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Feng Cao1,2 and Fei Li 1,2*

1Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China, 2Clinical
Center for Acute Pancreatitis, Capital Medical University, Beijing, China
Background:Mitophagy is a highly conserved cellular process in eukaryotic cells

that selectively clears dysfunctional or damaged mitochondria through

autophagy mechanisms to maintain mitochondrial homeostasis. However, the

role of mitophagy in the pathogenesis of severe acute pancreatitis (SAP) has not

been fully investigated. In this study, we aimed to identify crucial mitophagy-

related genes in SAP to provide a theoretical basis for in-depth

mechanistic investigations.

Methods: We downloaded the GSE194331 dataset from the Gene Expression

Omnibus (GEO), identified differentially expressed genes (DEGs), and used

weighted gene co-expression network analysis (WGCNA) and three machine

learning algorithms to identify crucial genes. In addition, single sample gene set

enrichment analysis (ssGSEA) was conducted to explore the relationship

between crucial genes and immune infiltration. The expression of crucial

genes at the single-cell level was analyzed using single-cell RNA sequencing

(scRNA seq) data from the GSE279876 dataset. Finally, we established the SAP

mouse model and conducted preliminary validation of the mechanism of crucial

genes in SAP.

Result: We identified MAPK14 as a crucial mitophagy-related gene in SAP by

intersecting the results of DEGs, WGCNA, and threemachine learning algorithms.

In addition, ssGSEA revealed that MAPK14 was strongly associated with immune

cell infiltration. The analysis of scRNA-seq data revealed that MAPK14 was highly

expressed in pancreatic macrophages, suggesting that macrophage-derived

MAPK14 may potentially regulate inflammation in SAP. Finally, we preliminarily

validated using the SAP mouse model that inhibiting the protein encoded by

MAPK14 increased the expression of mitophagy marker proteins and significantly

alleviated SAP inflammation.
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Conclusion: Inhibition of MAPK14 activation may alleviate SAP by enhancing

mitophagy. Our study highlights the potential role of the mitophagy-related gene

MAPK14 in SAP pathogenesis, providing important insights for future

investigations into mitophagy-mediated immune mechanisms in SAP.
KEYWORDS

severe acute pancreatitis, mitophagy, MAPK14, p38a, WGCNA, machine learning,
immune cell infiltration, single-cell RNA sequencing
1 Introduction
Acute pancreatitis (AP) is a both localized and systemic

inflammatory response triggered by pancreatic duct obstruction

secondary to gallstones, long-term alcohol consumption, and other

etiologies (1). AP has a variable course and unpredictable changes in

the condition. Without timely diagnosis and treatment, approximately

one-fifth of patients develop severe acute pancreatitis (SAP) (2). SAP is

often characterized by pancreatic or peri-pancreatic tissue necrosis,

systemic inflammatory response syndrome (SIRS), and persistent

(>48h) single or multiple organ failure, with a mortality rate of

approximately 20% (2–4). SAP patients exhibit two mortality peaks:

the first associated with early organ failure within two weeks of onset

and the second with sepsis due to infectious pancreatic necrosis (5).

Given its numerous complications and high mortality rate, rigorous

exploration of the molecular mechanisms underlying pancreatitis

pathogenesis is critical for alleviating clinical symptoms and

improving prognosis in SAP patients (6).

Autophagy is a process in which eukaryotic cells use lysosomes to

degrade their own cytoplasmic proteins and damaged organelles under

the regulation of autophagy-related genes (7). Based on the substrates

encapsulated and their transport pathways to lysosomes, autophagy is

categorized into macroautophagy, microautophagy, and chaperone-

mediated autophagy (8). It can be further subdivided into nonselective

and selective autophagy depending on whether the degraded substrate

is specific (9). As a key form of selective autophagy, mitophagy is

essential for maintaining cellular and mitochondrial homeostasis (10).

Under external stimuli such as reactive oxygen species (ROS) stress,

nutrient deficiency, or cellular aging, intracellular mitochondria

undergo depolarization damage, losing their outer membrane

potential. Subsequently, autophagosomes recognize and encapsulate

damaged mitochondria, which then bind to lysosomes to promote the

degradation of mitochondrial contents (11). Mitophagy plays a critical

regulatory role in inflammatory diseases including acute lung injury

(12), renal tubular inflammation (13), neuroinflammation (14),

osteoarthritis (15), thyroiditis (16), and viral myocarditis (17). The

PINK1/Parkin pathway has been found to alleviate AP by regulating

mitophagy (18, 19). However, the molecular mechanism of mitophagy

in SAP remain poorly understood and effective therapeutic targets are

still lacking.
02
Advances in technologies such as bioinformatics and machine

learning have allowed us to use a variety of tools for in-depth

analysis of various diseases (20–22). We used three machine

learning algorithms in this study. Specifically, the least absolute

shrinkage and selection operator (LASSO) algorithm determines

variables by finding the l value with the smallest classification error,

which is mainly used to screen feature variables and construct the

optimal classification model (23). The random forest (RF)

