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Ovarian cancer (OC) is a highly malignant gynecologic tumor with a poor

prognosis. In recent years, mitochondrial autophagy and aging (MiAg) have

been recognized as crucial pathophysiological mechanisms leading to

tumorigenesis. However, the expression of MiAg-related genes in OC and their

correlation with prognosis remain unclear. In this study, we used multiple

machine learning methods to identify 52 MiAg genes that were differentially

expressed between OC and normal ovarian tissues. Based on these 52

differentially expressed genes (DEGs), 375 OC patients were classified into two

subtypes by consensus clustering analysis. Subsequently, we evaluated the

prognostic value of MiAg-related genes in relation to survival in 375 OC

patients with complete survival information, and developed a MiAg prognostic

score model. By applying Cox and LASSO regression methods, a five-gene

signature was constructed, and the 375 OC patients in the TCGA cohort were

categorized into low-risk and high-risk group based on the median risk score.

Meanwhile, we categorized 174 OC patients from the Gene Expression Omnibus

(GEO) database into high- and low-risk groups using the median risk score of the

TCGA cohort to validate the MiAg scoring model. Furthermore, we analyzed

these data with unifactorial and multifactorial analyses, functional enrichment

analysis, gene mutation analysis, immune infiltration, drug susceptibility analysis,

cell line analysis, and immunohistochemistry data from the HPA database. In

conclusion, the MiAgscore predicted patient survival, and lower MiAgscore

values were associated with a better survival advantage. A comprehensive

assessment of mitochondrial autophagy and cellular senescence alterations in

OC could help advance disease target development and provide more effective

personalized treatment strategies for OC patients.
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1 Introduction

Ovarian cancer (OC) is one of the most common malignant

tumors of the female reproductive system, posing a serious threat to

women’s health due to its high mortality rate, high recurrence rate,

and low 5-year survival rate. The disease often develops

asymptomatically in its early stages, and the lack of early and

effective screening and diagnostic tools makes diagnosis challenging

and frequently delayed (1, 2). The first-line treatments for OC include

surgery, chemotherapy, and immunotherapy (3). However, despite

significant advances in diagnostic techniques and pharmacological

treatments, OC prognosis remains poor, and the low 5-year survival

rate combined with chemotherapy resistance continues to present

major challenges (4, 5). Therefore, the development of new

biodiagnostic markers, therapeutic targets, and drugs is crucial to

improve early diagnosis and treatment outcomes for OC patients.

Additionally, the establishment of reliable and novel prognostic

models could facilitate targeted therapies, thereby improving

patient survival and diagnostic accuracy.

Mitochondrial autophagy, which involves the removal of

damaged mitochondria to maintain cellular energy supply and

stability, plays a crucial role in various diseases when dysregulated

—either deficient or excessive (6, 7). It has been shown to significantly

impact multiple systemic diseases, including cardiovascular disease,

acute pancreatitis, nephropathy, central nervous system disorders,

breast cancer, and liver failure (8–13). In ovarian cancer, heightened

autophagy in advanced stages enhances cancer cell tolerance to

adverse environments, improving tumor cell survival (14). Studies

using TCGA and GEO databases indicate that mitochondrial

autophagy influences ovarian cancer pathogenesis by modulating

the tumor microenvironment (TME), macrophages, stem cells, and

drug resistance (15–18). While some suggest autophagy inhibits

tumor growth in chemotherapy-resistant ovarian cancer (19),

others propose it promotes chemoresistance, highlighting the

potential of targeting autophagy to overcome therapeutic resistance

(20, 21). However, the contradictory findings and lack of reliable

biomarkers for autophagy hinder the clinical application of

autophagy-targeted strategies. Thus, further definitive studies on

mitochondrial autophagy’s mechanism in ovarian cancer are

essential to resolving these discrepancies and identifying novel

therapeutic approaches.

Aging significantly impacts the female reproductive system,

particularly the ovaries. It influences pregnancy, bone health,

cardiovascular health, and cognitive function, highlighting the

importance of addressing female aging and its associated health

challenges (22). Cellular senescence, a hallmark of aging, involves

the irreversible loss of cell replication capacity and morphological

degeneration. It serves as a double-edged sword, functioning both as

a tumor suppressor and a driver of tumorigenesis in specific

contexts (23), playing a crucial role in ovarian cancer

development, progression, and treatment. Notably, cellular

senescence can modulate chemotherapy efficacy by reducing the

required dosage while simultaneously enhancing tumor resistance

to apoptosis in ovarian cancer (24, 25). Mitochondrial biogenesis

tends to increase with aging, while autophagy decreases. Since the
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body maintains mitochondrial integrity through autophagy, this

process plays a key role in mitigating aging-related damage and

disease progression (26). Thus, maintaining mitochondrial health

and managing aging changes are closely linked, and preserving

normal autophagy levels may help decelerate the aging process.

Recent studies indicate that mitochondrial autophagy and

cellular senescence are pivotal in OC. Despite this, no study has

systematically utilized mitochondrial autophagy and aging (MiAg)-

related genes to develop predictive models for OC prognosis,

diagnosis, or immune response. To address this gap, we

conducted a comprehensive analysis of MiAg-related genes in OC

using public database mining. This analysis compared the

expression levels of these genes between normal ovarian tissues

and OC tissues, aiming to elucidate their potential significance in

OC progression, prognosis, and interactions with the

immune microenvironment.
2 Materials and methods

2.1 Data source

Transcriptomic data and clinical information for this study

were obtained from the Xena database (https://xena.ucsc.edu/),

including 379 ovarian cancer patients and 88 normal controls.

