
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Yi Wu,
Yunnan Agricultural University, China

REVIEWED BY

Haifeng Wang,
Shenyang Pharmaceutical University, China
Lili Yang,
Nanjing University of Chinese Medicine, China

*CORRESPONDENCE

Xie Ruishi

13630305096@163.com

Li Dongyang

l15189800803@126.com

Fang Xiaoxue

fangxiaoxue1996@163.com

RECEIVED 15 March 2025

ACCEPTED 09 April 2025

PUBLISHED 30 April 2025

CITATION

Lin W, Ruishi X, Caijiao X, Haoming L,
Xuefeng H, Jiyou Y, Minqiang L, Shuo Z,
Ming Z, Dongyang L and Xiaoxue F (2025)
Potential applications and mechanisms of
natural products in mucosal-related diseases.
Front. Immunol. 16:1594224.
doi: 10.3389/fimmu.2025.1594224

COPYRIGHT

© 2025 Lin, Ruishi, Caijiao, Haoming, Xuefeng,
Jiyou, Minqiang, Shuo, Ming, Dongyang and
Xiaoxue. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 30 April 2025

DOI 10.3389/fimmu.2025.1594224
Potential applications and
mechanisms of natural products
in mucosal-related diseases
Wang Lin1,2, Xie Ruishi1,2*, Xu Caijiao1,2, Luo Haoming1,2,
Hua Xuefeng3, Yao Jiyou3, Lu Minqiang3, Zhou Shuo1,2,
Zhu Ming1,2, Li Dongyang1,2* and Fang Xiaoxue1,2*

1Changchun University of Chinese Medicine, Changchun, China, 2School of Pharmacy, Changchun
University of Chinese Medicine, Changchun, China, 3The First People’s Hospital of Guangzhou,
Department of Hepatobiliary and Pancreatic Surgery, Guangzhou, China
The mucosal barrier serves as a crucial defense against external pathogens and

allergens, being widely distributed across the respiratory, gastrointestinal,

urogenital tracts, and oral cavity. Its disruption can lead to various diseases,

including inflammatory bowel disease, asthma, urinary tract infections, and oral

inflammation. Current mainstream treatments for mucosa-associated diseases

primarily involve glucocorticoids and immunosuppressants, but their long-term

use may cause adverse effects. Therefore, the development of safer and more

effective therapeutic strategies has become a focus of research. Natural

products, with their multi-target and multi-system regulatory advantages, offer

a promising avenue for the treatment of mucosal diseases. This review

summarizes the potential applications of natural products in diseases of

mucosal barrier dysfunction through mechanisms such as immune

modulation, inflammation inhibition, tight junction protein restoration, and gut

microbiota regulation, with the aim of providing insights for the exploration of

novel therapeutic strategies.
KEYWORDS

mucous barrier, natural products, immune regulation, inflammation inhibition, gut
microbiota modulation
1 Introduction

The mucosa serves as the body’s first line of defense against external pathogens and

allergens and is widely distributed throughout the respiratory, gastrointestinal,

genitourinary, and oral cavities (1). Far beyond a passive physical barrier, mucosa

harbors a sophisticated immune network, including mucosa-associated lymphoid tissue

(MALT) and diverse immune cells, which collectively regulate both innate and adaptive

immune responses. Under homeostatic conditions, the structural integrity and

immunological function of the mucosa are critical for maintaining host health and

internal environmental stability (2).
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However, various internal and external factors—such as

infections, inflammatory responses, oxidative stress, medication use,

and poor dietary habits—can impair mucosal barrier function,

potentially leading to a range of chronic diseases. In the digestive

system, intestinal mucosal damage can increase permeability, disrupt

the microbiota, and trigger immune activation, all of which contribute

to the pathogenesis of inflammatory bowel disease and food allergies.

In the respiratory tract, mucosal damage increases the risk of asthma

and chronic obstructive pulmonary disease and impairs respiratory

function (3). In the urinary tract, mucosal damage predisposes

individuals to urinary tract infections and impairs excretory

function (4). Similarly, in the oral cavity, damage to the mucosal

microenvironment is closely associated with conditions such as

candidiasis and recurrent oral ulcers (5). Currently, commonly used

clinical treatments—such as aminosalicylates, corticosteroids, and

immunosuppressants—may alleviate symptoms in the short term,

but long-term use often leads to drug resistance, hormone

dependence, or systemic side effects, thereby limiting their

therapeutic potential (6). Therefore, the development of novel, safe

and effective therapeutics for mucosal diseases is urgently needed.