algorithm improves prediction accuracy by constructing multiple

decision trees and combining their results to screening genes with

the most significant impact on the phenotype (24). Support vector

machine-recursive feature elimination (SVM-RFE), a feature

selection method based on SVM, is commonly used to screen

important features related to the target variable in high-

dimensional data (24). Weighted gene co-expression network

analysis (WGCNA) is a systems biology method used to describe

gene association patterns between different samples, which can

identify candidate biomarker genes or therapeutic targets based

on expression correlations between gene sets and associations

between gene sets and phenotypes (25). According to published

literature, research on the role of mitophagy in SAP remains in its

infancy. The unique pathological environment of SAP may lead to

significantly different expression patterns and regulatory networks

of mitophagy-related genes (MRGs) compared to those in other

diseases. Therefore, further screening for potential genes that

regulate mitophagy and inflammation in SAP is warranted.

In this paper, we integrated multiple approaches, including

bioinformatics analyses, WGCNA, machine learning algorithms

and single-cell RNA sequencing (scRNA-seq), to explore crucial

biomarkers associated with mitophagy in SAP and screen mitogen-

activated protein kinase 14 (MAPK14) as a potential therapeutic

target for SAP. p38 kinase is a serine/threonine kinase of the mitogen-

activated protein kinase (MAPK) family, and MAPK14 encodes the

p38a protein, which is the best-characterized member of the p38

kinase family (26). Environmental stress, cytokines, and other pro-

inflammatory factors can activate p38a and modulate immune and

stress responses (27). Inhibition of p38 to promote mitophagy has

been found to be therapeutic in Parkinson’s disease caused by

dopaminergic neurodegeneration (28, 29). However, its role in

regulating mitophagy in SAP remains unclear. We validated its

expression in SAP mouse models through immunohistochemistry
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(IHC) experiments, and further demonstrated that inhibiting p38a
with the specific inhibitor SB203580 upregulates mitophagy marker

proteins and alleviates SAP. These findings provide a new perspective

on the role of mitophagy in SAP pathogenesis and contributes to

subsequent in-depth intervention studies.
2 Materials and methods

2.1 Data collection and processing

The datasets GSE194331 and GSE279876 were downloaded

from the GEO database (https://www.ncbi.nlm.nih.gov/geo/,

accessed on 15 October 2024). GSE194331 is an RNA-seq dataset of

peripheral blood from 87 clinical AP patients (Mild = 57, Moderately-

Severe = 20, Severe = 10). We extracted peripheral blood gene

expression data from 32 healthy individuals and 10 SAP patients for

analysis. GSE279876 is a scRNA-seq dataset of pancreatic tissue from

mice with AP, comparing normal diet and high-fat diet conditions. AP

was induced by intraperitoneal injection of caerulein (50 mg/kg), every
hour for 12 consecutive times. Then, pancreatic tissues from each

group were collected and subjected to 10x single-cell sequencing. We

extracted the data of the normal control group and the acute

pancreatitis group induced by a normal diet for analysis.

The GeneCards database (https://www.genecards.org/, accessed

on 20 October 2024) was searched for “mitophagy” to obtain

MRGs, and genes with relevance score >2 were selected. We

search “mitophagy” in PubMed to obtain MRGs from the

literature (30). After removing duplicates, 218 MRGs were finally

obtained (Supplementary Material 1).
2.2 Identification of differentially expressed
genes

The raw count data were normalized and then analyzed for

differential expression using the “DESeq2” package in the R

software. Genes with |logFC| > 1 and adjusted p < 0.05 were

considered DEGs, and volcano and heat maps were plotted using

the ggplot2 and “pheatmap” packages.
2.3 Functional enrichment analysis

Gene symbol conversion was performed using the “org.Hs.eg.db”

and “org.Mm.eg.db” packages, Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) enrichment analyses

were performed using the “clusterProfiler” package, and the results

were visualized using the “ggplot2” package.
2.4 WGCNA

The “WGCNA” package was used to construct the gene co-

expression matrix. Samples were first clustered and the optimal soft
Frontiers in Immunology 03
threshold (b) was determined to be 11. Using parameters

minModuleSize = 30 and MergeCutHeight = 0.25, we constructed

a scale-free co-expression network, thereby converting the

adjacency matrix into a topological overlap matrix (TOM). We

performed cluster analysis to identify gene modules, and

constructed a dendrogram via hierarchical clustering to calculate

the correlation between module eigengenes and disease phenotypes.
2.5 Machine learning algorithms screen for
hub genes

