).
PI3K/Akt pathway

Inhibiting the PI3K/AKT signaling pathway, crucial for LC

progression, could offer a significant therapeutic strategy (93). PI3K

is a lipid kinase that converts phosphatidylinositol-4,5-bisphosphate

(PIP2) into the second messenger phosphatidylinositol-3,4,5-

trisphosphate (PIP3), which facilitates Akt translocation to the

endosomal membrane for phosphorylation and thus facilitates

signal expression (94). AKT functions downstream of PI3K, with

PIP3 signaling being terminated by the lipid phosphatase PTEN. The

PI3K/AKT pathway, often dysregulated in human cancers,

contributes to cancer cell growth and metastasis (95).

This pathway phosphorylates NF-kB to enhance cell survival by

having IKK phosphorylate inhibitory IkBa, facilitating NF-kB’s
nuclear translocation to promote cell survival and vascular

production, thereby inducing oncogenesis (39, 96). This pathway

enhances angiogenesis in LC by modulating vascular endothelial

factor (VEGF), leading to hypoxia-inducible factors (HIFs)-1a
binding to the HRE in the VEGF promoter region (25, 97).

Arsenic and benzo[a]pyrene (BaP), key contributors to LC,

enhance integrin a4 (ITGA4) expression, thereby activating the

PI3K/AKT pathway (98). This activation reduces suppressor of

fused (SUFU) protein stability and concentration, allowing the Hh
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ligand to bind Patched (Ptch) and release SMO. Consequently, the

GLI transcription factor is expressed, activating the Hh pathway

and significantly increasing CSCs properties and tumorigenesis

(98). This pathway regulates the EMT process, one of the major

molecular mechanisms regulating lung tumor metastasis, which

acts by inhibiting E-calmodulin expression and upregulating

mesenchymal markers and EMT-specific transcription factors (99,

100). Long non-coding RNA (lncRNA) significantly regulates the

PI3K/AKT signaling pathway in LC (101, 102). Specifically, lncRNA

FOXD3-AS1 is highly recruited by exosomes in LC cells, where it

interacts with ELAV-like RNA-binding protein 1 (ELAVL1) to

activate this pathway, promoting LC progression (103). The study

identified that Go-Ichi-Ni-San complex subuint 2 (GINS2)

enhances phosphorylated proteins via PI3K/AKT and MEK/ERK

pathways, thereby facilitating NSCLC growth, metastasis and EMT

in mice (104). Wang et al. identified that CXCL5, a chemokine

associated with NSCLC prognosis, is overexpressed in LC cells and

to enhance LC progression through the activation of PI3K/AKT and

MAPK/ERK1/2 signaling pathways (105). Radiation therapy is one

of the main options for the treatment of various types of cancer, and

it destroys cancer cells by means of ionizing radiation (IR) (106).

However, we found that while destroying cancer cells, IR induces

ROS generation and EMT, and to a certain extent leads to changes

in TME and thus promotes metastasis, and it has been found that

targeting the PI3K/Akt pathway seems to enhance the efficacy of the

treatment by inhibiting EMT (107). KRAS G12D mutation in LC

was found to activate the PI3K/Akt pathway and thus promote LC

progression (108). In contrast, Hou et al. found that Salvianolic acid

F (SalF) inhibits PI3K/Akt pathway expression by targeting KRAS

G12D mutants (109). In addition, in NSCLC patients with PI3K/

Akt pathway activation combined with epidermal growth factor

receptor (EGFR) mutations, it was found that the combination of

inhibitors of this pathway with EGFR Tyrosine Kinase Inhibitors

(TKIs) improved the resistance of such patients to EGFR-TKIs

(110). It was found that the Akt pathway can influence metabolic

signaling and convergent inflammation to regulate macrophage

function and can promote its M1/M2 polarization (40). Research on

the PI3K/AKT pathway’s impact on immune cells and TME

regulation revealed that combining immunotherapy with targeted

therapy enhances efficacy in LC patients (111).

The PI3K/Akt pathway activates mTOR by inhibiting tuberous

sclerosis complex 1 (TSC1), enhancing protein synthesis and

promoting cellular metabolism, growth, and proliferation, thereby

regulating cancer cell growth and metastasis (39). Collectively, the

findings indicate that this pathway facilitates LC growth

and metastasis.
Notch pathway

TheNotch signaling pathway, comprising four receptors (Notch1-

4) and five ligands (Delta-like 1, 3, 4, and Jagged 1, 2), plays a crucial

role in regulating the biological functions of LC cells (112).

