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Innate immunity comprises intricate cellular and tissue responses critical for host

defense and tissue homeostasis. Intercellular communication is central to these

responses and significantly influences infection, inflammatory disorders, and

cancer. Connexins form hemichannels, gap junctions, and connexosomes to

mediate signaling molecule transfer, including nucleotide derivatives, ions,

antigens, and mitochondria, which occur between adjacent cells or between

cells and their microenvironments. By modulating intercellular communication,

connexins regulate various immune cell functions and contribute significantly to

the coordination of innate immunity. This review summarizes recent insights into

connexin-mediated innate immune networks and their implications in

pathological contexts such as viral infections, inflammation, and tumorigenesis.

Additionally, we discuss targeting connexins as an emerging pharmacological

strategy for clinical intervention.
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1 Introduction

The innate immune system consists of physical barriers, chemical barriers, and cellular

components that constitute the first line of defense of our bodies. Among these cellular

components, phagocytic cells (such as neutrophils and macrophages), dendritic cells (DCs),

natural killer (NK) cells, and a substantial set of non-immune somatic cells operate in an

integrated manner to detect and neutralize a diverse array of harmful stimuli (1). This

process is generally initiated by the recognition of pathogen-associated molecular patterns

(PAMPs) and damage-associated molecular patterns (DAMPs) through pattern

recognition receptors (PRRs) (2), which trigger rapid and robust innate immune

responses. These responses include the activation of inflammatory pathways, the

recruitment of immune cells, and the clearance of pathogens and cellular debris while, at

the same time, priming the adaptive immune system (3). Given its pivotal role in numerous

diseases ranging from infectious diseases and chronic inflammation to organ fibrosis,

neurodegenerative disorders, and cancer, the innate immune system has emerged as a

critical therapeutic target (4, 5). The therapeutic potential drives intense investigation into
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their regulatory mechanisms, where intercellular communication

emerges as a vital regulatory factor (6).

Recent studies have highlighted the importance of connexins in

the innate immune system. Connexins, a family of 21 highly

homologous transmembrane members in humans, are best known

for their ability to form functional hemichannels and gap junctions.

Connexins are named based on their molecular weight. For example,

connexin 43 (Cx43) has a molecular weight of approximately 43 kDa.

All connexins share a conserved structure featuring transmembrane

domains, extracellular loops, a cytoplasmic loop, and cytoplasmic N-

and C-terminal tails. Size variations mainly derive from differences in

the C-terminal tail containing modification-prone sites, leading to

functional differences (Figure 1). Additionally, connexins display

distinct tissue distributions and are restricted to specific cell types,

while some connexins, such as Cx43, are broadly expressed (7, 8).

Connexins can oligomerize into hexameric structures termed

connexons or hemichannels, which facilitate the exchange of

molecules like ATP and NAD+ between a cell and its surrounding

environment under certain physiological and pathological conditions

like inflammation (9). This functionality resembles that of pannexin,

which exclusively forms single-membrane channels. By contrast,

connexin hemichannel typically docks with another hemichannel

to form a gap junction between adjacent cells, which facilitates

electrical coupling and the direct transfer of various signaling

molecules, including second messengers, ions, and metabolites (8).

In addition, connexins have also been recognized for their intriguing

role in mitochondrial transfer (10).

The connexin-containing channels critically modulate key innate

immune pathways. For instance, hemichannels and gap junctions

facilitate cytosolic cyclic GMP-AMP (cGAMP) transfer, amplifying

STING-dependent interferon production (12, 13), while connexin-

mediated ATP release primes the NOD-like receptor protein-3

(NLRP3) inflammasome activation and IL-1b/IL-18 secretion (14).

Additionally, connexins, especially the most well-documented Cx43,

have been reported to regulate innate immune cell functions,

including antigen presentation (15), macrophage polarization (16,

17), and phagocytosis (18, 19). Connexins also exert non-channel roles
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in innate immunity. For instance, Cx43 interacts with poly(ADP-

ribose) polymerase 1 (PARP1) to inhibit its nuclear translocation,

thereby maintaining NAD+ levels and mitochondrial function, which

suppresses excessive inflammation and immune homeostasis (20).

Conversely, innate immune signals also influence connexins’

expression, localization, and function in a cell type-dependent

manner. For example, upon stimulation with lipopolysaccharide

(LPS), the expression and function of Cx43 in macrophages and

leukocytes are enhanced (21, 22). In contrast, an adverse effect and

degradation of connexins are observed in some parenchymal cells

(23). Moreover, cytokines associated with innate immunity, such as

IL-1b, can also modulate the opening of Cx43 hemichannels (24).