After excluding four samples lacking survival information, the

remaining samples were used for subsequent analyses

(bioinformatics.com.cn). Additionally, the GSE53963 dataset from

the GEO database (https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE53963) was used as a validation dataset.
2.2 Identification of differentially expressed
genes related to mitochondrial autophagy
and cellular senescence

We downloaded a total of 560 mitochondrial autophagy and

cellular senescence-related genes by searching relevant literature

(7). To identify differentially expressed genes (MiAg-related DEGs)

associated with mitochondrial autophagy and cellular senescence,

we performed differential expression analyses using the TCGA and

GTEx datasets, comparing gene expression levels between tumor

tissues and normal tissues. Gene interaction information was

obtained from the Search Tool for the Retrieval of Interacting

Genes (STRING, https://cn.string-db.org) database.
2.3 Consistent clustering analysis

To investigate the association between MiAg-related DEGs and

ovarian cancer subtypes, we analyzed 375 samples from the TCGA-

OV cohort by applying a consistent clustering algorithm using the

CNSknowall platform (https://cnsknowall.com). The value of the

clustering variable k was set between 2 and 10. Heatmaps were

generated using the CNSknowall platform, and differences in
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survival time between subgroups were compared using Kaplan-

Meier survival analysis.
2.4 Development and validation of a
prognostic model for mitochondrial
autophagy and cellular senescence-related
genes

To assess the prognostic value of mitochondrial autophagy and

cellular senescence-related genes, we used Cox regression analysis (R

package “survminer” and “survival”) to evaluate the survival status of

each gene in relation to patient survival in the TCGA cohort. To ensure

a broader initial selection, we set the p-value threshold at 0.1 for

screening (27). Candidate genes were then narrowed down using the

LASSO Cox regression model (R package “glmnet”) to construct a

robust prognostic model. Finally, five key genes and their

corresponding coefficients were retained. The riskscore for the 375

samples with complete survival information in the TCGA cohort was

calculated using the following formula: Riskscore = (coefficient1 *

gene1 expression level) + (coefficient2 * gene2 expression level) +… +

(coefficient5 * gene 5 expression level). TCGA ovarian cancer patients

were divided into high-risk and low-risk groups based on the median

riskscore. Kaplan-Meier analysis was used to compare overall survival

(OS) times between the two groups. Additionally, principal component

analysis (PCA) (R package “dplyr”) and receiver operating

characteristic (ROC) curve analysis (R package “timeROC”) were

performed to assess the model’s predictive accuracy. For validation,

we used the GSE53963 ovarian cancer dataset from the GEO database,

applying the median risk score from the TCGA dataset as the cutoff

value to categorize patients into high-risk and low-risk groups.
2.5 Independent prognostic analysis of risk
scores

To determine whether riskscores serve as an independent

prognostic factor, we extracted clinical information from the

TCGA and GEO cohorts and performed univariate and

multivariate Cox regression analyses. Furthermore, to evaluate the

clinical applicability of the risk model, we constructed nomograms

using R packages (“rms,” “survival,” and “regplot”) and validated

them with calibration curves.
2.6 Functional enrichment analysis of DEGs
in low and high risk groups

Ovarian cancer patients in the TCGA cohort were categorized into

high-risk and low-risk groups based on the median risk score.

Subsequently, differentially expressed genes between the two groups

were screened according to the criteria of |log2FC| ≥ 1 and Pavle < 0.05.

Based on these identified DEGs, GO and KEGG functional enrichment

analyses were performed to explore their biological significance. In

addition, we downloaded somatic mutation data from the TCGA
Frontiers in Immunology 03
website (https://portal.gdc.cancer.gov/) and compared the

differences in the top 30 most frequently mutated genes between

the high-risk and low-risk groups using R packages (maftools).
2.7 Correlation analysis of mitochondrial
autophagy and cellular senescence-related
gene model with immune checkpoints and
immune cell infiltration

To investigate the effect of the model on immunotherapy response,

we analyzed the differences in immune checkpoint expression between

the high-risk and low-risk groups. Additionally, we downloaded the

immune score data from the cancer immunome atlas (TCIA) database

(https://tcia.at/). To evaluate the immune cell infiltration in ovarian

cancer, we used the single-sample gene set enrichment analysis

(ssGSEA) algorithm to generate a heatmap illustrating 28 immune

cell types through the biocloudservice tool (http://www.

biocloudservice.com/). Furthermore, we assessed the immune

infiltration levels and immune function scores of 29 immune-

related pathways between the high-risk and low-risk groups using

R software packages (“GSVA” and “BiocManager”).
2.8 Immune checkpoints analysis and drug
sensitivity analysis

To explore more deeply the relationship between the immune

environment and tumor immune escape mechanisms, we analyzed

the expression levels of 19 common immune checkpoints and their

correlations in a subgroup of patients with high and low MiAg

scores. To explore the relationship between the expression levels of

mitochondrial autophagy and cellular senescence-related genes and

chemotherapeutic response, we selected 10 commonly used

chemotherapeutic agents and analyzed the differences in half-

maximal inhibitory concentration (IC50) values between the two

risk score groups using the R software package (26).
2.9 CCLE and HPA database analysis

To facilitate subsequent experimental validation through

cellular assays and immunohistochemical analyses, we used the

Cancer Cell Line Encyclopedia (CCLE, https://sites.broadinstitute.

org/ccle) database to compare gene expression differences across

ovarian cancer cell lines between the high-risk and low-risk groups.