Natural products have unique advantages, including multi-

system, multi-target, and multi-mechanism effects, providing new

research directions for the treatment of mucosa-associated diseases

(7). Numerous studies have demonstrated that natural products

such as polysaccharides, alkaloids, and polyphenols can promote

mucosal barrier repair through various mechanisms, including

regulation of immune cell function, reduction of inflammatory

cytokine levels, and enhancement of tight junction protein

expression (8). In addition, there is increasing evidence of

interactions between natural products and the host microbiota

(9). Many natural products can modulate the composition of the

gut microbiota, increase the abundance of short chain fatty acid

(SCFA)-producing bacteria, and increase butyrate levels, thereby

providing essential nutrients to intestinal epithelial cells and
Frontiers in Immunology 02
facilitating mucosal barrier repair. In addition, some metabolites

of natural products exert protective effects on the mucosal barrier

through mechanisms similar to those of their parent compounds.

These findings highlight the potential of natural products in the

treatment of mucosal diseases. Although significant progress has

been made in exploring the use of natural products for mucosa-

related disease interventions, their mechanisms of action remain

incompletely understood. Target specificity in different disease

models, structure-function relationships, and interactions with

host microecology require further investigation. This review aims

to systematically summarize the latest advances in the application of

natural products to various mucosa-associated diseases, with a focus

on their core mechanisms in modulating mucosal immunity,

repairing mucosal structures, and maintaining microecological

balance, and discusses their clinical significance.
2 Immune system and mucosal
barriers

2.1 Intestinal mucosal barrier

2.1.1 Composition and barrier function of
intestinal mucosa

The intestinal mucosa serves as a critical immune barrier, not

only facilitating nutrient absorption and providing an interactive

surface for commensal microbes, but also preventing the invasion of

harmful substances (10). The intestinal microbiota is comprised of

several components, including an outer mucus layer containing

commensal microbes, antimicrobial proteins (AMPs), and secretory

immunoglobulin A (sIgA); a central monolayer of specialized

epithelial cells; and an inner lamina propria housing innate and

adaptive immune cells such as T cells, B cells, macrophages, and

dendritic cells (11, 12) (Figure 1).
FIGURE 1

The structure of the intestinal mucosal barrier.
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The mucus layer serves as the first physical barrier against external

molecules entering the intestinal lumen (11), Its primary components

are highly glycosylated mucins (13), which play a crucial role in

protecting the immune system and intestinal epithelial cells from

antigen exposure. In both the colon and small intestine, mucin 2

(MUC2) secreted by goblet cells is the most abundant mucin. MUC2

reduces antigen exposure to the immune system and intestinal

epithelial cells, which is essential for disease prevention (13). Studies

have shown that MUC2-deficient mice spontaneously develop colitis,

and their mucus layer is more susceptible to bacterial penetration (14).

Moreover, mucus defects are associated with the occurrence of

neonatal Escherichia coli meningitis (15)and necrotizing enterocolitis

(16), indicating that damage to the mucus layer can promote

inflammatory responses, thereby inducing acute and chronic colitis

as well as colorectal cancer (17). Beneath the mucus layer, intestinal

epithelial cells (IECs) play a critical role in maintaining intestinal

barrier integrity. Multipotent stem cells within the intestinal crypts

differentiate into five cell types: absorptive enterocytes, goblet cells,

enteroendocrine cells, Paneth cells, and microfold (M) cells (18). These

cells form a continuous polarized monolayer that separates the lumen

from the lamina propria. Molecular transport between IECs is

regulated by intercellular junction complexes, primarily including

tight junctions (TJs), adherens junctions (AJs), and desmosomes

(19). TJs and AJs are connected to the surrounding actin-myosin

network, thereby regulating intercellular adhesion through the

cytoskeleton (11) (19),. Additionally, IECs express a variety of innate

immune signaling molecules on their surface and within their

cytoplasm (20), including intracellular peptidoglycan receptors

NOD1 and NOD2, as well as surface and intracellular Toll-like

receptors (TLRs), which recognize bacterial, fungal, and viral

structures (21, 22) and activate immune responses via the NF-kB
pathway (23). The lamina propria serves as the final line of defense in

the intestinal mucosa, where immune cells interact with epithelial cells

to collectively maintain intestinal barrier function. For instance, goblet

cells deliver antigens to CD11c+/CD103+ dendritic cell (DC) subsets in

the lamina propria (24), followed by cross-presentation of antigens by

DCs, inducing the differentiation of Foxp3+ regulatory T cells (Tregs)

(25, 26).