Despite these advances, only a limited subset of connexins has

been extensively surveilled and studied in innate immunity,

including Cx43, Cx40, Cx37, Cx26, Cx32, and Cx30.3, particularly

in epithelial cells, monocytes, DCs, NK cells, and macrophages, and

connexins exhibit some paradoxical roles in disease pathogenesis

(19, 25). In the present review, we have examined connexins in

transmitting vital innate immune signaling molecules, such as

nucleotide derivatives, ions, metabolites, and antigens, to

understand their varying contributions that depend on molecular

specificity and disease context. Subsequently, the connexin-involved

mitochondrial transfer has been addressed. We have also focused

on the significance of connexins in regulating immune cell

functions and bridging innate and adaptive immunity and

discussed the therapeutic advantages of targeting connexins in

diseases related to innate immunity.
2 Transmitted innate immune
molecules via hemichannels and gap
junctions

Channels formed by connexins have a pore diameter of 1.5–2

nm, allowing the passage of water-soluble molecules with sizes up

to approximately one kDa (26). The transmission of innate
FIGURE 1

Linear maps of Cx43 and Cx26. Connexins share a similar motif structure, featuring four transmembrane domains (TM1, TM2, TM3, TM4), two
extracellular loops (EL1 and EL2) that are notably conserved among connexins, one cytoplasmic loop (CL), amino-terminal and carboxy-terminal
domains (NTD and CTD) within the cytoplasmic region (7, 11). The size variations of Cx43 and Cx26 mainly derive from differences in the C-
terminal tail.
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immune molecules via hemichannels or gap junctions is crucial

for a coordinated and swift immune response across multiple cells,

particularly among immune cells (27). Under physiological

conditions, hemichannels are typically closed or maintain low

channel permeability, thereby preserving cellular homeostasis.

However, during inflammation, PAMPs can trigger the opening

of hemichannels, primarily facilitating the release of ATP and

DAMPs (28). When gap junctions form between two cells, the

channels are typically open to perform vital physiological

functions, and their functionality is intricately linked to the

molecules they convey. These molecules include nucleotide

derivatives such as cGAMP, ions, and antigens in innate

immunity (Figure 2). By enabling the rapid and synchronized

exchange of signals, gap junctions enhance the efficiency at the

tissue level of immune surveillance, inflammation, and clearance

of pathogens or damaged cells (27). Clarifying the specific

molecules that pass through connexin-mediated channels in

diverse contexts contributes to elucidating the functions of

connexins in various pathological states and enables us to better

intervene in innate immune-related diseases.
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2.1 Nucleotide derivatives

In multicellular organisms, innate immune defense mechanisms

depend on complex cell interactions, mainly mediated by soluble

proteins like type I interferons (IFN-Is) (1). However, even in cells

with compromised interferon receptors, the activation of immune

signaling remains detectable between adjacent cells (6, 29). This

persistence is attributed to intracellular communication, particularly

the transfer of ATP and second messengers through connexin

channels. Among nucleotide derivatives, ATP is the primary

molecule for intracellular energy transfer, while cGAMP, cAMP,

and cGMP function as critical second messengers. All of these

molecules can be transferred through connexin channels.

ATP serves as an important DAMP and purinergic signaling

molecule, participating in the regulation of inflammation

progression. In damaged or dying cells, ATP can be released

through fragmentation of cells, Ca2+-dependent exocytosis,

or connexin- and pannexin-formed hemichannels, leading to

a several hundred-fold increase of extracellular ATP (30).

Intriguingly, in innate immune cells, such as macrophages and
FIGURE 2

Inter- and extracellular transfer of innate immune signaling molecules through connexin channels. Connexin proteins comprise transmembrane
domains, extracellular loops (EL1 and EL2), cytoplasmic loops (CL), and cytoplasmic amino-terminal and carboxy-terminal domains (8). Connexins
assemble into hexameric complexes known as hemichannels or connexons. The most widely recognized function of hemichannels is mediating
DAMP communications with the extracellular matrix under certain stress conditions. When two hemichannels dock, they form a gap junction
channel that connects adjacent cells. Key molecules implicated in immune functions through gap junctions include nucleotide derivatives (such as
ATP, cGAMP, cAMP, and cGMP), ions (such as K+ and Ca2+), and antigens (including small molecule antigens, peptide antigens, and nucleic
acid fragments).
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neutrophils, LPS-induced ATP release was inhibited by deleting the