Various studies have shown that this pathway promotes the

progression of LC through multifaceted effects (41, 113). Initially,
Frontiers in Immunology 04
ADAM10 hydrolyzes Notch protein near the membrane, followed

by g-secretase cleavage of the Notch intracellular domain (NICD)

(113). This cleavage allows NICD to translocate into the nucleus,

where it binds to CBF-1/suppressor of hairless/Lag1 (CSL), thereby

promoting the transcription of downstream targets (41). RFC4

enhances the Notch signaling pathway by binding to NICD1,

thereby preventing CDK8/FBXW7-mediated phosphorylation and

polyubiquitination (114). Delta-like ligand 3 (DLL3), a Notch

inhibitory ligand, is markedly up-regulated on SCLC cell surfaces,

enhancing cell growth, metastasis and proliferation, which

contributes to resistance against platinum-based chemotherapy

(115). Therefore, against the high expression of DLL3, it was

found that Tarlatamab (AMG 757) could cause tumors to regress

to different degrees by combining DLL3 and CD3 on T cells, which

provides a new direction for targeted immunotherapy for SCLC

(116). In addition, we found that the chimeric antigen receptor

(CAR) for DLL3 has an antitumor effect in SCLC in mice, and thus

therapies targeting CAR T cells for DLL3 may provide a new

strategy for the treatment of SCLC (117). Notch and Wnt/b-
catenin signaling pathways are closely interconnected, as b-
catenin enhances Notch signaling by binding to the Dll4

promoter, which subsequently influences the Wnt/b-catenin
pathway through Nrarp regulation (118).

Numerous studies indicate that the Notch pathway is

upregulated in LC patients, leading to cancer cell proliferation,

metastasis, EMT and angiogenesis (41–43). For the Notch pathway

to promote metastasis in cancer cells, a key point is that it promotes

angiogenesis and appears to be related to the ability of the pathway

to induce EMT (119). In cancer cells undergoing distant metastasis,

aberrant angiogenesis in TME mainly plays a role in providing

energy to cancer cells (120). The promotion of tumor angiogenesis

by the Notch pathway is primarily attributed to the roles of ligands

DLL4 and JAG1 (121, 122). Furthermore, EMT is a key factor

contributing to chemotherapy resistance in NSCLC (123). Lu et al.

found that the ADAM17 inhibitor ZLDI-8 could inhibit the Notch

pathway and EMT thereby significantly promoting apoptosis in

chemotherapy-resistant NSCLC and inhibiting NSCLC invasion

and metastasis (124). SCLC has a poor prognosis due to its

resistance to chemotherapeutic agents (125). Research on targeted

therapies revealed that LSD1 inhibitors can impede SCLC

progression by targeting Notch signaling and reducing ASCL1

transcription factor expression (126). The Notch pathway is

crucial for T cell differentiation and B cell development (44, 45).

It is well known that the current main strategy of immunotherapy is

to modulate the immune system in order to enhance its power to

destroy cancer cells (127). Instead, the study reports a novel T-cell

therapy that uses synthetic Notch (synNotch) receptors to alter

tailored behavior in T cells and control their differentiation, and

also specifically targets tumors through such T cells (128).
PD-1/PD-L1 pathway

The PD-1/PD-L1 pathway is crucial in LC development (46,

129), in which PD-1 is expressed in a variety of immune cells such
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as T cells and dendritic cells (130), while PD-L1 is present in

macrophages, epithelial cells, etc (131). PD-L1 binds to and acts on

PD-1 to inhibit T cell expression and facilitating immune

evasion (46).

PD-L1 expression in LC patients is regulated by various

pathways (132–134). NF-kB directly binds to the PD-L1 promoter

to enhance its expression and also promotes HIF-1a transcription

(132), which subsequently stimulates glycolysis in lung tumors and

up-regulates PD-L1 by modulating glycolytic enzymes (135). YAP

proteins act as effectors in the Hippo pathway signaling cascade,

which is linked to tumor cell metastasis and proliferation (136).