2.1.2 Immunomodulation of the intestinal
mucosa

Interferon-gamma (IFN-g) and tumor necrosis factor-alpha

(TNF-a), derived from T cells, are key mediators of intestinal

inflammatory diseases, including inflammatory bowel disease

(IBD). TJs and increase intestinal permeability by regulating the

expression of claudin and occludin (27–30). Zolotarevsky et al.

demonstrated that IFN-g and TNF-a promote the redistribution of

TJ proteins (ZO-1, JAM-A, occludin, claudin-1, and claudin-4) in

intestinal epithelial cells (Caco-2 and T84), leading to impaired

barrier function (31). This mechanism is likely mediated by myosin

light chain kinase (MLCK), which facilitates TJ disruption through

myosin light chain (MLC) phosphorylation. Inhibition of MLC

phosphorylation can restore barrier function.

Th2 cell cytokines also play a role in regulating intestinal barrier

function. Studies have shown that stimulation of colonic epithelial cell
Frontiers in Immunology 03
lines T84 and HT-29/B6 with IL-4 or IL-13 increases intestinal

permeability (32–34). The underlying mechanism involves epithelial

cell apoptosis and upregulation of claudin-2 expression. The PI3K

pathway plays a critical role in this process (33, 35), as blocking IL-4/IL-

13-mediated PI3K activation can prevent barrier dysfunction (33). IL-

10, as an anti-inflammatory cytokine, also modulates intestinal barrier

function (36, 37). Treatment with IL-10 can prevent IFN-g-induced
increases in epithelial permeability (38). Immune cells likewise

contribute to the regulation of the intestinal mucosal barrier. For

instance, CD3 stimulation leads to CD4+ T cell activation, resulting in

increased permeability and enhanced secretion of IFN-g and TNF-a
(39, 40). Mice lacking intraepithelial lymphocytes (iIELgd+) exhibit

abnormal localization of claudin-3, occludin, and ZO-1, impaired TJ

formation, and consequently, barrier dysfunction (41). Additionally,

mast cells are widely distributed throughout the gastrointestinal tract

(42). Upon activation, they release a variety of potent inflammatory

mediators, including histamine, serotonin (5-HT), neutral proteases,

prostaglandins, leukotrienes, platelet-activating factor, and cytokines

such as TNF-a, IL-3, and IL-4 (43–45). Research indicates that mast

cells participate in intestinal barrier regulation through models of food

allergy or parasitic infection (46).

2.1.3 Intestinal mucosal injury and related
diseases

Intestinal mucosal injury can lead to diseases such as IBD, food

allergies, celiac disease, and diabetes, with immune regulation being

a key factor influencing its function (47). IL-10-deficient mice

exhibit increased permeability and spontaneously develop chronic

colitis (36, 48), indicating its protective role in barrier function. IL-

10 may regulate intestinal permeability through the claudin/claudin

receptor pathway and TNF-a-related mechanisms, and inhibition

of this pathway has been shown to improve permeability and reduce

the risk of colitis in IL-10-deficient mice (37). The zonulin/zonulin

receptor pathway is believed to regulate TJ formation via PKC-

dependent actin cytoskeleton remodeling (49).

Eosinophils and their granular proteins, such as major basic

protein (MBP), eosinophil peroxidase, and eosinophil cationic

protein (ECP), are increased in IBD and functional bowel

disorders (50–53). In vitro co-culture experiments have shown

that eosinophils or their major basic protein can reduce

transepithelial electrical resistance (TER) in T84 cells, increase

permeability, and downregulate occludin expression (54).

In summary, the function of the intestinal mucosal barrier is

regulated by various immune cells and cytokines. Its damage can

lead to a variety of intestinal diseases. A deeper understanding of its

immune regulatory mechanisms will contribute to the development

of related therapeutic strategies.
2.2 Respiratory mucosal barrier

2.2.1 Composition and function of respiratory
barrier

The respiratory tract is divided into the upper respiratory tract

(URT) and lower respiratory tract (LRT). The URT includes the
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nasal cavity, pharynx, and larynx, which together form the pathway

for air flow and contain associated lymphoid tissues such as the

nasal-associated lymphoid tissue and cervical lymph nodes. The

LRT includes the trachea, as well as the bronchi and bronchioles

within the lungs (55). As a crucial barrier against external pathogens

and particulate matter, the respiratory tract relies on the synergistic

action of the mucous layer and epithelial cells to maintain

functional homeostasis (Figure 2).

The respiratory mucosal barrier consists of a mucus layer and

epithelial cells. The mucus layer is composed of an upper gel-like

mucus layer and a lower ciliary surrounding layer (55), which forms

a bottlebrush structure. Its main component is mucin, which is

crucial for protecting the respiratory tract from pathogen infections

(56). The respiratory epithelium is primarily composed of ciliated

epithelial cells, goblet cells, basal cells, and club cells (57), with

airway epithelial cells being central to the pathogenesis of major

lung diseases, including COPD, asthma, and bronchial cancer (58).