Cx43 gene but not by the pannexins blocker probenecid (31). This

observation suggests that connexins and pannexins exhibit distinct

patterns of opening and regulation within immune cells despite

their structural similarity. Subsequently, extracellular ATP activates

the P2X7 receptor on neighboring immune cells, leading to the

activation of NLRP3 inflammasome and cleavage of caspase-1,

which promotes the secretion of proinflammatory cytokines such

as pro-IL-1b and pro-IL-18 (32). Given the role of connexins in

ATP efflux, inhibitors of connexin hemichannels can reduce ATP

concentrations in the microenvironment, thereby dampening

inflammatory signaling. In inflammatory diseases, specific

hemichannel inhibitors, such as the Cx43 mimetic peptides TAT-

GAP19 and Peptide 5, have demonstrated protective effects in

conditions like liver fibrosis, hepatic ischemia/reperfusion injury,

and lethal microbial infections (31, 33). Additionally, inhibiting

autocrine Cx43-dependent ATP release in macrophages improves

the sepsis outcome (34).

cGAMP is a second messenger produced by the enzyme

cGAMP synthase (cGAS) in response to the presence of abnormal

cytoplasmic double-stranded DNA and functions as a pivotal

PAMP and DAMP to produce IFNs and various immune

mediators (12, 35). cGAMP can be transferred from producing

cells to neighboring cells through gap junctions, which initiates a

signaling cascade that amplifies the intensity of innate immune

responses (36). This intercellular transmission can occur between

epithelial cells, tumor cells, macrophages, and DCs, enhancing

antiviral and antitumor responses. The transfer of cGAMP

through gap junctions provides a rapid, transcription-

independent, horizontal propagation mechanism for activating

innate immunity (37). However, the transfer of cGAMP through

the gap junction does not always appear beneficial. For example,

brain metastatic cancer cells use gap junctions to transfer cGAMP

to astrocytes, activating STING signaling and promoting the release

of inflammatory cytokines to enhance tumor growth and

chemoresistance (12).

cAMP and cGMP, structurally similar to cGAMP, are cyclic

nucleotides that can also be transmitted rapidly between adjacent

cells through gap junctions (38). However, connexin types affect the

permeability of such transmission. For instance, Cx43 is highly

expressed in the heart, nervous system, and immune system and

plays an important role in facilitating the passage of cAMP and

cGMP, which are strongly linked with cardiac and neurological

disorders (39, 40). Although limited studies regarding the

connexins with cAMP and cGMP transfer in immune cells, their

pivotal roles in regulating cell and tissue homeostasis suggest a

potential in regulating the innate immune system (41).
2.2 Ions

Ion transport is another pivotal function of gap junctions to

maintain innate immune homeostasis. The activation of connexin

channels enables the free interchange of potassium (K+) and

calcium (Ca²+) ions between adjacent cells, which plays a key role
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in modulating the NLRP3 inflammasome (42, 43), a process vital in

orchestrating the inflammatory response to infection and tissue

damage, by activating caspase-1. Caspase-1 also cleaves gasdermin

D (GSDMD), leading to pyroptosis, a regulated cell death that

contributes to inflammation (44). Ca²+ influx is necessary to

generate mitochondrial reactive oxygen and activate the NLRP3

inflammasome, and the opening and closing of these hemichannels

are controlled by calcium and potassium concentrations (45).

NLRP3 inflammasome is closely associated with various

connexin-related diseases, including autoimmune disorders,

neurodegenerative conditions, and cancers (46). During wound

healing, an injury-induced calcium wave increases Ca²+ influx,

enhancing the activity of nuclear factors of activated T-cells, and

these long-term transcriptional and functional responses are

regulated by connexins (47). In addition, the deregulated function

of connexin channels can mediate abnormal ion flow, leading to

cytotoxicity and homeostatic imbalance (48), and subsequently

activate innate immune signals.
2.3 Antigens

The intercellular transmission of antigenic information from

donor to recipient cells can be mediated by gap junctions, which are

crucial in regulating immune responses (49). These biomolecules

include small-molecule antigens, peptide antigens, and nucleic acid

fragments and typically originate from pathogens or foreign

substances that activate PRRs and trigger defensive immune

responses (50). Connexin-mediated antigen transfer effectively

enhances the utilization of antigens and broadens and prolongs

the range and duration of immune responses. Early studies on the

role of gap junctions in antigen cross-presentation originated in

virology. Specifically, disrupting gap junction-mediated

intercellular communication reduced immunoglobulin and

cytokine expression in mixed lymphocyte cultures, herpes simplex

virus (HSV), and human papillomavirus (HPV) suppressed

the expression of connexins during latent infections in Vero

cells (51). Furthermore, gap junctions facilitate the transfer of

intercellular antigen epitopes for presentation on MHC class I

molecules, making them accessible for recognition by cytotoxic T

lymphocytes (52). Gap junction-mediated antigen cross-

presentation is also a key mechanism for activating DCs (53).