EGFR, a transmembrane tyrosine kinase receptor (137) that

phosphorylates Hippo kinase, which enhance YAP protein

expression and regulate PD-L1 (133). The study identified an

association between chemoresistance in lung squamous cell

carcinoma (LUSC) and the interaction of the NRF2 and PD-1/

PD-L1 pathways (134). In addition, PD-L1 promotes the expression

of hexokinase 2 (HK2) and glycolysis in LC cells thereby inhibiting

the function of effector T cells in LC (135). Interleukin-1b (IL-1b)
promotes tumor growth and metastasis and appears to synergize

with the PD-1/PD-L1 pathway to enhance lung tumor

development (138).

PD-1 is currently a well-studied immune checkpoint (ICP) and

its ligand, PD-L1, is overexpressed in LC, whereas metastasis of

cancer cells occurs by promoting evasion of immune surveillance

(46, 139). PD-L1, also referred to as B7-H1, has been identified in

prior research as a key mechanism for promoting immune evasion

in lung tumor cells by inducing apoptosis in activated tumor-

reactive T cells (140). It has been previously stated that the poor

prognosis of LC patients is due to the relative limitations of

radiotherapy in the treatment of advanced LC (4). With

immunotherapy research, targeting the PD-1/PD-L1 pathway and

combining it with other therapeutic options has resulted in a

significant increase in the survival of patients with advanced LC,

making immune checkpoint inhibitors (ICIs) the preferred

treatment for advanced LC at this time (4, 141, 142). In addition,

for patients with advanced NSCLC, it has been shown that the

bispecific antibody AK112 works by targeting both PD-1 and VEGF

and can be combined with chemotherapeutic agents to achieve a

good anti-tumor effect (143, 144). In addition, gene editing therapy

mediated by transcription activator-like effector nuclease (TALEN)

can inhibit PD-1 expression in CAR-T cells thereby reducing T-cell

depletion and thus prolonging anti-tumor activity (145). Hypoxia

significantly contributes to metastasis in advanced cancers, with

HIFs serving as central mediators in this process (146). HIFs are

overexpressed in hypoxic conditions, enhancing PD-L1 levels,

which suggests that inhibiting the HIF/PD-L1 pathway could

enhance cancer treatment efficacy (147). It was found that

targeting High-mobility group box 1 (HMGB1) could remodel

TME and enhance its efficacy in combination with anti-PD-1/PD-

L1 immunotherapy for ant i -cancer purposes (148) .

Immunotherapy targeting the PD-1/PD-L1 signaling pathway is a

therapeutic option for advanced LC due to its sustained anti-tumor

immune response (149).
Frontiers in Immunology 05
NF-kB pathway

NF-kB, a stress-regulated transcription factor from the Rel

family, is crucial in connecting inflammation with tumor cell

survival (47). The NF-kB signaling pathway is pivotal in both

innate and adaptive immune responses and is divided into

classical and non-classical pathways (48).

The canonical NF-kB pathway can be activated by various

agents, including interferon-based stimulators (STING),

interleukin 1 (IL-1), tumor necrosis factor (TNF-a) and

numerous drugs (150, 151). IKK activation is usually mediated by

IKKb-promoted IkB phosphorylation, and the activated IKK

complex consists of two kinase subunits (IKKa and IKKb) and a

regulatory subunit (IKKg/NF-kB essential modulator (NEMO)).

The IKK complex facilitates IkBa phosphorylation and

degradation, enabling NF-kB translocation to the nucleus and

induce gene expression (151, 152). The noncanonical NF-kB
pathway is primarily mediated by CD40, LTbR and NF-kB
receptor activators, which stabilize NF-kB-induced kinase (NIK).

This stabilization promotes IkB kinase-a (IKKa) activation, leading
to the phosphorylation, ubiquitination, and processing of p100.

Consequently, the p52/ReIB NF-kB complex translocate to the

nucleus and thus induces gene expression (153).