In these diseases, localized inflammation and immune signaling

further impact the function of airway epithelium (59, 60).

2.2.2 Regulation and function of epithelial cell
differentiation

Ciliated epithelial cells are the predominant cell type in the

airways, and their differentiation is strictly regulated by the

conserved Notch signaling pathway (57). Inhibition of Notch

signaling promotes the differentiation of basal cells into ciliated

epithelial cells, while high levels of Notch signaling drive their

differentiation into goblet cells (61, 62). Goblet cell hyperplasia and

excessive mucus secretion are common pathological features of

asthma, COPD, and cystic fibrosis. Research by Agrawal et al.

suggests that blocking excessive mucus secretion in an asthma

mouse model can alleviate airway obstruction (63). Although
Frontiers in Immunology 04
airway epithelial cell proliferation was not observed in the asthma

mouse mode l , the da t a suppor t the hypo the s i s o f

transdifferentiation from ciliated cells to goblet cells (64).

Goblet cells primarily secrete mucins, such as Muc5AC and

Muc5B, to capture foreign molecules (65, 66).Under normal

conditions, the production and clearance of these mucins

maintain a dynamic balance. However, excessive differentiation of

goblet cells driven by IL-4 and IL-13 disrupts this balance, leading

to the development of asthma, allergic rhinitis (AR), and chronic

rhinosinusitis (CRS) (67).

Basal cells are stem cell-like progenitors in the upper and lower

airways. Under the regulation of the Notch signaling pathway, they

can differentiate into ciliated epithelial cells, goblet cells, and other

epithelial cells (68). They are tightly attached to the basement

membrane and prov ide s t ruc tura l suppor t through

hemidesmosomes (69). Under homeostatic conditions, basal cells

remain quiescent, but after barrier injury, they are rapidly activated

and migrate to the damaged area to form a temporary barrier (70).

Basal cell proliferation and differentiation are observed in chronic

airway diseases. For example, studies on ex vivo basal cell cultures

from nasal polyps in CRSwNP patients and bronchial biopsies from

asthma patients have shown reduced proliferative capacity of basal

cells (65). A recent study by Ordovas-Montanes et al. revealed that

in CRS, the IL-4/IL-13 signaling signature persists in basal cells and

their progeny, keeping airway epithelial cells in an undifferentiated

state and reducing cellular and functional diversity. Blocking the IL-

4 receptor a subunit can restore basal cel l function

(71).Additionally, basal cells can mediate innate immune

responses. For instance, in cigarette-induced epithelial injury, they

secrete antimicrobial protein RNase7 while upregulating innate

immune mediators such as b-defensin-2, lipid-binding protein 2,

IL-6, IL-8, and CCL20 (72, 73).
FIGURE 2

The composition and function of the respiratory barrier.
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2.2.3 Impaired barrier function and disease
Although the mucus layer plays an important role in the

respiratory barrier, the true physical barrier is maintained by the

adhesive complexes between epithelial cells, including TJs, adherens

junctions, and desmosomes (65). TJs are composed of

transmembrane proteins such as occludin, claudins, and the

immunoglobulin-like (IgG) family members of JAMs, which are

connected to cytoplasmic scaffold proteins like ZO-1, ZO-2, and

ZO-3 (74). Adherens junctions are located beneath TJs and are

formed by the E-cadherin-catenin complex (75). Desmosomes

ensure the attachment of basal and other epithelial cells to the

basement membrane (76). The epithelial cell barrier is closely

associated with the development and progression of various

respiratory diseases. Disruption of the epithelial barrier in allergic

asthma is linked to TJ defects and reductions in adherens junctions

and desmosomes (77). Compared to healthy controls, AR patients

show reduced expression of occludin and ZO-1, which correlates with

disease severity (78). Increased epithelial permeability and irregular,

decreased expression of TJ molecules such as occludin and ZO-1 were

found in the in vivo specimens of CRSwNP patients (79). Various

cytokines have been shown to interfere with TJs, such as the typical

Th2 cytokines IL-4 and IL-13, which are released upon allergen

exposure and lead to epithelial barrier dysfunction (80). Steelant

et al.’s study indicated that IL-4 and IL-13 disrupt the barrier integrity

of nasal epithelial cells in both AR patients and healthy controls,

resulting in a vicious cycle of increased epithelial permeability (81). In

contrast, strengthening the epithelial cell barrier effectively reduces

inflammation in various in vitro and in vivomodels of Th2-mediated

respiratory inflammation (82). Additionally, mediators released by

mast cells can also increase epithelial permeability, making it easier

for allergens to penetrate the host (83).
2.3 Urinary mucosal barrier

The urinary system consists of the bladder, ureters, and kidneys,

primarily responsible for filtering and excreting waste while

maintaining systemic homeostasis (84). The inner surface of the

urinary tract is lined with a mucosal barrier composed of the

urothelium, basement membrane, and lamina propria (LP) (85).