Additionally, some tissue-resident DCs have limited direct

exposure to pathogens; thus, intercellular antigen transfer can

effectively overcome this limitation (15). Interestingly, in studies

of gap junctions formed by Cx43, peptide segments with molecular

weights less than one kDa exhibit excellent passage efficiency (54).

By contrast, larger peptide segments restricted by MHC class II tend

to be less compatible (55), reflecting the influence of molecular size

on the passage efficiency through gap junction channels.

In antitumor immunity, antigen spreading is a common

phenomenon. For instance, bacteria-treated melanoma cells can

form functional gap junctions with adjacent DCs to transfer

antigenic peptides (56). Meanwhile, CCR7-expressing CD103

(+)/CD141(+) DCs in melanoma can efficiently transport tumor
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antigens to activating T cells (57). Connexin-mediated antigen

transfer may occur in various physiological and pathological

environments, including the thymus, intestines, sites of allergic

reactions, lesion areas, and vaccination sites (58). During

vaccination, host cells responding to infections or vaccinations

transfer antigens to DCs, helping prevent damage to DCs from

direct contact with viruses. This transfer compensates for certain

subtypes of DCs with limitations in acquiring distal antigens, thereby

enhancing specific immune responses against natural infections,

tumor development, and vaccine-induced immunity (58). The

transfer of antigens at these sites can significantly influence

immune outcomes. Therefore, investigating how connexins

precisely regulate antigen transfer is important to understanding

innate immune modulation toward acquired immunity.
3 Connexin-involved mitochondrial
transfer

As a dynamic organelle within the cell, the mitochondrion plays a

central role in energy production, cellular metabolism, and damage

monitoring. Some PRRs on the mitochondrial membrane, such as the

RIG-I-like receptors, can sense the presence of pathogens and

promote the production of interferons and other inflammatory

factors (59). Besides, key components in innate immunity, such as
Frontiers in Immunology 05
TBK1 kinase, regulate the fusion and fission of mitochondria (60).

Intriguingly, recent emerging research has suggested that some cells

can export some of their mitochondria and deliver them to recipient

cells, such as between tumor cells and macrophages, and is associated

with the functional regulation of immune cells (61).

Several connexin-involved mechanisms have been reported to

facilitate intercellular mitochondria transfer. Tunneling nanotubes

represent one of these mechanisms that enhance macrophage

phagocytosis (62) and host defense (63), and connexins, such as

Cx43, regulate the formation of tunneling nanotubes in some

scenarios (64–66). However, since tunneling nanotubes can

mediate the sharing of multiple cellular components, it is not easy

to attribute their phenotypes solely to mitochondrial transfer. In

addition, mitochondria can be incorporated into double-membrane

vesicles, called connexosomes or annular gap junctions.

The formation of these structures is a consequence of the

internalization process of gap junctions (10). Moreover, connexins

are also implicated in extracellular vesicle-mediated mitochondrial

transfer (61). Extracellular vesicles released from cells expressing

connexins may carry connexons on their surface, which can couple

with corresponding connexons on the recipient cells, facilitating

direct or double-walled vesicle transfer (Figure 3). In addition to

mitochondria, extracellular vesicles containing connexins can

transfer other contents, significantly increasing their potential for

engineering intracellular drug delivery (67).
FIGURE 3

Mechanisms of connexin-involved mitochondrial transfer. Mitochondria can be encapsulated in double-layered vesicles, called connexosomes or
annular gap junctions, and is intercellularly transferred by internalizing these connexin-related structures. Mitochondrial transfer between cells can
also occur via extracellular vesicles that carry connexons on their surface, enabling fusion with target cells and the transfer of contents directly or
through double-layered vesicles. Additionally, tunneling nanotubes, which facilitate the exchange of cellular components, including mitochondria,
are modulated by connexins such as Cx43.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1594015
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1594015
Connexin-involved mitochondrial transfer has also been detected

in diseases associated with innate immunity, such as acute injury,

infection, and cancer (68). For example, in the mouse model treated

with LPS, bone marrow-derived mesenchymal stromal cells (BMSCs)

can transfer mitochondria to alveolar epithelial cells in a Cx43-

dependent manner, thereby protecting the mice from acute lung

injury (69). These findings suggest the multifaceted role of

mitochondria in innate immunity and their potential importance in

intercellular communication and immune modulation.