Additionally, we used the Human Protein Atlas (HPA, https://www.

proteinatlas.org/) database to further validate the expression

patterns of the five prognostic genes in ovarian cancer patients.
3 Results

Figure 1 presents a flowchart outlining the entire study

workflow and design. Our findings provide novel insights into the
frontiersin.org

https://portal.gdc.cancer.gov/
https://tcia.at/
http://www.biocloudservice.com/
http://www.biocloudservice.com/
https://sites.broadinstitute.org/ccle
https://sites.broadinstitute.org/ccle
https://www.proteinatlas.org/
https://www.proteinatlas.org/
https://doi.org/10.3389/fimmu.2025.1594021
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1594021
role of MiAg genes in OC, contributing to the identification of

potential prognostic markers and therapeutic targets.
3.1 Identification of DEGS between normal
and tumor tissues

Using the Xena database, we obtained transcriptomic data from

379 ovarian cancer tumor tissue samples and 88 normal ovarian

tissue samples. We then analyzed the expression levels of 560 MiAg-

related genes in normal and tumor tissues. DEGs were identified

using the criteria |log2FC| > 2 and p < 0.01, resulting in 52 significant

DEGs (Figure 2A). Among them, 24 genes were downregulated in

tumor tissues, while 28 genes were upregulated. The expression

profiles of these 52 DEGs in normal versus tumor tissues were

visualized using a heatmap (Figure 2B), where blue represents low

expression levels and red represents high expression levels. To further

explore potential functional interactions among these DEGs, we

performed protein-protein interaction (PPI) analysis using the

STRING database. The PPI network revealed 10 hub genes with

the highest connectivity, namely TUBB4B, TUBA1C, TUBB2B,

GAPDH, LRRK2, ALB, MAPT, TUBB4A, TUBA8, and GJA1. Each

of these hub genes exhibited interactions with more than 10 other

genes, suggesting their crucial roles in OC pathogenesis (Figure 2C).

Additionally, we constructed a correlation network graph to illustrate
Frontiers in Immunology 04
the relationships among the 52 DEGs (Figure 2D), where red

indicates a positive correlation between genes.
3.2 Tumor classification based on DEGS

To investigate the role of the 52 DEGs associated with

mitochondrial autophagy and cellular senescence in OC, we

conducted a consensus clustering analysis using 375 OC patient

samples with complete survival and clinical data from The Cancer

Genome Atlas (TCGA) database. We systematically evaluated

clustering solutions for k = 2 to k = 10 and determined that k =

2 provided the most stable and biologically meaningful

classification, maximizing intra-group similarity while

minimizing inter-group differences. This analysis stratified OC

patients into two distinct molecular subtypes based on DEGs

expression profiles (Figure 3A). To further characterize these

subtypes, we visualized heatmaps that integrated gene

expression patterns with clinical parameters, including tumor

grade (FIGO stage), patient age (<50, 50–69, ≥70 years), and

survival status (alive or dead) (Figure 3C). However, we observed

minimal differences in clinical characteristics across the two

subtypes. Additionally, to assess the prognostic significance of

these subtypes, we conducted Kaplan-Meier survival analysis to

compare overall survival (OS) times across the two groups. The
FIGURE 1

Provides a flowchart of the entire workflow and study design. Our findings contribute to a better understanding of the role of the MiAg gene in OC
and provide insights for identifying novel prognostic markers and therapeutic targets in OC. (Created in BioRender).
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results indicated no statistically significant difference in OS among

the subtypes (p = 0.76, Figure 3B), suggesting that while the DEGs

effectively classified OC patients into distinct molecular subtypes,

these classifications did not correlate with survival outcomes. This
Frontiers in Immunology 05
phenomenon may be related to the low proportion of long-

surviving patients in the sample-only 77 of those who survived

more than 60 months, or less than 25%-which may have limited

the statistical power of the survival analysis.
FIGURE 2

Expression and interaction of 52 mitochondrial autophagy and cellular senescence related genes. (A) Volcano plot of MiAg-related DEGs between
ovarian cancer and normal. (B) Heatmap of mitochondrial autophagy and cellular senescence differential genes between normal tissues (blue) and tumor
tissues (yellow) (Blue: low expression level; Red: high expression level; |log2FC |>2, P<0.01). (C) PPI network showing the interaction of mitochondrial
autophagy and cellular senescence differential genes. (D) Correlation network diagram of mitochondrial autophagy and cellular senescence differential
genes (Red line: positive correlation; Blue line: negative correlation; The depth of the color reflects the strength of the correlation).
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3.3 Development of prognostic genetic
models for the TCGA cohort

We obtained a total of 375 OC samples with complete survival

and clinical data from TCGA database. To identify MiAg-related

genes associated with survival, we conducted univariate Cox

regression analysis on 52 DEGs associated with MiAg. Genes

with P < 0.1 were retained for further analysis, all of which

exhibited hazard ratios (HR) > 1, indicating their association

with increased risk in OC patients. To refine our selection, we

applied Least Absolute Shrinkage and Selection Operator

(LASSO) regression, which identified five independent

prognostic genes: JUP, NR4A1, GABARAPL1, PRKCI, and

EPB41L3 (Figures 4A, B). Based on these genes, we developed a

novel prognostic signature, the MiAGs score, to evaluate clinical

survival outcomes in OC patients. The risk score was calculated

using the following formula: Risk score=(0.086692754×JUP

exp r e s s i on ) + ( 0 . 0 4 067460 7×NR4A1exp r e s s i on ) +

(0.010531697×GABARAPL1expression) + (0.012828561×PRKCI

expression) + (0.076699495×EPB41L3 expression). Patients were

then stratified into low-risk and high-risk groups based on the
Frontiers in Immunology 06
median riskscore (Figure 4C). Principal Component Analysis

(PCA) demonstrated distinct separation between high-risk and

low-risk groups (Figure 4D), highlighting the robustness of the

MiAGs score in classification. Additionally, patients in the high-

risk group exhibited higher mortality rates and shorter survival

times compared to those in the low-risk group (Figure 4E).