Furthermore, it was found that STING and NF-kB can promote

each other, where the classical NF-kB pathway increases STING

expression by regulating microtubule depolymerization (150). NF-kB
signaling enhances EMT by upregulating ZEB1/2, transforming

growth factor-b and Slug gene transcription, which suppresses the

epithelial marker E-calreticulin and promotes N-calreticulin and

poikilodulin expression (154). Interleukin-6 (IL-6) is a key cytokine

in immune regulation, but its abnormal expression is linked to

inflammation and cancer progression (155). Aberrant expression of

T-cell immunoglobulin domain and mucin domain 4 (TIM-4)

correlates with poor LC prognosis, and IL-6 can upregulate TIM-4

via NF-kB activation, promoting EMT expression and LC

development (156). In addition, Xiang et al. found that semaphorin

4A (Sema4A) could promote phosphorylated NF-kB pathway-related

proteins as well as IL-6 expression to promote LC cell migration and

proliferation (157). Mesoderm-specific transcripts (MEST) were

found to induce STAT3 expression to enhance IkBa and P65

phosphorylation activity, and it also promotes IkBa degradation

and thus modulates NF-kB signaling by interacting with valine-

containing protein (VCP) (158). STAT3 signaling enhances the NF-

kB pathway by upregulating miRNAs through interaction with IL-6.

These miRNAs regulate various pathways and promote angiogenesis

in the NF-kB pathway by inhibiting the deubiquitinating enzyme

CYLD (159). In patients with NSCLC, studies have shown that the

NF-kB pathway induces PD-L1 expression leading to immune

evasion of cancer cells, and thus the combination of NF-kB
inhibitors with ICIs appears to be useful for the treatment of

NSCLC (160). S-adenosylmethionine (SAM) is a natural

metabolite, and recent studies have found that SAM can target P62

and thus inhibit the NF-kB pathway in NSCLC, thus SAM may

become a relatively safe adjuvant therapeutic agent (161).
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In LC, NF-kB is also one of the important pathways that

promote metastasis in cancer cells, in which the induction of

EMT expression by this pathway is an important mechanism to

achieve this process (154). Among them, the classical NF-kB
pathway regulates multiple pro-inflammatory and pro-angiogenic

factors, leading to chronic inflammation and promoting

angiogenesis (48, 49). Because of this, anti-inflammatory drugs

can be used as clinical therapeutic options to inhibit the NF-kB
pathway (48). DCs facilitating T cell activation by presenting

antigens, thus bridging innate and adaptive immunity (162).

Whereas the non-classical NF-kB pathway regulates DC, T and B

cell development and plays a role in mediating lymphoid organ

development and osteoclast differentiation (48, 50). The infiltration

of immunosuppressive macrophages, crucial for primary tumor

metastasis, is driven by tumor-derived exosomes (TDE) that

polarize macrophages into an immunosuppressive phenotype via

NF-kB activation and glycolytic metabolic reprogramming (51).

Platelets create a protective barrier for tumor cells against immune

cell attacks and boost their metastatic potential by inducing EMT

through transforming growth factor-b (TGFb) (26). Activation of

the NF-kB pathway during interactions between platelets and

cancer cells can increase pro-metastatic potential (26). In

conclusion, the NF-kB signaling pathway’s regulation of immune

function facilitates cancer cell metastasis, yet it also offers a crucial

target for clinical treatment of LC.
Hippo pathway

Hippo signaling is one of the important signaling during

tumorigenesis and cancer cell development (163), which was first

discovered in Drosophila melanogaster and plays an important role

in regulating stem cell proliferation, differentiation, migration,

apoptosis, organ size and self-renewal (52). In addition, Hippo

signaling mainly consists of MST1/2, SAV1, MOB1A/B, LATS1/2,

YAP, transcriptional coactivator with PDZ-binding motif (TAZ)

and transcription enhancement-associated structural domain

(TEAD) family of multiple key proteins (164), and importantly

the pathway can inhibit tumor development through these

components (163). Activation of the Hippo kinase cascade

enhances MST phosphorylation of LATS, which subsequently

binds to MOB1 to phosphorylate YAP (165–167). This process

sequesters YAP in the cytoplasm, inhibiting the YAP/TAZ

complex’s interaction with TEAD (165–167), ultimately

contributing to lung tumorigenesis (53).

In LC, dysregulation of the Hippo signaling pathway induces

migration, invasion, proliferation, drug resistance and EMT in LC

cells (53). It was found that by targeting PFKFB3 (6-

phosphofructose-2-kinase) it could down-regulate YAP/TAZ

expression to inhibit the glycolytic process of CSCs in SCLC and

enhance the chemosensitivity of SCLS (168). In addition, the herbal

medicine cryptotanshinone (CT) can regulate TAZ expression to

activate Hippo, thereby inhibiting the progression of NSCLC and

reducing its chemoresistance (169). YAP upregulates EGFR ligands

like Amphiregulin (ARGE) and Neuregulin 1 (NRG-1), creating a
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positive feedback loop in the MAPK signaling pathway (133). This

process also inactivates the oncogene k-ras, which subsequently

interacts with FOS to activate MAPK signaling, thereby promoting

EMT expression (133, 170). In addition, YAP/TAZ can enhance

PD-L1 protein expression to promote NSCLS immune

evasion (170).