To further screen for hub genes, three machine learning

algorithms were used: LASSO logistic regression, RF, and SVM-

RFE. Previous studies have demonstrated the effectiveness of these

algorithms for gene screening (31). The LASSO regression model

was built using the “glmnet” package, with the minimum l value

was selected as the optimal parameter for prediction. We

constructed multiple decision trees using the “randomForest”

package and aggregated their results to perform classification,

regression, and feature selection. For the SVM-RFE algorithm, we

used the “e1071” and “caret” packages, applying five-fold cross-

validation to obtain the results. Finally, venn diagrams were plotted

to show the intersection of the three algorithms.
2.6 MAPK14 expression and ROC
assessment

The “ggpubr” package was used to visualize the expression level

of MAPK14. Receiver operating characteristic (ROC) analysis was

performed using “pROC” package to evaluate its diagnostic ability

in SAP.
2.7 Single-gene GSEA

The GO, KEGG, REACTOME, and HALLMARK gene sets

were downloaded from the MSigDB database (https://www.gsea-

msigdb.org/gsea/msigdb, accessed on 30 October 2024). Single-gene

GSEA was performed using the “clusterProfiler” package to explore

the potential functions of MAPK14, with results visualized via the

“enrichplot” package.
2.8 ssGSEA

Single sample gene set enrichment analysis (ssGSEA) was

performed using the “GSVA” package. Immune cell infiltration

and immune function activity for each sample were calculated based

on sample gene expression. Correlations between immune cells

abundance and immune pathways activity were calculated using the

“corrplot” package. The “ggplot2” package was used to draw

boxplots to compare the differences in immune cells infiltration

and immune pathways activity between the SAP and control
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groups. A subset of MAPK14 expression was extracted from the

original expression matrix, and the immune cell abundance matrix

was combined with the target gene expression matrix. A lollipop

plot was created using the “ggplot2” package to demonstrate

correlation between MAPK14 expression and immune cells

abundance as well as immune pathways activity.
2.9 scRNA-seq data preprocessing,
dimensionality reduction, clustering and
visualization

Quality control and preprocessing of data were performed using

the “Seurat” package. The “PercentageEigenSet” function was used

to remove mitochondrial genes (“^mt-”) and red blood cell genes

(Hba1, Hba2, Hbb, Hbd, Hbe1, Hbg1, Hbg2, Hbm, Hbq1, and

Hbz). Final cell quality control was carried out based on the

following parameters: nFeature_RNA > 300 & nFeature_RNA <

7000 & nCount_RNA > 1000 & percent.mt < 20 & percent.HB < 1.

The “NormalizeData” function was used for data normalization, the

“FindVariableFeatures” function was used to find 3000 highly

variable genes, and the “ScaleData” function was used to

standardize the data. After PCA dimensionality reduction, the

“Harmony” package was used for data integration. Then, the

“FindNeighbors” and “FindClusters” functions were employed for

clustering, and the “DoubletFinder” package was used to remove

double cells. The results were visualized through t-distributed

stochastic neighbor embedding (tSNE). By referring to the

CellMarker2.0 (http://bio-bigdata.hrbmu.edu.cn/CellMarker/

index.html, accessed on 10 November 2024), PanglaoDB (https://

panglaodb.se/index.html, accessed on 10 November 2024), and Cell

Taxonomy (https://ngdc.cncb.ac.cn/celltaxonomy/, accessed on 10

November 2024) databases for cell annotation, 20643 cells were

annotated as 11 cell types, including acinar cells, fibroblasts,

neutrophils, macrophages, T cells, B cells, endothelial cells,

mesothelial cells, beta cells, alpha cells, and pericytes.
2.10 Differential analysis of scRNA-seq data

The cluster-specific genes of macrophages were identified using

the “FindAllMarkers” function. Subsequently, adjusted p-values

were calculated using the Wilcoxon rank sum test. These

differential genes were then used for GO and KEGG

enrichment analysis.
2.11 SAP animals model construction

C57BL/6 mice were purchased from Beijing Vital River

Laboratory Animal Technology Co., Ltd. Newly arrived mice were

allowed free access to food and water for one week. Then they were

fasted 12 h before the experiment. To induce SAP, mice were

intraperitoneally injected with cerulein (MCE, China) at a dose of
Frontiers in Immunology 04
100 mg/kg every 1 h for a total of 8 times. The last injection of

cerulein was accompanied by 15 mg/kg of Lipopolysaccharide

(MCE, China). For the SB203580 + SAP group, mice were

intraperitoneally injected with SB203580 (10 mg/kg) 30 min

before the first injection of cerulein. After the treatment, the mice

were sacrificed by cervical dislocation, and pancreatic tissues were

collected for subsequent experiments. This study was approved by

the Ethics Committee of Xuanwu Hospital of Capital Medical

University (XW20211223-1).
2.12 Hematoxylin-eosin staining

The tissue sections were deparaffinized in xylene and then

hydrated through a series of alcohols with decreasing

concentrations to facilitate dye penetration. They were stained

with hematoxylin, rinsed under running water to remove excess

dye, and then differentiated with 0.1% hydrochloric acid in ethanol.