Mitochondria play a double-edged role in modulating innate

immunity: they initiate inflammatory responses and activation,

while excessive oxidative stress may lead to cellular damage and

immune dysfunction (59). Beyond the direct transfer of

mitochondria, various mitochondrial components, such as

mitochondrial DNA (mtDNA), reactive oxygen species (ROS),

and specific metabolic byproducts, can also be conveyed between

cells through gap junctions (37, 70). The ability of mitochondria to

influence immune responses and to be transferred between cells via

gap junctions establishes them as pivotal players in the intricate

interplay between cellular metabolism and immunity.
4 Bridged innate and adaptive
immune responses by connexins

In addition to mediating intercellular communication, connexins

are crucial in regulating immune cell functions, particularly in

macrophages and DCs. For instance, Cx43 expression in

macrophages is upregulated during inflammation, which enhances

their migratory abilities (71). Conversely, macrophages lacking Cx43

exhibit dramatic deficiencies in phagocytosis (18). Connexins facilitate

intercellular communication between antigen-presenting cells (APCs)

and drive the formation of the immunological synapse between DCs

and T cells. These processes modulate antigen presentation, thereby

regulating critical T lymphocyte activation (72). DCs are key accessory

cells in acquired immunity, playing an essential role in antigen

presentation, and isolated lymphocyte populations cannot respond

effectively to antigens without them (73). Inmost instances, DCs fail to

elicit an effective immune response when directly confronted with

highly invasive and cytotoxic viruses or damaging conditions (58).

However, plasmacytoid dendritic cells (pDCs) can tolerate infections

from a subset of viruses and produce substantial amounts of IFN (74).

Consequently, antigen transfer mediated by gap junctions is of

significant importance for the functionality of DCs. Pathogens and

innocuous antigens captured by gut-resident macrophages are

transferred to migratory DCs via gap junctions, thereby inducing

protective immunity (15). In tumors, forming functional gap junction

channels between tumor cells and adjacent DCs is crucial for

intercellular transport of antigenic peptides (75, 76). Therefore,

connexins are important for DCs to perform effective antigen

presentation, initiating a specific cytotoxic T lymphocyte

response (Figure 4).

PRR signaling pathways are another key route for modulating

the transition from innate to adaptive immunity, with connexins

being a key component in this regulatory network. For example, the
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intercellular transfer of cGAMP through gap junctions activates the

STING in recipient cells (35). Traditionally associated with the

innate immune system, STING critically modulates the function of

cytotoxic T cells to influence adaptive immunity (77, 78). Similarly,

connexin-mediated ATP signaling initiates an “eat me” signal for

phagocytosis, a process regulated by immunoglobulin-like domain-

containing proteins (IGLDCPs), including CD31, CD46, and CD47,

which emit “do not eat me” signals to modulate phagocytic activity

(72). The cross-activation between connexins and IGLDCPs

also involves the regulation of Tregs to suppress the excessive

immune responses through the release of cAMP and other

immunosuppressive factors (79). Furthermore, connexins also

contribute to trogocytosis, a process for lymphocytes to extract

surface molecules from APCs and display them on their

membranes. This process promotes antigen presentation and

amplification, thereby enhancing adaptive immunity (58, 72).

Several other studies have indicated the involvement of

connexins in the immunological synapse. An immunological

synapse is a cellular interaction hub established at the interface

between two opposing cells, with at least one being an immune cell,

facilitating intercellular communication (27). Connexins, notably

Cx43, are pivotal in modulating the signaling processes within

various immunological synapses. The signaling molecules

transmitted through connexin channels are instrumental in the

signaling cascades that occur within the immunological synapse

and are critical for the activation of T and NK cells, the suppression

of immune responses by regulatory T cells, and the elimination of

target tumor cells by cytotoxic T lymphocytes or NK cells (80).