YAP/TAZ is a major effector downstream of the Hippo

signaling pathway that promotes metastasis by reprogramming

cancer cells, but the Hippo cascade reaction can ultimately

phosphorylate and inhibit YAP/TAZ (136). In addition, we found

that YAP/TAZ promoted glycolysis and glutamine catabolism,

which provided energy support to metastatic tumor cells (171).

YAP has been reported to interact with the transcription factors

TEAD and PRDM4 to induce leukocyte-specific integrin b2
(ITGB2) expression thereby mimicking the behavior of leukocyte

endothelial invasion and ultimately promoting cancer cell invasion

and distant metastasis (172). Mitotic Spindle Positioning (MISP)

suppresses MST1/2 activity, resulting in YAP hyperactivation and

increased SCL7A11 expression. This process enhances lung cancer

cell resistance to ferroptosis, promoting tumor metastasis, yet also

offers a potential therapeutic target for LC (173). It is well known

that the level of tumor immunogenicity affects the survival of tumor

cells, and it has been found that inhibition of LATS1/2 kinase in the

Hippo pathway seems to enhance tumor immunogenicity and thus

can achieve the purpose of LC treatment (174). The Hippo pathway

influences specific immune cells, impacting immunotherapy

effectiveness (164). Hippo pathway dysregulation leads to

increased YAP activity, which elevates CCL2 and CXCL5 cytokine

levels, facilitating the recruitment of M2 macrophages and

polymorphonuclear myeloid-derived suppressor cells (MDSCs),

thereby contributing to immunotherapy resistance (54, 175).
Ras/Raf/MEK/MAPK/ERK pathway

The MAPK pathway is crucial in human tumors, influencing

cell proliferation, differentiation, apoptosis and angiogenesis. The

RAS gene is tumorigenically mutated in approximately 30% of

tumors. Activated Ras mediates the activation and phosphorylation

of Raf membrane translocation, which in turn promotes

MEK activation, which then phosphorylates and activates

MAPK/extracellular signaling-associated kinase (ERK) by

phosphorylating Tyr and Thr residues (176).

In LC, gene mutations in the MAPK pathway are activated. In

EGFR-mutated NSCLC cells, the MAPK pathway enhances PD-L1

expression by modulating drug resistance mechanisms like c-MET

amplification and EGFR-T790Mmutation, resulting in resistance to

EGFR-TKIs (177, 178). Mutations in T790M and C797 within the

ATP receptor cause NSCLC to be resistant to EGFR-TKIs, and it

has been found that the EAI045 inhibitor works by targeting such

mutants and has good efficacy in combination with cetuximab for

the treatment of EGFR-TKIs resistant mutants in LC (179). In

addition, studies have shown that the inhibitor Sotorasib directly

targets the KRAS G12C mutant protein, thereby improving survival

in patients with KRAS G12C mutations in NSCLC (180). Fentanyl
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has been found to reduce the sensitivity of cisplatin (DDP)

chemotherapy by inducing a MAPK signaling cascade response

through the promotion of ROS expression (181). In addition, the

oncoprotein hepatitis B X-interacting protein (HBXIP) was found

to be upregulated in NSCLC, which reduces MEK1 protein

degradation to promote MAPK/ERK pathway expression (182).

In addition, the MAPK/ERK and PI3K/AKT signaling pathways

seem to play a synergistic role in promoting self-renewal of lung

CSCs during LC development (55). This suggests that the MAPK

pathway can interact with the PI3K/AKT pathway in LC.

The MAPK signaling pathway is a central pathway in the

regulation of LC metastasis (56). Among the major molecular

mechanisms driving LC metastasis is the Ras gene mutation that

ultimately triggers the MEK/ERK cascade reaction, leading to

extracellular matrix remodeling (ECM) and EMT (183). In

addition, the MAPK pathway can enable the formation of a

metastasis-promoting immunosuppressive environment by

regulating the TME (58, 184, 185). First, this pathway promotes

VEGF expression, leading to increased angiogenesis (185).