Kaplan-Meier survival analysis demonstrated that high-risk

patients had significantly shorter overall survival than those in

the low-risk group (P = 0.032, Figure 4F), corroborating the

prognostic value of the MiAgs score. Furthermore, we

performed time-dependent ROC analysis to evaluate the

predictive accuracy of the model. The Area Under the Curve

(AUC) values were 0.579 at 1 year, 0.634 at 3 years, and 0.585 at 5

years (Figure 4G), suggesting moderate predictive capability for

medium-term survival outcomes. In conclusion, the MiAGs score,

derived from five mitochondrial autophagy-related genes,

effectively stratifies OC patients into distinct risk groups with

significant differences in survival outcomes. This prognostic

signature holds clinical potential for predicting patient

prognosis and guiding personalized treatment strategies in

ovarian cancer management.
FIGURE 3

Tumor classification based on mitochondrial autophagy and cellular senescence-associated DEGS Figure. (A) 375 OC patients were classified into
two clusters according to the consensus clustering matrix (k = 2). (B) Heatmap and clinicopathological characteristics of the two clusters classified
by these DEGs. (C) Kaplan-Meier OS curves for the two cluster.
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3.4 External validation of the risk model

The 174 OC patients from the GEO cohort (GSE53963) were

included as the validation set. Patients were categorized into low-
Frontiers in Immunology 07
risk and high-risk groups based on the median risk score derived

from the TCGA cohort. Specifically, 87 patients were assigned to the

low-risk group, while the remaining 87 patients were classified into

the high-risk group (Figure 5A). To further evaluate the distinction
FIGURE 4

Construction of risk models in the TCGA cohort. (A) LASSO regression for 5 OS-related genes. (B) Cross-validation to adjust parameter selection in
LASSO regression. (C) Distribution of patients based on risk scores. (D) PCA plots of survival of OC patients based on risk scores. (E) Survival status
for each patient. (F) Kaplan-Meier OS curves for patients in the high-risk group and patients in the low-risk group. (G) ROC curves demonstrating the
predictive efficiency of the risk scores.
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between these groups, PCA analysis was performed to assess the

separation between the low-risk and high-risk groups within the

GEO cohort. The results clearly demonstrated that patients were

effectively divided into two distinct clusters based on their risk

scores (Figure 5B). Patients in the low-risk subgroup had a

significantly higher probability of long-term survival than those in

the high-risk group (Figure 5C). To validate this observation,

Kaplan-Meier survival analysis was conducted to assess the

survival differences between the low-risk and high-risk groups.

Notably, Kaplan-Meier analysis showed that OC samples with

lower MiAgs scores were significantly associated with good

outcomes (P = 0.048) (Figure 5D). This finding underscores the

prognostic power of the risk score model in distinguishing between

patients with favorable and unfavorable outcomes, thereby

supporting its potential for clinical application. The areas under

the ROC curves were 0.635 for 1-year, 0.527 for 3-year, and 0.578

for 5-year survival. These AUC values indicate that the model has

moderate predictive accuracy (Figure 5E), particularly at the 1-year

time point. While the predictive power diminishes slightly at longer

time points, the overall results demonstrate the model’s potential to
Frontiers in Immunology 08
differentiate between high-risk and low-risk patients, with its

predictive strength being most pronounced in the short term.
3.5 Independent prognostic value of risk
models

In the TCGA training cohort, univariate Cox regression analysis

was performed to identify potential prognostic factors for overall

survival in OC patients. The results indicated that age (hazard ratio

[HR] = 1.022, 95% confidence interval [CI] = 1.009-1.035, p <

0.001) and risk score (HR = 1.327, 95% CI = 1.023-1.721, p =0.032)

were significantly associated with overall survival (Figure 6A).

These findings suggest that both age and the risk score derived

from the prognostic model are important predictors of survival

outcomes in OC patients. To further elucidate the independent

prognostic significance of the identified factors, multivariate Cox

regression analysis was conducted. The results revealed that age

(HR = 1.025, 95% CI = 1.012-1.038, p < 0.001) and risk score (HR =

1.406, 95% CI = 1.081-1.828, p =0.01) remained significant
FIGURE 5

Validation of constructing risk models in the GEO cohort. (A) Distribution of patients based on risk scores in the GSE53963 cohorts. (B) PCA plots of
survival of OC patients based on risk scores. (C) Survival status for each patient. (D) Kaplan-Meier OS curves for patients in the high-risk group and
patients in the low-risk group. (E) ROC curves showing the predictive efficiency of the risk scores.
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prognostic factors in the multivariate model (Figure 6B). These

findings highlight the importance of age and risk score as

independent predictors of survival. Interestingly, although the

GEO dataset showed that age and stage were independent

predictors of survival (Figures 6C, D), differences in stage and

risk scores were observed between TCGA and GEO. By analyzing
Frontiers in Immunology 09
the two datasets, this variation may be due to differences in sample

size, methods of data collection, sequencing platforms, and methods

of raw data processing. In addition, we analyzed the heatmap of the

expression distribution of five independent prognostic MiAg genes

in the low-risk and high-risk groups along with their clinical

characteristics, and the results showed that the expression levels
FIGURE 6

Univariate and multivariate Cox regression analyses for the risk score and construction of a nomogram. (A) Univariate analysis for the TCGA cohort.
(B) Multivariate analysis for the TCGA cohort. (C) Univariate analysis for the GEO cohort. (D) Multivariate analysis for the GEO cohort. (E) An heatmap
displays the variation in expression MiAg genes and the clinicopathological differences between the low- and highscore groups. (F) Nomogram for
predicting the probability of 1-, 3-, and 5-year overall survival. (G) Calibration curve of the nomogram. (H) The AUC curve for the Nomogram model.
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of JUP, NR4A1, GABARAPL1, PRKCI, and EPB41L3 were higher

in OC samples with high MiAgs scores (Figure 6E), further

supporting their potential role in disease progression.