Considering that the cytoplasmic C-terminus of Cx43 can engage

with numerous proteins, it is reasonable to propose that Cx43 serves

as a scaffold protein at the IS, coordinating the assembly of various

regulatory proteins (80, 81). This notion is reinforced by

observations of multiple Cx43-associated proteins relocating to

these pivotal cell-cell junctions, indicating a pivotal role of Cx43

connexins in modulating immune cell interactions.

In summary, the connexins are involved in the early stages of

pathogen recognition and inflammation, as well as in the later

stages of antigen presentation and the generation of immunological

memory. Understanding the complex dialogue between innate and

adaptive immunity by connexins is essential for developing novel

therapeutic approaches to harness multiple phases of the immune

response to combat a broad spectrum of health challenges.
5 Connexins in the disease
pathogenesis

Dysfunctional connexin has been associated with a spectrum of

innate immune-related disorders. Such impairments in signaling

can result in either insufficient immune responses or overactive

inflammation, thereby playing a role in the development of

conditions such as viral infections, disruptions in tissue

homeostasis, and various forms of cancer (82). However,

determining whether the inhibition of gap junctions is beneficial

or detrimental remains a contentious issue, with conclusions
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varying depending on the specific context, and is intimately linked

to the types of signaling molecules transmitted through connexin

channels. Here, we explore the connections between connexins

and innate immunity under various pathological conditions,

including viral infections, tissue homeostasis and inflammation,

and tumorigenesis.
5.1 Microbial infection

In the context of viral infections, the regulatory dynamic of

connexins exhibits a complex duality, which varies according to the

type of signals transmitted through connexin channels, the nature

of the viral proteins, the stage of infection, and the specific cell type
Frontiers in Immunology 07
involved, all significantly impacting innate immune responses.

Various viruses downregulate connexin levels to evade immune

surveillance (83). For instance, upon human papillomavirus 16

(HPV16) infection, the E5 protein disrupts gap junctional

communication by inhibiting Cx43 phosphorylation (84, 85), and

the E6 protein interacts with discs large homolog 1 (Dlg1) to reduce

Cx43 levels and relocalizes Cx43 to the cytoplasm (86). These

mechanisms are closely linked to the suppression of innate

immune responses and cervical cancer progression (87). During

human adenovirus type 5 (HAdV-5) infections, the early viral

protein E4 open reading frame 1 (E4ORF1) suppresses gap

junction gene transcription by activating b-catenin. Additionally,
HAdV-5 infection promotes protein kinase B (AKT)-mediated

phosphorylation of Cx43 at S373, causing transient gap junction
FIGURE 4

Gap junctions in T cell activation by dendritic cells. Infected or damaged somatic cells and phagocytic cells that have engulfed antigens can transfer
antigens to dendritic cells through gap junction channels. This transfer of antigens is essential for initiating an adaptive immune response and
subsequently activating T cells.
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plaque expansion before internalization. These effects lead to

arrhythmias in infected hearts (88). Similarly, in human

cytomegalovirus (HCMV) infections, the immediate early protein

IE1 binds to the C-terminus of Cx43, promoting its degradation via

the ubiquitin-proteasome pathway and impairing neuronal

migration (89).

Conversely, a few viruses upregulate connexin levels or activities

to facilitate viral invasion and disease progression. For example,

human T-cell leukemia virus type 1 (HTLV-1) Tax protein and

human immunodeficiency virus (HIV)-tat protein enhances mRNA

levels of Cx43 (90), and the HIV envelope glycoprotein gp120

increases Cx43 hemichannel activity to transmit ATP, Ca2+ and

nitric oxide in astrocytes (91). As such, HIV infection enables the

transfer of toxic signals from infected astrocytes to neighboring

cells, leading to neurocognitive disorders (92, 93). Intriguingly, the

application of general gap junction blockers, such as octanol or a-
glycyrrhetinic acid (AGA), can reduce apoptosis in cells adjacent to

those infected with HIV (92), thus showing a critical role of gap

junctions in facilitating HIV-induced neuroinflammation.

Additionally, severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2) exhibits differential regulation of Cx43. The spike

protein 1 (S1) downregulates Cx43 expression, while short-term

exposure to the spike/membrane protein (S/M) upregulates cell

surface Cx43 (94–96), highlighting a distinct role of viral proteins at

different stages of infection. Connexin regulation also exhibits

isoform specificity, as seen in HPV18-infected normal

immortalized keratinocytes (NIKS), from which Cx43 levels

decrease while Cx45 was upregulated, accompanied by enhanced

gap junction signaling (97). Both downregulated and upregulated

connexin protein expression has been observed during bacterial

infection (98). Bacterial LPS and serum amyloid A (SAA)

upregulate Cx43 and pannexin1 hemichannel in macrophages,

constituting a critical endogenous regulatory mechanism of innate

immunity that exacerbates progressions like septic pathology (9).