After another rinse to remove the acid, the sections were stained

with eosin, followed by a further rinse under running water to

remove excess eosin. Subsequently, the sections were dehydrated

using a series of alcohols with increasing concentrations, mounted

with a neutral resin, and photographed for observation. Two

pathologists independently scored the severity of pancreatitis in

mice according to Kusske et al.’s pancreatic pathology scoring

criteria (32).
2.13 IHC staining

The tissue sections were placed in a thermostat at 60°C and

baked for 2h. they were dewaxed in xylene and hydrated in gradient

ethanol. Subsequently, antigen retrieval was performed using

sodium citrate. The sections were then blocked with 5% goat

serum. After blocking, they were incubated overnight at 4°C with

primary antibodies against p38 MAPK (ABclonal, A14401) and

phospho-p38 MAPK (ABclonal, AP0057). After the incubation

with primary antibodies, the sections were incubated with

secondary antibodies. Subsequently, the expression of target

proteins was detected using 3,3′-diaminobenzidine (DAB)

solution. Two professional pathologists independently scored the

results using the immunoreactivity score (IRS) as follows: The

intensity of cellular staining was divided into 4 levels, no positive

staining (negative) scored 0, yellow (weakly positive) scored 1,

tawny (positive) scored 2, and brown (strongly positive) scored 3.

The percentage of positive cells was divided into 4 levels, ≤25%

scored 1, 26%-50% scored 2, 51%-75% scored 3, >75% scored 4. The

final score was obtained by multiplying these two scores.
2.14 Western blot

The pancreatic tissue was lysed on ice using RIPA lysis buffer

and the supernatant was collected by centrifugation. Proteins were
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separated via sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (SDS-PAGE) and transferred to polyvinylidene

fluoride (PVDF) membranes. After blocking the PVDF

membranes with 5% skim milk, the membranes were incubated

overnight at 4°C with primary antibodies targeting b-actin
(Proteintech, 20536-1-AP), Pink1 (Proteintech, 23274-1-AP),

Parkin (Proteintech, 14060-1-AP), and Bnip3l/Nix (Selleck,

F0469). Then, the membranes were incubated with secondary

antibodies at room temperature for 1 h. Finally, protein bands

were visualized using a western blot imaging system.
2.15 Statistical analysis

Bioinformatics-related statistical analyses were performed using

R software (R-4.4.1, 64-bit). For molecular biology experiments,

data from at least three independent experimental replicates were

analyzed using two-sample t-tests or Wilcoxon rank-sum tests
Frontiers in Immunology 05
using Prism 8 (GraphPad), A p-value < 0.05 was considered

statistically significant.

3 Results

3.1 Identification of DEGs and functional
enrichment analysis

In this study, we used the GSE194331 dataset, which included

sample data from 10 SAP patients and 32 healthy individuals. DEGs

were screened based on the criteria of |logFC|> 1 and an adjusted p-

value < 0.05. A total of 4110 DEGs were identified, comprising 2290

up-regulated genes and 1820 down-regulated genes (Figure 1A).

The top 50 up-regulated and top 50 down-regulated genes were

respectively selected for heatmap visualization (Figure 1B).

To further explore the potential biological functions regulated

by these DEGs, we conducted GO and KEGG enrichment analyses

on the screened DEGs. The results indicated that these DEGs were
FIGURE 1

Identification and enrichment analysis of DEGs. (A) Volcano plot of DEGs between the SAP and control groups (cut-off criteria: |logFC| >1 and
adjusted p-value < 0.05). (B) Heatmap of top50 DEGs (upregulated and downregulated) between the SAP and control samples. (C) GO enrichment
analysis for DEGs. (D) KEGG enrichment analysis for DEGs.
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primarily involved in various biological processes, including the

immune response-activating signaling pathway, positive regulation

of cytokine production, mononuclear cell differentiation, leukocyte

mediated immunity, and immune response-regulating cell surface

receptor signaling pathway. Moreover, the DEGs were also involved

in multiple signaling pathways, such as cytokine-cytokine receptor

interaction, Neutrophil extracellular trap formation, and NF-kappa

B signaling pathway (Figures 1C, D).
Frontiers in Immunology 06
3.2 Construction of co-expression network
and screening of core genes