To facilitate the clinical application of the MiAg score, we

developed a nomogram based on the significant prognostic

factors identified in the TCGA cohort, including age, disease

stage, and risk score. The nomogram provides a visual tool for

predicting the 1-, 3-, and 5-year overall survival probabilities for

both high-risk and low-risk groups (Figure 6F). Notably, in this

nomogram, the risk score and age are the primary contributors to

the prediction of survival probability, reflecting their significant

impact on patient outcomes. Moreover, race/ethnicity also plays a

role in predicting overall survival (OS), highlighting the importance

of considering demographic factors in prognostic models. To assess

the accuracy and reliability of the nomogram, we generated

calibration curves comparing the predicted overall survival

probabilities with the actual observed survival outcomes

(Figure 6G). The calibration curves demonstrate that the

nomogram-predicted OS closely aligns with the actual OS,

indicating high level of reliability and accuracy. To provide

further clear evidence, we provide a nomogram of the ROC curve

from and evaluate the predictive performance of the model

(Figure 6H). Specifically, the calibration plots show minimal

deviation from the ideal 45-degree line, suggesting that the model

performs well across different time points. This consistency between

predicted and observed survival probabilities underscores the

nomogram’s potential for clinical application, providing clinicians

with a valuable tool for estimating individual patient

survival probabilities.
3.6 Risk model-based functional
enrichment analysis

To further explore the differences in gene functions and

pathways between subgroups categorized by risk models, we

analyzed the TCGA data of the high- and low-risk groups using

differential expression criteria of P < 0.05 and |log2FC| ≥ 1.5, and a

total of 230 DEGs were identified. Among them, 38 genes were

upregulated in the high-risk group, while the remaining 192 genes

were downregulated. Gene Ontology (GO) analysis was performed

to elucidate the biological functions and processes associated with

the selected prognostic genes. The analysis revealed significant

enrichment in several key biological processes, cellular

components, and molecular functions (Figure 7A). Specifically,

the enriched biological processes (BP) included “pattern

specification process,” “cell fate commitment,” “neuropeptide

signaling pathway,” and “central nervous system neuron

differentiation,” all of which are crucial for cell development,

immune response, and neuronal function, implying their

potential involvement in ovarian cancer progression and

therapeutic response. The cellular components (CC) were

enriched in “vesicle lumen,” “secretory granule lumen,” and

“neuronal dense core vesicle” indicating their involvement in

vesicle formation and secretion, which play essential roles in
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cellular communication, protein trafficking, and immune

response. The molecular functions (MF) were enriched in

“signaling receptor activator activity,” “receptor ligand activity,”

“hormone activity,” and “G protein-coupled receptor binding”.

These functions suggest roles in signal transduction and receptor-

mediated signaling, which are critical for modulating cellular

responses, intercellular signaling, and immune regulation in

ovarian cancer.

KEGG pathway analysis was conducted to identify the signaling

pathways associated with prognostic genes (Figure 7B). The analysis

revealed significant enrichment in several pathways, including

“Neuroactive ligand-receptor interaction,” “Protein digestion and

absorption,” “Pancreatic secretion,” “Chemical carcinogenesis-

receptor activation,” “Estrogen signaling pathway,” and “Gastric

cancer.” These pathways highlight the genes’ involvement in

neuroactive signaling, digestive processes, metabolism, hormonal

responses, and cancer-related pathways, suggesting their potential

roles in tumor progression and disease regulation. Notably, the

identification of these pathways indicates their potential as

therapeutic targets and biomarkers, which may provide novel

insights into precision medicine approaches for ovarian cancer.

We conducted an analysis to explore the differences in somatic

mutation profiles between high-risk and low-risk OC patients

(Figures 7C, D). Focusing on the top 30 genes, we observed

significant variations in the distribution and frequency of mutated

genes, despite similar overall mutation rates (99.19% in the high-

risk group versus vs. 99.21% in the low-risk group). Notably, 13

genes were shared between the two groups, with TP53 (93% and

95%), TTN (23% and 29%), and CSMD3 (10% and 15%) being the

most frequently mutated. Beyond these shared genes, the high-risk

group exhibited elevated mutation frequencies in USH2A and FLG,

which may contribute to the more aggressive nature of the disease.

Conversely, genes such as RYR2, NF1, AHNAK, APOB, MUC16,

FLG2, and DNAH10 were less mutated in the high-risk group,

suggesting potential protective roles or alternative disease

mechanisms. These findings underscore the importance of

considering mutational profiles in risk stratification and the

development of personalized treatment strategies for OC patients,

highlighting potential targets for precision oncology.
3.7 Comparison of immunoreactivity
between subgroups

Figure 8A illustrates the immune cell infiltration profiles of 28

distinct cell types in the TCGA ovarian cancer cohort, comparing

high-risk and low-risk patient groups. The high-risk group

exhibited significantly elevated infiltration of Central memory

CD8 T cell and effector memory CD8+ T cells, suggesting

enhanced adaptive immunity and potential anti-tumor activity.