Overall, the dual regulation of connexins in microbial infections

provides critical insights into host-pathogen interactions and

highlights connexins as potential therapeutic targets for anti-

infectious strategies.
5.2 Tissue homeostasis and inflammation

Under physiological conditions, connexins are crucial

mediators in regulating innate immune cell activation and

orchestrating the timely resolution of inflammatory responses,

thereby maintaining tissue homeostasis. Dysfunction of connexins

has been implicated in various pathological conditions across

multiple organ systems, including skin, joints, cardiovascular

system, and central nervous system (CNS) (99). Specific

connexins play distinct roles in innate immune surveillance. For

instance, Cx26 and Cx30 are essential for epidermal barrier

function, and their deficiency leads to skin pathologies such as

keratoderma and ectodermal dysplasia that compromise innate
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immune defenses (100). Similarly, Cx46 and Cx50 are implicated

in developing cataracts due to disrupted lens homeostasis (99).

Additionally, in the central nervous system (CNS), microglia form

gap junctions to modulate oxidative stress responses, DNA damage

repair, and immune surveillance (101), and microglial dysfunction

has been implicated in neurodegenerative and demyelinating

disorders (102). Beyond their role in specialized immune cells,

connexins are essential for hematopoietic homeostasis, with bone

marrow gap junctions supporting hematopoietic stem cell function

and blood cell regeneration (103). These findings further highlight

their critical contribution to tissue integrity and function.

Notably, connexins and innate immunity interplay is

bidirectional, as inflammatory mediators dynamically influence

connexin expression and function. Innate immune cytokines such

as IL-1b and TNF-a regulate connexin activity through multiple

signaling pathways. For instance, IL-1b induces Cx43

phosphorylation at Ser368 via mitogen-activated protein kinase

(MAPK) (104), which manifests tissue-specificity during

inflammatory responses. In brain inflammation, activated

microglia release IL-1b and TNF-a, increasing astrocytic Cx43

hemichannel activity (105). The functional significance of this

regulation is evident in ischemia, where Cx43 dephosphorylation

increases hemichannel activity, and inhibitors like Gap26, GAP19,

and Peptide5 mitigate neuronal damage (106). However,

modulation of connexin function must precisely balance

hemichannel and gap junction activities, as excessive Peptide5

administration exacerbates ischemic injury (107). Connexins also

modulate innate immune responses in peripheral tissues. During

lung inflammation, cx43-containing gap junctions between alveolar

macrophages and epithelial cells coordinate Ca²+ wave-mediated

intercellular communication, delivering immunosuppressive signals

to regulate inflammatory responses (108). Conversely, Cx43

upregulation in various bone cells, including chondrocytes,

synovial cells, tendon cells, and ligament cells, contributes to

inflammatory pathologies in joint diseases. Therapeutic targeting

of Cx43 using siRNA has shown promise in suppressing

inflammatory cytokine expression and alleviating collagen-

induced arthritis (109). Therefore, these findings suggest

connexins as potential therapeutic targets for innate immunity-

mediated diseases through their tissue-specific functions and dual

roles in hemichannel and gap junction communication.
5.3 Tumorigenesis and metastasis

Connexins play multifaceted roles in cancer, orchestrating

innate immune responses and the intricate dynamics of the

tumor microenvironment. Connexins are frequently suppressed

in various cancer types. Pharmacological upregulation of Cx43

using PQ1 in the PyVT spontaneous mammary tumor model

substantially inhibits tumor progression (110). In agreement with

this observation, Cx32-deficient mice are more susceptible to

chemical and radiation-induced liver and lung cancer, while the
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inhibition of Cx43 increases the incidence of chemically induced

lung tumors (111). Moreover, the reconstitution of connexins

generally reduces tumorigenesis and promotes a favorable

mesenchymal-to-epithelial transition (82, 112). Emerging

evidence also suggests that gap junction function can profoundly

influence antitumor immunity, particularly through the well-

documented “bystander effect.” For instance, sulforaphane

upregulates Cx43 expression, thus enhancing chemosensitivity to

gemcitabine in pancreatic cancer models (113).