To identify core genes associated with SAP, we constructed a

gene co-expression network using WGCNA. Sample clustering

analysis revealed distinct clustering of samples (Figure 2A),

indicating reliable data quality. A soft threshold of b = 11 was

selected, yielding a scale-free topology fit index (R²) of 0.85
FIGURE 2

Construction of the co-expression network. (A) Sample clustering using average clustering methods. (B) Selection of a suitable soft threshold (power
= 11) and scale-free topology fit index (R2 = 0.85). (C) Gene hierarchical clustering diagram. (D) Heatmap of correlations between gene modules and
SAP. (E) Scatterplot between the GS and MM in the “blue” module.
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(Figure 2B), which confirmed the construction of a scale-free co-

expression network. Using gene correlation matrices, we

constructed a hierarchical clustering dendrogram of genes,

identifying 15 distinct gene modules (Figure 2C). Among these,

the “blue” module, containing 924 genes, exhibited the strongest

correlation with SAP phenotypes (Cor = 0.79, p = 5 × 10-10), making

it the most clinically relevant module (Figure 2D). A scatter plot

revealed a significant positive correlation between gene salience

(GS) and module members (MM) within the “blue” module (Cor =

0.84, p < 1 × 10-200), indicating high consistency between module

genes and SAP relevance (Figure 2E).
3.3 Selection and functional enrichment
analysis of MRGs in SAP

To investigate the role of mitophagy in SAP pathogenesis, we

performed an intersection analysis among DEGs, MRGs, and genes

in the “blue” module, identifying 8 overlapping signature genes

(Figure 3A). These genes were subjected to GO and KEGG

enrichment analyses to characterize their potential biological

functions and pathways associated with mitophagy in SAP

pathogenesis. GO functional enrichment revealed that the

signature genes mainly regulate biological functions such as

autophagy of mitochondrion, organel le disassembly ,
Frontiers in Immunology 07
macroautophagy, autophagosome organization, and vacuole

organization (Figure 3B). KEGG pathway enrichment revealed

their involvement in autophagy, NOD-like receptor signaling

pathway, mitophagy, FoxO signaling pathway, efferocytosis,

sphingolipid metabolism, and cholesterol metabolism (Figure 3C).
3.4 Machine learning algorithms identify
core genes

We utilized three machine learning algorithms to further screen

for core genes. Using LASSO regression, we identified five core

genes that best characterize the MRGs in SAP: ATG3, MAPK14,

CAMKK2, TSPO, and GABARAPL2 (Figures 4A, B). RF identified

two significant genes: MAPK14 and MFF (Figures 4C, D), SVM-

RFE identified three candidate genes with minimal error and

maximal accuracy: MAPK14, MFF, and ATG3 (Figures 4E, F). By

intersecting the results from the three algorithms, we identified

MAPK14 as the mitophagy-related gene most strongly associated

with SAP (Figure 5A). Further analysis revealed that MAPK14

expression was significantly higher in SAP patients than in healthy

individuals (Figure 5B). Moreover, ROC curve analysis showed that

MAPK14 had a good predictive value for SAP, with an AUC value

of 0.900 (Figure 5C).
FIGURE 3

Screening of mitophagy-related signature genes. (A) Venn diagram of the intersection of DEGs, “blue” module genes, and MRGs. (B) GO enrichment
analysis for the intersecting genes. (C) KEGG enrichment analysis for the intersecting genes.
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3.5 Single-gene GSEA of MAPK14

Our previous analysis identified MAPK14 as the mitophagy-

related gene most strongly associated with SAP pathogenesis,
Frontiers in Immunology 08
potentially regulatory SAP progression. To further explore its

molecular functions and regulated biological pathways, we

performed single-gene GSEA. MAPK14 was enriched in GO

terms including ATP synthesis coupled electron transport,
FIGURE 4

Identification of critical gene using three machine learning algorithms. (A) Path diagram for LASSO regression analysis with candidate MRGs.
(B) LASSO regression cross-validation curves. A 10-fold cross-validation was used to determine the optimal l value, and the optimal l yielded 5
MRGs. (C) Correlation between the number of random forest trees and model errors. (D) RF importance score results (only MAPK14 and MFF
received importance score). (E) Accuracy plot of the SVM-RFE algorithm. (F) Error plot of the SVM-RFE algorithm.
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macroautophagy, mitochondrial RNA metabolic process, oxidative

phosphorylation, and positive regulation of inflammatory response

(Figure 5D). GSEA of the KEGG gene set revealed that MAPK14 is

involved in regulating pathways such as electron transfer in
Frontiers in Immunology 09
complex IV, IL1-IL1R-p38 signaling pathway, mismatch repair,