This group also showed higher neutrophil infiltration, potentially

supporting anti-tumor responses, and increased memory B cell

levels, indicative of humoral immune activation. Conversely, the

high-risk group displayed a predominant infiltration of regulatory T

cells (Tregs) and plasmacytoid dendritic cells (pDCs), indicating an
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immunosuppressive microenvironment that may contribute to

tumor progression. These contrasting immune landscapes

underscore the prognostic relevance of immune cell dynamics in

OC. In the GEO cohort (Figure 8B), Central memory CD8 T cell

and effector memory CD8 T cells did not show statistically

significant differences between risk groups, contrasting with the

TCGA results. However, memory B cells remained more abundant

in the high-risk group, consistently aligning with TCGA findings.

Similarly, Tregs and pDCs were enriched in the high-risk group,

further reinforcing the association between immunosuppression

and poor prognosis observed in both cohorts.

Figure 8C presents a heatmap analysis of 16 distinct immune

cell types within the TCGA cohort of ovarian cancer patients,
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highlighting differences between high-risk and low-risk groups.

The high-risk group exhibited significantly higher infiltration

levels of macrophages, neutrophils, T helper cells, and Tregs,

suggesting a more immunosuppressive tumor microenvironment.

The elevated presence of these immunosuppressive cells in the high-

risk group may contribute to a poorer prognosis by suppressing the

anti-tumor immune response. Figure 8D validates these findings in

the GEO cohort (Figure 8D), providing additional evidence for the

observed immune infiltration patterns. Consistently, the high-risk

group in the GEO cohort also exhibits higher infiltration of

macrophages, neutrophils, and Tregs compared to the low-risk

group, reinforcing the link between immunosuppression and

adverse outcomes. Interestingly, T helper cells were not detected
FIGURE 7

Functional analysis based on the DEGs and mutational load between the two-risk groups in the TCGA cohort. (A) GO analysis based on DEG between two
risk groups in the TCGA cohort. (B) KEGG enrichment analysis. (C) Waterfall plot of somatic mutations in the high-risk group. (D) Waterfall plot of somatic
mutations in the low-risk group.
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in the GEO cohort, suggesting potential variability in immune cell

infiltration patterns across different patient populations.

Figure 8E illustrates a heatmap analysis displaying the levels of

13 immune features within the TCGA cohort of OC patients,

comparing high-risk and low-risk groups. Notably, all 13 immune

none of these differences reached statistical significance, suggesting

that while there are observable variations in immune feature levels
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between the two risk groups, these differences may not be

sufficiently robust to establish statistical significance without

further validation. Figure 8F presents a similar analysis of

immune feature levels in the GEO validation cohort (Figure 8F),

focusing on the same 13 immune features as in the TCGA cohort,

except for T cell co-inhibition, which was absent in the GEO data.

The analysis reveals that 12 out of the 13 immune features displayed
FIGURE 8

ssGSEA score comparison of immune cells and immune pathways. (A) Heatmap of 28 immune cells between low-risk (blue) and high-risk (red)
groups in the TCGA cohort. (B) Heatmap of 28 immune cells between two groups in the GEO cohort. (C) Comparison of enrichment scores of 16
immune cells between two groups in the TCGA cohort. (D) Comparison of enrichment scores for 16 immune cells and 13 immune-related pathways
between two groups in the GEO cohort. (E) Comparison of enrichment scores of 13 immune-related pathways between two groups in the TCGA
cohort. (F) Comparison of enrichment scores for 13 immune-related pathways between two groups in the GEO cohort.(p-values are shown as: ns
not significant. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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significantly higher levels in the high-risk group compared to the

low-risk group. These findings suggest that the high-risk group may

possess a distinct immune profile characterized by elevated levels of

several immune features, which could indicate a more complex or

active immune environment in these patients. This highlights the

importance of considering immune feature profiles in risk

stratification and personalized treatment strategies for OC patients.
3.8 Immune checkpoints analysis

We analyzed the expression levels of 19 common immune

checkpoints and their correlations in the high and low MiAg

score subgroups. As illustrated in Figure 9A, all 19 immune

checkpoints were expressed at significantly higher levels in the

high-risk group than in the low-risk group (P<0.001). These

findings suggest that the high-risk group may have a more

immunosuppressive microenvironment, which could contributing

to disease progression and poorer outcomes. In addition, Figure 9B

demonstrates that the 19 immune checkpoints showed a significant

positive correlation with the MiAg score (P<0.05). These correlation

indicates that higher MiAg scores, indicative of a more

immunosuppressive environment, are linked with elevated

expression of these immune checkpoints. The concurrent elevated

expression of multiple immune checkpoints in the high-risk group,

together with their positive correlation with the MiAg score,

underscores the potential role of these checkpoints in promoting

an immunosuppressive tumor microenvironment in ovarian

cancer. Such an environment may contribute to increased disease

aggressiveness and resistance to immunotherapy, highlighting the

importance of targeting these pathways in treatment strategies for

high-risk patients. Beyond the 19 immune checkpoints depicted in

Figure 9, we also investigated the expression of eight other common

immune checkpoints in the MiAg subgroups, the results of which

are presented in the Appendix.
3.9 Chemotherapy drug sensitivity analysis
and CCLE database