However, recent studies show that connexins also promote

invasion, intravasation, extravasation, and metastasis of cancers

(111, 114). In brain metastases of breast and lung cancer, PCDH7

promotes Cx43-mediated gap junctions between cancer cells and

astrocytes, facilitating cGAMP transfer, which induces IFNa and

TNFa production in astrocytes and, thereby, activates STAT1 and

NF-kB pathways in cancer cells by a paracrine mechanism, driving

tumor growth and conferring chemotherapy resistance (12).

Additionally, Cx31 induces the phosphorylation of focal adhesion

kinase (FAK) in a spontaneous breast cancer brain metastasis

model, which prompts NF-kB activation, tumor cell-astrocyte

interaction, and brain metastasis (115). Similarly, mitochondrial

transfer influences the proliferation and survival of recipient cancer

cells by restoring mitochondrial respiration (116). Cancer cells

enhance ATP production and metabolic function by obtaining

mitochondria from donor cells in acute myeloid leukemia (AML)

models (117) and patient-derived organoid models of glioblastoma

stem cells (118). These findings indicate the complex roles of

connexins in tumorigenesis and metastasis. In addition to

forming gap junctions and hemichannels, connexins have poorly

understood non-channel functions in various subcellular

compartments. For instance, Cx43 accumulation in the cytoplasm

drives cervical cancer advancement, while cytoplasmic Cx26

promotes hypopharyngeal squamous cell carcinoma proliferation

(119, 120). Additionally, cytoplasmic Cx32 confers drug resistance

in non-small cell lung cancer and hepatocellular carcinoma (121),

thus highlighting its therapeutic potential. Additionally, connexins

can localize to the nucleus, which is associated with cancer

prognosis (122), and to mitochondria, where they induce

apoptosis (123). Collectively, therapeutic modulation of connexins
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in cancer must be carefully balanced, as excessive connexin activity

in the tumor microenvironment may promote immune suppression

by facilitating the release of immunosuppressive factors.
6 Conclusion

Connexins, which form hemichannels, gap junctions, and

connexosomes, participate in intercellular mitochondrial transfer

and regulate functions of both immune and tissue cells,

constituting a vital part of the complex regulatory network in

innate immunity. Here, we have highlighted the significance of

connexins in mounting a rapid and coordinated defense against

pathogens, maintaining physiological homeostasis, and modulating

disease progression. Transiting molecules such as cGAMP, Ca²+, and

antigens through hemichannels and gap junctions enhances immune

surveillance and fosters critical crosstalk between innate and adaptive

immunity. These interactions are important for elucidating the

cellular mechanisms that govern immune responses and are

beneficial for developing potent immunotherapies.

Numerous studies have found that modulating connexins offers

a unique advantage in influencing innate immunity, with broad

implications for managing infections, inflammatory conditions, and

cancers (99). As a result, understanding the intricacies of this aspect

of the immune system opens a new avenue for immune regulation.

Researches on drugs targeting connexins reveal their potential to

initiate and resolve inflammation as a promising avenue for

developing innovative anti-inflammatory strategies. Most drug

development programs aimed at modulating gap junctions for

therapeutic purposes have focused on Cx43 (124) (Table 1).

Moreover, connexin hemichannels serve as docking sites for

extracellular vesicles, providing new insights for drug delivery

(124). Noticeably, manipulating gap junctions may be key to

restoring immune tolerance in autoimmune diseases. In

summary, the intricate interplay between gap junctions and the

innate immune system represents a fast-growing area of research

with profound implications for human health. The challenge lies in

deciphering the complexities of connexin-mediated immune

responses and translating this knowledge into clinical
TABLE 1 Recent Cx43-targeting agents in clinical trials.

Agent Type Mode of action Clinical trial

AsODN Antisense oligonucleotides Decrease Cx43 levels Phase 2

aCT1 Peptide mimetics Decrease Cx43-ZO-1 interaction Phase 3

Rotagaptide Modified peptide Enhance the gap junction function Phase 2

Danagaptide Modified peptide Enhance the gap junction function Phase 2

ZP1609 Modified peptide Enhance the gap junction function Phase 2

Excleningen Small molecule compounds Selectively open Cx43 hemichannels Phase 1

Carbenoxolone Small molecule compounds Decrease Cx43 levels Orphan drug designation from the FDA

Peptide 5 Peptide mimetics Decrease hemichannels Planned
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applications, which may ultimately offer innovative therapeutic

strategies for disease management.
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