Secondly, mutant KRAS activates the MEK/ERK/AP-1 pathway

and thus promotes the expression of TGF-b1 and IL-10. This

process recruits regulatory T cells (Tregs), further diminishing the

antitumor immune response (58). Moreover, KRAS mutations can

also upregulate PD-L1 via the ERK pathway, leading to depletion of

T cells, resulting in immune evasion (184). Currently, because

KRAS-mutant lung adenocarcinoma (LUAD) is resistant to the

MEK inhibitor trametinib, it has been found that trametinib in

combination with ICIs for the treatment of LUAD exerts a

synergistic anti-tumor effect (186). In addition, early B cell

development as well as late B cell maturation are also regulated

by the MAPK pathway (57). Despite the current efficacy of ICI in

advanced LC (4), it is limited by the fact that patients with KRAS

mutations result in immunosuppressive TME formation (187).

Therefore, combination therapy is particularly important, and it

has been found that KRAS G12C inhibitors combined with

ICI can not only inhibit the proliferation of lung tumors but

also lift TME immunosuppression (188). In KRAS-mutated

lung cancer, combining MEK with CDK4/6 inhibitors

suppressed cell proliferation and enhanced NK cell-mediated

immunosurveillance (189).
Hedgehog pathway

Initially discovered in Drosophila, the Hh signaling pathway is

crucial for embryonic development regulation (190). The HH

protein family is important in the regulation of cell proliferation,

apoptosis, differentiation, metastasis and invasion (59). HH

proteins (SHH, IHH, or DHH) bind to the PTCH1 receptor,

prompting its lysosomal degradation and reducing its repression

of Smo (191). This process activates GLI protein expression, causing

GLI1 and GLI2 transcription factors to the nucleus and promotes

gene expression (192).

Research indicates that the Hh signaling pathway is important

in regulating lung tumor cell proliferation, drug resistance,
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stemness and the tumor microenvironment (193, 194). ASPM-I1

is a stemness gene that is significantly upregulated in SCLC cells,

which regulates the activity of the transcription factor GLI1 and

promotes SMO transcription through signaling with Wnt-DVL3-b-
catenin (73). In addition, it was found that tretinoin could mediate

HNF1A/SHH expression to inhibit Hh signaling thereby enhancing

the sensitivity of LC cells to paclitaxel (195). In addition, Wang et al.

found that SFN inhibited the expression of SHH, SMO and GLI1 in

LC cells and thus inhibited LC cell proliferation (196). Research

indicates that Sonic Hedgehog (Shh) is upregulated in A549 and

H520 cells, enhancing NSCLC angiogenesis by modulating collagen

production in fibroblasts (60).

The HH signaling pathway is crucial for promoting metastasis

in LC by inducing EMT expression via the metastasis factor Gli,

which is the primary mechanism driving cancer cell metastasis

(197). Bone is frequently affected by LC metastasis. The HH

pathway enhances receptor activator of NFkB ligand (RANKL)

expression in osteoblasts, which stimulates osteoclast activation and

accelerates osteolytic destruction, perpetuating a vicious cycle (198).