PRNP-PI3K-NOX2 signaling pathway, and TGFR-EGFR-RAS-

ERK signaling pathway (Figure 5E). GSEA of the REACTOME

gene set revealed that MAPK14 is involved in regulating pathways
FIGURE 5

Diagnostic value and GSEA of MAPK14. (A) V Venn diagram showing the intersection of the results from three machine learning algorithms. (B)
Expression levels of MAPK14 in SAP and control samples. (C) Receiver operating characteristic (ROC) curves for evaluating the diagnostic value of
MAPK14. (D) GSEA of MAPK14 in the GO dataset. (E) GSEA of MAPK14 in the KEGG dataset. (F) GSEA of MAPK14 in the REACTOME dataset. (G) GSEA
of MAPK14 in the HALLMARK dataset. *** p < 0.001 represents significance.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1594085
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xie et al. 10.3389/fimmu.2025.1594085
such as antigen processing cross presentation, apoptosis, cellular

response to hypoxia, DNA repair, and eukaryotic translation

initiation (Figure 5F). And GSEA of the HALLMARK gene set

revealed that MAPK14 is involved in regulating pathways such as

apoptosis, hypoxia, complement, IL6-JAK-STAT3 signaling, and

inflammatory response (Figure 5G). This further highlights the

potential of targeting MAPK14 to modulate SAP acinar cell death

and inflammation.
Frontiers in Immunology 10
3.6 Immune cell infiltration and functions
and its association with MAPK14

Immune mechanisms play an important role in the

development of SAP. Therefore, we explored the differences in

immune infiltration between SAP patients and normal individuals

using ssGSEA. The heatmap shows the distribution of 28 immune

cells in 32 healthy individuals and 10 SAP patients in the
FIGURE 6

Analysis of immune cell infiltration in SAP and control samples using ssGSEA. (A) Heatmap of 28 immune cell types in SAP and control samples.
(B) Heatmap of correlation between 28 immune cell types. (C) Boxplots showing infiltration scores of 28 immune cell types in SAP and control
samples. *p < 0.05, **p < 0.01, and ***p < 0.001 represent varying degrees of significance between the indicated groups.
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GSE194331 dataset (Figure 6A). Figure 6B shows the correlation

between these 28 immune cells. We observed that the infiltration of

neutrophil, monocyte, activated dendritic cell, immature dendritic

cell, regulatory T cell, macrophage, gamma delta T cell, and mast

cell was significantly higher in SAP, while the infiltration of
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immature B cell, central memory CD4 T cell, activated CD8 T

cell, effector memory CD8 T cell, and activated B cell decreased in

SAP. This suggesting that these immune cells may play a crucial role

in the development of SAP (Figure 6C). In addition, we further

explored the distribution of 11 immune functions between SAP
FIGURE 7

Analysis of immune function in SAP and control samples using ssGSEA. (A) Heatmap for 11 immune functions in SAP and control samples.
(B) Heatmap of correlation between the 11 immune functions. (C) Boxplots showing scores of 11 immune function in SAP and control samples.
(D) Lollipop plot depicting the correlation between MAPK14 and immune cell infiltration. (E) Lollipop plot depicting the correlation between MAPK14
and immune functions. *p < 0.05, **p < 0.01, and ***p < 0.001 represent varying degrees of significance between the indicated groups.
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patients and healthy individuals, as well as the correlation between

these 11 immune functions (Figures 7A, B). Differential analysis of

immune function revealed that T cell co-stimulation, inflammation-

promoting, APC co inhibition, parainflammation, and check-point

were closely associated with the development of SAP (Figure 7C).

Correlation analysis revealed that MAPK14 was statistically

correlated with 23 immune cells and 8 immune functions. Among

them, regulatory T cell, gamma delta T cell, macrophage,

neutrophil, mast cell, activated dendritic cell, type 17 T helper

cell, immature dendritic cell, and APC co inhibition immune

function were positively correlated with MAPK14 (Figures 7D, E).
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3.7 scRNA-seq analysis of MAPK14

To investigate the potential role of MAPK14 in AP at the single-

cell level, we analyzed the scRNA-seq data from the NFD group

(control) and the AP group in the GSE279876 dataset. A total of

20643 cells from C57BL/6 mouse pancreatic samples were

processed, and the dataset underwent dimensionality reduction,

clustering, and tSNE visualization (Figure 8A). Fifteen major cell

clusters were identified, and the “FindAllMarker” package was used

to identify marker genes (Figure 8B). Based on these markers, 20643

cells were annotated into 11 cell types: acinar cells, fibroblasts,
FIGURE 8

Single-cell transcriptome analysis of pancreatic cells. (A) Visualization of tSNE for AP and control samples. (B) tSNE visualization of 15 cell clusters.
(C) tSNE visualization of acinar cells, fibroblasts, neutrophils, macrophages, T cells, B cells, endothelial cells, mesothelial cells, beta cells, alpha cells,
and pericytes. (D) Marker genes for the 15 cell clusters. (E) Violin plot showing the expression of Mapk14 across all cell types. (F) tSNE visualization
depicting the expression of Mapk14. (G) GO enrichment analysis of differential expressed genes in macrophage subpopulations. (H) KEGG pathway
enrichment analysis of differential expressed genes in macrophage subpopulations.
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neutrophils, macrophages, T cells, B cells, endothelial cells,

mesothelial cells, beta cells, alpha cells, and pericytes (Figure 8C).