Chemotherapy is the first-line treatment for patients with

advanced ovarian cancer, and increasing rates of recurrence and

treatment failure are closely associated with the development of

drug resistance. Therefore, we compared the IC50 distributions of

10 commonly used chemotherapeutic agents between the high-risk

and low-risk groups using the R package and assessed the sensitivity

of both groups to these drugs. Additionally, we investigated whether

MiAg could serve as a predictor of patient response to these

chemotherapeutic agents. In this study, we selected 10 OC

chemotherapeutic agents frequently used in clinical practice,

including bleomycin, cisplatin, gemcitabine, paclitaxel, sorafenib,

dasatinib, gefitinib, vincristine, veriparib, and imatinib. Our analysis

revealed that the high-risk group was significantly less sensitive to

bleomycin, docetaxel, paclitaxel, and doxorubicin, but exhibited

greater sensitivity to sorafenib, cisplatin, dasatinib, gefitinib,
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gemcitabine, and imatinib (Figures 10A-J). These findings

demonstrate that MiAg is a valuable tool for predicting the choice

and sensitivity of chemotherapeutic agents in OC patients.

To ensure that subsequent in vitro cellular experiments could be

conducted effectively, we analyzed the gene expression data of

ovarian cancer cell lines from the CCLE database by examining

differences between high- and low-MiAgs score subgroups. The

results showed that 25 cell lines exhibited significant differences in

gene expression between the two groups (Figure 10K).
3.10 HPA database

We utilized immunohistochemical images sourced from the

Human Protein Atlas database (HPA) to evaluate the protein

expression levels of the five aforementioned prognostic genes.

Our analysis compared protein expression in normal ovarian

tissues and ovarian cancer tissues to identify potential differences

(Figure 11). The findings revealed that JUP and PRKCI exhibited

significantly elevated protein expression in OC tissues compared to

normal ovarian tissues (Figures 11A, B). EPB41L3 expression was

not detected in OC tissues but was observed at intermediate staining

intensity in follicular cells of normal ovarian tissues, with no

expression in ovarian stromal cells (Figure 11C). GABARAPL1

was primarily localized in the cytoplasm and cell membrane of OC

tissues, predominantly showing low staining intensity, while its

expression was undetectable in normal ovarian tissues (Figure 11D).

N4RA1 demonstrated predominant nuclear expression with

moderate staining intensity in OC tissues, whereas in normal

ovarian tissues, follicular cells displayed moderate staining

intensity, and ovarian stromal cells exhibited lower levels of

staining (Figure 11E).

Additionally, we investigated the expression levels of these five

prognostic genes in OC versus normal ovarian tissues using data

from the TCGA cohort. The results corroborated the HPA database

findings, confirming that JUP and PRKCI were expressed at higher

levels in OC tissues than in normal tissues, whereas EPB41L3 was

expressed at lower levels in OC tissues. However, the expression

levels of GABARAPL1 and NR4A1 were lower in OC tissues

compared to normal tissues, contradicting the HPA database

observations. This discrepancy may stem from the relatively small

sample size of the HPA database, highlighting the need for further

validation studies to confirm these findings.
4 Discussion

Cancer treatment is advancing, with HER2-targeted therapy,

glycolysis-targeted therapy, and choline metabolism-targeted

therapy showing promise (28, 29). However, clinical application

faces challenges such as drug resistance, safety issues, metabolic

heterogeneity, and a complex immune microenvironment. Further

research is needed to optimize treatment regimens and explore

combination strategies to improve efficacy and patient prognosis.

Ovarian cancer, a highly aggressive malignancy in women, urgently
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requires new therapeutic approaches. Mitochondrial autophagy,

which removes damaged mitochondria, and cellular senescence, a

hallmark of aging, are both closely linked to ovarian cancer

development and may offer potential therapeutic avenues (12, 13).

On one hand, mitochondrial autophagy is integral to drug

resistance, tumor cell evolution, and the tumor microenvironment
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in ovarian cancer. On the other hand, mounting evidence supports

a strong association between mitochondrial autophagy and aging

processes. Thus, these two mechanisms are intricately

interconnected in both the development and treatment of ovarian

cancer. However, the specific genes governing this interplay remain

largely unexplored in this context.
FIGURE 9

Correlation between MiAg score and immune checkpoints. (A) Expression of immune checkpoints between high and low risk groups for MiAg score.
(B) Correlation between MiAg score and immune checkpoints. (p-values are shown as: ***P < 0.001).
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The interaction between MiAg-related genes and OC progression,

as well as their association with patient survival, remains largely

unknown. In our study, we identified five key MiAg-associated genes

—JUP, NR4A1, GABARAPL1, PRKCI, and EPB41L3—that may play

significant roles in OC pathogenesis. JUP (plakoglobin) is elevated in

early-stage ovarian cancer and has been proposed as a potential
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biomarker (30, 31). Although JUP has been described as a tumor

suppressor, inhibiting OC cell growth, migration, and invasion (31), its

precise role remains under investigation. NR4A1, a member of the

NR4A nuclear receptor family, is implicated in carcinogenesis,

apoptosis, inflammation, and metastasis. Notably, NR4A1 exhibits a

dual role in cancer, it can act as either a tumor suppressor or promoter,
FIGURE 10