In addition, this pathway induces activation of cancer-associated

fibroblasts (CAFs) leading to ECM remodeling and thus formation

of pro-metastatic TME, but this also provides an approach for anti-

fibrotic therapy (199). The pathway also regulates the self-renewal

capacity of CSCs, causing them to be resistant to chemotherapy and

thus promoting metastasis (200). Tumor-associated macrophages

(TAMs) predominantly exhibit an M2-like phenotype in TME,

which has been shown to promote tumor metastasis and

progression (201). In contrast, the ligand SHH in the Hh

signaling pathway induces TAM M2 polarization, resulting in a

decrease in the expression of CXCL9 and CXCL10 leading to a

significant down-regulation of CD8+ T cells infiltrating into the

TME, which ultimately leads to an attenuation of the

immunosuppressive function (61). Interleukin-4 (IL-4) is crucial

in inhibiting anti-tumor immune responses and facilitating tumor

cell proliferation (202), while the Hh pathway enhances IL-4

expression by stimulating T-helper 2 (Th2) cells transcription

(203). Inhibition of the Hh pathway was observed to decrease

PD-L1 expression and increase CD8+ lymphocyte expression,

thereby enhancing anti-tumor activity (204). For targeted therapy

against the Hh pathway, SMO and GLI inhibitors are currently

important therapeutic options and have achieved good efficacy in

the clinical treatment of LC (205, 206).
AMPK pathway

AMPK, a serine/threonine kinase composed of regulatory b and

g subunits and a catalytic a subunit, acts as an energy sensor

sensitive to the AMP/ATP ratio (62–64). It regulates energy

homeostasis and metabolic stress responses, influencing cell

proliferation, growth, stress response, autophagy and cell polarity

to inhibit tumorigenesis (62–64).

AMPK acts mainly through oxidative phosphorylation and

regulation of malignant tumor metabolism (63). In particular,

AMPK activates p53 thereby delaying the cell cycle and can
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induce apoptosis (207). Resveratrol (RSV) enhances nerve growth

factor receptor (NGFR) expression by modulating mRNA levels and

the stability of mRNAs and proteins, thereby promoting AMPK

phosphorylation and inhibiting mTOR phosphorylation, offering a

potential targeted therapy for NSCLC (208). Metformin can activate

AMPK to inhibit mTOR phosphorylation and suppress cell

proliferation, but its antiproliferative effects appear to be

independent of Liver kinase B1 (LKB1) (30). Metformin-activated

AMPK at the S655 site phosphorylates downstream PHF2 to

promote epigenetic H3K9me2 demethylation during EMT,

thereby inhibiting LC metastasis (209). Metformin-activated

AMPK recruits anti-inflammatory factors, including IL-1b, IL-6,
TNF-a and NF-kB, resulting in reduced vascular endothelial

growth factor levels (210, 211). LKB1 mutation is prevalent in

NSCLC and crucial for activating AMPK family kinases (212). SIK1

and SIK3 are two tumor suppressor kinases of the AMPK family,

and it has been found that in Kras-driven LC, the results of LKB1

deletion and SIK1/SIK3 deletion in regulating gene expression are

highly overlapping and LKB1 deletion seems to activate the IL6/

JAK/STAT pathway, which gives us a new direction for

the treatment of LKB1 mutant LC (213). In addition,

phosphorylation of AMPK promotes phosphorylation of

downstream acetyl-coenzyme A carboxylase (ACC), thereby

inhibiting lipid synthesis, a crucial process for nutrient acquisition

in cancer cell growth and proliferation (63). The Warburg effect is

profound in cancer metabolism by affecting glucose, amino acid,

and lipid metabolism (214). Previous studies have found that b-
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elemene can activate AMPK pathways to counteract the Warburg

effect in LC (215). This finding indicates that various signaling

pathways may activate the AMPK pathway, either directly or

indirectly, to influence the Warburg effect. The findings indicate

that the AMPK pathway significantly impacts LC development.

The AMPK pathway influences LC metastasis by modulating

energy metabolism, the immune microenvironment, and various

other factors (63, 216). This pathway reduces VEGF expression by

inhibiting HIF-1a, which inhibits tumor angiogenesis (216).

Sustained activation of AMPK can inhibit protein synthesis by

inhibiting the mTORC1 pathway or phosphorylating eEF2k, which

can indirectly inhibit tumor cell proliferation (217, 218). TAMs is

important for cancer cell proliferation, invasion, metastasis and

angiogenesis (219). Studies have shown that astragaloside (AS-IV)

can inhibit M2 polarization of TAM by targeting the AMPK signaling

pathway, thereby inhibiting the progression and metastasis of LC

(220). Most activated immune cells derive part of their energy from

glycolysis, such as macrophages, neutrophils, B cells, dendritic cells,

etc, and AMPK can promote cellular catabolism to inhibit immune

cell activation (65). The LKB1-AMPK pathway is crucial for T cell

differentiation and function through its regulation of metabolic

reprogramming (221). In patients with KRAS and LKB1 co-mutant

lung cancer, autophagy in cancer cells increases acetyl-coenzyme A

(acetyl-CoA) levels, inducing EMT and promoting metastasis

through the acetylation of the transcription factor Snail. CAMKK2

and ACLY inhibitors have been shown to effectively reduce cancer

cell metastasis by targeting the autophagy/acetyl-CoA axis (222).
FIGURE 1

Linkages between pathways in LC. During the occurrence and development of LC, it is regulated by signaling pathways such as Wnt, PI3K/Akt,
Notch, PD-1/PD-L1, NF-kB, Hippo, MAPK, Hedgehog, AMPK. And these pathways can be linked to each other. Among these signaling pathways,
Hippo and AMPK pathways inhibit LC progression. The remaining pathways play an oncogenic role in LC progression. By interacting in the cytoplasm
and nucleus, these pathways can ultimately regulate the transcription of target genes.
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Tregs contribute to cancer immunosuppression by expressing various