Figure 8D displays the marker genes for the 15 cell clusters. We

found that Mapk14 was expressed across multiple cell types, with

the highest expression observed in macrophages (Figures 8E, F). To

explore its role in macrophages, we extracted macrophage

subpopulations for differential gene expression analysis and

performed GO and KEGG enrichment analysis. Differentially

expressed genes were primarily involved in biological processes

such as RNA splicing, immune response activating signaling

pathway, and regulation of apoptotic signaling pathway

(Figure 8G), as well as pathways such as endocytosis, MAPK

signaling pathway, autophagy, oxidative phosphorylation,

lysosome, and apoptosis (Figure 8H). These findings indicate that

Mapk14 may play a regulatory role in these biological processes,
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highlighting its potential importance in macrophage-mediated

functions during AP.
3.8 Inhibition of p38a relieves SAP

To investigate the role of p38a in SAP pathogenesis in vivo, we

established SAP mouse models. IHC staining of mouse pancreatic

tissues revealed that p38a expression was significantly higher in

SAP mice than in control mice, with phosphorylated p38a
exhibiting a more pronounced increase (Figure 9A). This

indicates activation of the p38a in the pancreas of SAP mice. To

validate the role of p38a in SAP-associated inflammation, we

treated mice with the p38-specific inhibitor SB203580 and

observed significant reductions in pancreatic inflammation and
FIGURE 9

Effects of p38a inhibition in SAP mice. (A) IHC staining for p38a and phosphorylated p38a in pancreatic tissues of SAP and control mice
(magnification, 200×). (B) HE staining showing the effect of the p38a inhibitor SB203580 (10 mg/kg) on pancreatic inflammation and lung injury
(magnification, 200×). (C) Western blot showing the effect of p38a inhibition on the expression of mitophagy marker proteins. (D) Band density was
measured (ImageJ software) and normalized to that of b-actin. ** p < 0.01, and *** p < 0.001 represent varying degrees of significance between the
indicated groups.
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lung injury (Figure 9B). In addition, we found that the expression of

mitophagy markers Pink1, Parkin, and Bnip3l/Nix was reduced in

the pancreatic tissue of SAP mice, indicating impaired mitophagy in

SAP (Figures 9C, D). The expression of these markers was restored

after p38a inhibition (Figures 9C, D). This suggests that inhibiting

p38a may alleviate pancreatitis severity by promoting mitophagy

in SAP.
4 Discussion

SAP is a complex and rapidly progressive form of severe

pancreatic inflammation, in which uncontrolled inflammatory

responses lead to pancreatic necrosis and multiorgan failure,

thereby inducing severe complications such as acute respiratory

distress syndrome (ARDS) and shock (33). Despite significant

progress in the treatment of SAP in recent years, clarifying the

molecular mechanisms underlying its pathogenesis and progression

remains a pressing issue.

Mitophagy selectively eliminates dysfunctional or damaged

mitochondria to maintain normal mitochondrial function and

prevent inflammation caused by mitochondrial damage (34). The

normal function of pancreatic acinar cell organelles, including

mitochondria, is essential for maintaining pancreatic physiology.

Previous studies have revealed mitochondrial swelling, cristae

disruption, and dysfunction in AP (35), which can lead to

consequences such as pancreatic endoplasmic reticulum stress,

impaired autophagy, and dysregulation of lipid metabolism,

which in turn exacerbate AP (36). Available studies suggest that

mitophagy regulates AP severity through two major pathways:

ubiquitin-mediated and receptor-mediated (10). Ubiquitin

mediated mitophagy is executed via the PINK1/Parkin pathway.

PINK1, a serine/threonine protein kinase, eliminates damaged

mitochondria by activating the ubiquitin E3 ligase Parkin (37,

38). Receptor-mediated mitophagy relies on outer mitochondrial

membrane receptors (e.g., BNIP3L/NIX), which initiate mitophagy

by directly interacting with LC3 on autophagosome membranes

(39). Recent studies highlight that mitochondrial dysfunction and

impaired or deficient mitophagy are critical mechanisms in AP/SAP

pathogenesis (10). For example, PINK1/Parkin-dependent

mitophagy attenuates AP by inhibiting NLRP3 (18), while

MRG15 promotes apoptosis by suppressing mitophagy in

hyperlipidemic AP (40). Sestrin2 attenuates SAP by balancing

mitophagy and apoptosis through the PINK1/Parkin pathway (19).