Chemotherapy drug sensitivity analysis and CCLE database. (A–J) Sensitivities of 10 ovarian cancer chemotherapeutic agents in high-risk and low-
risk groups; (K) Expression of common ovarian cancer cell lines in high-risk and low-risk groups. (p-values are shown as: ns, not significant. *P <
0.05; **P < 0.01; ***P < 0.001).
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depending on the cellular context, particularly via the TGF-b signaling

pathway (32). In high-grade OC, elevated NR4A1 levels have been

linked to poorer prognosis and increased metastasis, partly through the

induction of EGR3 expression (33). However, conflicting evidence

suggests that NR4A1 downregulation may be associated with
Frontiers in Immunology 16
chemosensitivity in OC, highlighting the need for further

investigation (34). Our study suggests that NR4A1 functions as a

potential risk factor in OC. GABARAPL1, a member of the ATG8

protein family, plays a crucial role in autophagy and has been identified

as a tumor suppressor in several cancers (35). However, in OC, higher
FIGURE 11

Immunohistochemical analysis of the HPA data base. (A) JUP expression in normal and ovarian cancer tissues; (B) PRKCI expression in normal and
ovarian cancer tissues; (C) EPB41L3 expression in normal and ovarian cancer tissues; (D) GABARAPL1 expression in normal and ovarian cancer
tissues; (E) N4RA1 expression in normal and ovarian cancer tissues.
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GABARAPL1 expression correlates with poorer patient outcomes,

suggesting a complex and context-dependent role in tumor

progression (36). PRKCI overexpression is an early event in OC

development, as demonstrated by TCGA data and mouse models

(37). It is one of the most frequently amplified and overexpressed genes

in OC, driving cancer cell proliferation, migration, and invasion in

vitro, as well as tumor growth in vivo (38). Elevated PRKCI expression

has been particularly associated with enhanced proliferative and

metastatic potential in clear cell OC, supporting PRKCI as a

promising therapeutic target (39). EPB41L3, known for its tumor-

suppressive properties, is frequently downregulated in OC compared to

normal tissues (40). In epithelial OC, EPB41L3 expression is often

absent or reduced due to methylation, which impairs its tumor-

suppressive function and promotes cancer progression (41). Despite

increasing evidence linking mitochondrial autophagy and cellular

senescence to OC, the role of MiAg-related genes in this interplay

remains underexplored. Most existing studies have examined these

processes separately. Our analysis integrates mitochondrial autophagy

and cellular senescence genes, providing a comprehensive perspective

on their collective impact on OC development and prognosis.

To date, the effects of mitochondrial autophagy and cellular

senescence genes in ovarian cancer remain insufficiently explored.

In our study, we developed a scoring system called the MiAgscore to

assess mitochondrial autophagy and cellular senescence in OC

patients. We first examined the expression levels of 560 MiAg-

related genes in both OC and normal tissues. Among these, 52 genes

were identified as differentially expressed. However, when we

performed consistent cluster analysis based on these DEGs, the

resulting two subgroups did not show significant differences in

clinical characteristics (P = 0.76). To further evaluate the prognostic

significance of these MiAg-associated modifiers, we constructed a

prognostic model featuring a 5-gene risk profile using Cox

regression analysis and LASSO regression analysis. Based on the

median risk score, TCGA samples were categorized into high-risk

and low-risk groups to assess the survival impact of these

subgroups. The results demonstrated that patients in the high-risk

group had poorer survival outcomes, while those in the low-risk

group exhibited better survival outcomes. Similar findings were

confirmed through validation in the GEO dataset. To improve the

clinical applicability of our study, we conducted univariate and one-

way COX analyses, and developed a nomogram with calibration

curves for further validation. Additionally, we performed functional

enrichment analysis of DEGs between the low-risk and high-risk

groups to explore the underlying biological mechanisms.

Tumor infiltrating immune cells are closely correlate with

immunotherapy efficacy and cancer patient survival (42, 43). Our

analysis revealed that the low-risk group exhibited higher infiltration of

immune cells associated with antitumor responses, including activated

CD8+ T cells, effector memory CD8+ T cells, neutrophils, and memory

B cells. Conversely, the high-risk group displayed increased infiltration

of immunosuppressive cells, such as Tregs and pDCs, suggesting a

more immunosuppressive environment and potentially poorer

prognosis. We conducted analyses of 16 immune cell infiltrations

and 13 immune profiles, which underscored the significance of

immune cell patterns in predicting patient prognosis and guiding
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personalized immunotherapy strategies. Notably, the high-risk group

may exhibit a distinct immune profile characterized by elevated levels

of multiple immune signatures, implying a more complex or active

immune environment in these patients. These findings emphasize the

critical role of immune signature profiles in the risk stratification of OC

patients and the development of personalized treatment strategies.

Future research should aim to validate these immune profiles in larger

cohorts and investigate their potential as therapeutic targets to improve

the prognosis of OC patients.

Chemotherapy remains a mainstay treatment for ovarian

cancer. We determined the IC50 values of commonly used

chemotherapeutic agents and compared their effects between

high-risk and low-risk groups. The results showed that patients in

the low MiAg score group were more sensitive to bleomycin,

docetaxel, paclitaxel, and doxorubicin, whereas those in the high

MiAg score group exhibited greater sensitivity to sorafenib,

cisplatin, dasatinib, gefitinib, gemcitabine, and imatinib. These

findings indicate that risk scores may serve as a useful tool for

predicting chemotherapeutic response in OC patients.

In summary, our study demonstrated that mitochondrial

autophagy and cellular senescence are closely associated with the

onset and progression of OC. We developed a novel MiAg score,

which offers a genetic signature for predicting patient prognosis. We

further performed functional, immunological, mutational, drug

sensitivity, and cell lineage analyses to confirm the reliability and

clinical applicability of the MiAg score. This scoring system has the

potential to predict the effectiveness of adjuvant chemotherapy and

immunotherapy, providing clinicians with valuable insights for

treatment planning. However, our study has certain limitations.

Potential bias may arise from the limited clinical data available in

public datasets. Thus, future clinical trials are warranted to further

validate our findings and assess the broader clinical utility of the

MiAg score.
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