immunomodulatory cytokines and inhibitory receptors. Conversely,

the AMPK pathway can suppress PD-1 expression in Tregs via the

HMGCR/P38 MAPK/GSK3b axis, thereby boosting anti-tumor

immunity and offering a potential combination therapy for LC

treatment (223).
Importance of the interconnectedness
of these pathways

The linear progression of the Wnt, PI3K/Akt, Notch, PD-1/PD-

L1, NF-KB, Hippo, MAPK, Hedgehog and AMPK pathways has

been summarized in Figure 1. However, there has been a great deal

of research on the linkage of these pathways showing that these

signaling pathways are intimately connected by directly or

indirectly interfering with each other (224, 225).

Wnt signaling has been shown to influence YAP expression and

modulate Gli3 via the Hh pathway (27, 73). In addition, it can interact

with Notch (118), and PD-L1 (76) signaling. Most RAS proteins

predominantly exist in a GTP-bound state primarily due to

mutations that enhance their stability, conferring structural activity

and resistance to exogenous growth factors like EGFR. Thus, such K-

RAS proteins appear to cause tumor cells to be less sensitive to ErbB-

targeting drugs, including cetuximab or panitumumab (226, 227). The

PI3K/AKT pathway activation enhances the Hh pathway’s

involvement in LC progression (98). Wnt/b-catenin enhances Notch

signaling, which reciprocally influences the Wnt/b-catenin pathway

through Nrarp regulation (118). Similarly, Wnt can be activated not

only by MAPK (79), but also regulated by PD-L1 (76). Activation of

AMPK inhibits activation of PI3K/Akt (228) and Ras (229), in addition

to it also promotes the biological function of NF-KB (210, 211). PI3K/

AKT plays a synergistic role with MAPK in the self-renewal of lung

CSCs (55). Hippo not only enhances MAPK function (133), but also

inactivates Ras (170). PD1/PD-L1 activation involves the NF-KB

pathway (132), and is regulated by the Hippo pathway (133).

The interplay of these pathways is crucial in cancer formation

and progression. Although feedback loops are a fundamental part of

carcinogenesis, their impact is indeed significant, suggesting that

fine-tuning of one link may also affect the whole.
Conclusion

This article examines the pathophysiological roles and interactions

of various signaling pathways in LC. Pathophysiological studies have

demonstrated that dysregulated signaling pathways significantly

contribute to LC by enhancing cell proliferation and metastasis,

while their interactions and feedback loops may suppress cell

differentiation and apoptosis (224, 225).

In past studies, pathways that play a role in tumors continue to

be unearthed, bringing our understanding of targeted therapy as a
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tool to new heights. Studies have shown that these pathways act in

connection with each other rather than in isolation, with changes in

one pathway acting as a chain reaction, leading to changes in

another pathway (230). The growing research on signaling

pathways highlights the critical need to understand their

interactions, offering diverse strategies for cancer treatment.

Dysregulation of several pathways is involved in the process of

LC occurrence and development, mainly including Wnt (22), P13/

Akt (23), Notch (25), PD-1/PD-L1 (4), NF-KB (26), Hippo (27),

MAPK (17), Hedgehog (29) and AMPK (30).

A thorough investigation into the etiology, causative factors,

and clinical treatments for LC is essential to develop a

comprehensive and effective treatment strategy (4). However, if

we only target a single gene in the treatment of LC, we often fail to

achieve the expected efficacy, in which the complex etiology of LC

has a significant impact. Furthermore, “cocktail therapy,” which

combines multiple drugs, has proven more effective in treating the

disease. In conclusion, exploring epigenetic mechanisms in LC

development and progression offers unexpected insights,

potentially enhancing therapeutic options and improving early

diagnosis and treatment (37, 231).
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