In this study, we integrated various bioinformatics tools to

identify MAPK14 as a key mitophagy-related biomarker in SAP.

To characterize the biological roles of MAPK14, we performed single-

gene GSEA across four gene sets (GO, KEGG, REACTOME, and

HALLMARK). Results showed that MAPK14 may regulate

mitochondrial electron transport and RNA metabolism, in addition

to modulating mitophagy and inflammatory responses. and

furthermore, It was also involved in pathways such as apoptosis

and IL6-JAK-STAT3, suggesting potential mechanisms for its role in

mitophagy regulation. Immune cell infiltration is critical in SAP

pathogenesis (41). Using ssGSEA, we analyzed the correlation
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between MAPK14 and immune cell infiltration/functions.

Compared with healthy controls, we observed increased infiltration

of immune cells in SAP patients, including neutrophil, monocyte,

activated dendritic cell, immature dendritic cell, regulatory T cell,

macrophage, gamma delta T cell, and mast cell. Notably, MAPK14

was positively correlated with predominantly infiltrating immune

cells in SAP, such as neutrophils and macrophages, indicating that

infiltration of these cell types may be associated with MAPK14

activation in SAP. Our further analysis using scRNA-seq datasets

of mouse pancreatic tissues revealed predominant Mapk14

expression in pancreatic macrophages, suggesting that macrophage-

derived Mapk14 plays a key role in regulating AP inflammation.

The p38 kinase family comprises four isoforms: p38a, p38b,
p38g, and p38d, with p38a (encoded by MAPK14) being the most

abundant subtype (42). As a critical immune-inflammatory regulator,

p38a is activated by oxidative stress, ischemia, hypoxia, and

endotoxin, promoting the release of pro-inflammatory cytokines,

such as IL-1b, TNF-a, and IL-6, and exacerbating inflammatory

responses (43). While p38-mediated mitophagy regulation has been

preliminarily demonstrated in neurological disorders. For example,

p38 inhibition mitigates Park2 deficiency-induced ROS generation

and mitochondrial dysfunction in Parkinson’s disease (29).

Subsequently, p38 was found to negatively regulate Parkin, and p38

inhibition prevented progressive neuronal degeneration by

enhancing mitophagy (28). Its role in SAP remains unclear.

Previous studies reported that p38a regulates SAP via

macroautophagy (44), but whether it participates in mitochondrial

quality control through selective mitophagy to modulate SAP

inflammation is unknown. We found that p38a was activated in

SAP tissues and observed significant alleviation of pancreatic

inflammation and lung injury following p38a inhibition, providing

preliminary evidence for its therapeutic efficacy in SAP. Further, we

found that the expression of mitophagy regulatory proteins Pink1,

Parkin, and Bnip3l/Nix was significantly reduced in SAP, and their

expression was restored after inhibiting p38a, indicating that p38a
inhibition alleviates SAP by enhancing mitophagy.

In summary, targeting p38a significantly relieved SAP in mice,

highlighting its clinical potential as a therapeutic target. In addition,

the data for GSE194331 used in this study came from peripheral

blood of clinical patients. The expression of MAPK14 is

significantly elevated in SAP patients, and according to the ROC

curve, MAPK14 has great predictive value for SAP, highlighting its

value in the diagnosis of SAP. However, limitations exist: first, our

analysis relied solely on the GEO database due to the scarcity of

non-oncology databases, lacking validation with our own

sequencing data; second, due to the difficulty of clinical sampling

of tissues from SAP patients, we could only utilize peripheral blood

sample RNA-seq data from SAP patients for our analysis; third, the

current public database only contains scRNA-seq data from AP

mouse models, and the lack of corresponding scRNA-seq data from

SAP mouse models precluded single-cell level analysis of SAP

pathogenesis; finally, while we demonstrated that p38a inhibition

enhances mitophagy marker proteins expression and alleviates

inflammation in SAP mice, the specific molecular mechanisms

require further investigation.
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5 Conclusions

In conclusion, through comprehensive bioinformatics analysis,

we identified and validated MAPK14 as a critical mitophagy-related

gene in SAP. Our findings preliminarily demonstrated that p38a
inhibition upregulates the expression of mitophagy marker proteins

and effectively alleviated SAP. These results provide a research

direction and foundation for further investigating the regulation of

SAP inflammation through mitophagy.
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