The urothelium is a tightly packed transitional epithelium, with its

surface covered by a glycocalyx composed of mucopolysaccharides,

providing both physical and chemical protection to epithelial cells

(86). Compared to the intestinal mucosa, the glycocalyx layer of the

urothelium is thinner (87–90). Its main components include

membrane-bound glycoproteins, glycolipids, and soluble factors

such as galectins and proteoglycans (91). Glycosaminoglycans

(GAGs) are linked to core proteins to form proteoglycans, with

chondroitin sulfate and hyaluronic acid being the major

components of the GAG layer, playing a crucial role in barrier

formation and antimicrobial defense (91).

2.3.1 Structure and function of the urothelium
The urothelium consists of three layers: the basal cell layer

attached to the basement membrane, the intermediate layer, and the
Frontiers in Immunology 05
superficial or apical layer composed of “umbrella cells” (92).

Umbrella cells are hexagonal and interconnect to form a dense

barrier, strictly regulating the permeability of solutes and water

through TJs, thereby effectively preventing harmful substances in

urine from entering the tissue (92). Additionally, adherens

junctions (AJs) and desmosomes between urothelial cells play a

crucial role in maintaining epithelial integrity (93). Beneath the

urothelium lies the LP, which is composed of an extracellular matrix

and contains various cell types, including fibroblasts, interstitial

cells, as well as afferent and efferent nerve endings (94). This

structure not only provides mechanical support but also

participates in signal transduction and immune regulation.

2.3.2 Urinary tract microbiota and the infection
mechanism

Urothelial injury and exposure to harmful substances may be

associated with the pathology of spinal cord injury and are often

accompanied by irritative lower urinary tract symptoms (95). Due

to its anatomical proximity to the gastrointestinal tract, the

bladder mucosa is frequently exposed to microorganisms.

Additionally, in females, the urethral opening is close to the

vaginal mucosa, resulting in a unique microbiota composition

(96–98).

Urinary tract infection (UTI) is the most common infection

worldwide, affecting either the upper urinary tract (pyelonephritis)

or the lower urinary tract (cystitis). Uropathogenic Escherichia coli

(UPEC) is the primary causative agent of UTIs (99). UPEC

colonizes the lower gastrointestinal tract and can migrate across

the perineum to the urethra, entering the urinary tract. It initiates

UTI by covalently binding to the UPK1A protein expressed on the

apical surface of umbrella cells via the adhesin FimH, located at the

tip of type 1 fimbriae (100). Moreover, FimH can interact with

urothelial cells to induce the exfoliation of umbrella cells, thereby

promoting urothelial cell proliferation (101).

2.3.3 Injury and repair of the urothelial barrier
Under homeostatic conditions, the mitotic activity of urothelial

cells is largely quiescent, with a very slow cell cycle (102, 103).

However, in response to acute injury caused by chemical exposure,

surgical trauma, or urinary tract infection (UTI), urothelial cells

rapidly proliferate to facilitate repair and regeneration (104). The

urothelium expresses multiple Toll-like receptors (TLRs), which

recognize pathogen-associated molecular patterns and damage-

associated molecular patterns, thereby activating inflammatory

responses and promoting the clearance of infected cells (105).

The urothelial barrier plays a critical role in maintaining urinary

tract homeostasis, preventing pathogen invasion, and facilitating

tissue repair. Its barrier function primarily relies on tight junctions,

the glycocalyx layer, and the structural support of the underlying

lamina propria. Following UTI or injury, urothelial cells can swiftly

initiate repair mechanisms, while TLR signaling pathways play a

central role in inflammatory responses and pathogen clearance.

Elucidating the regulatory mechanisms of the urothelial barrier will

contribute to the development of effective therapeutic interventions

for UTIs and related urinary tract disorders.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1594224
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2025.1594224
2.4 Oral mucosal barrier

The oral mucosa represents the initial segment of the

gastrointestinal (GI) tract and shares anatomical and histological

similarities with the GI system (106, 107). In addition to mucus

secretion, the oral cavity produces saliva through the salivary glands

(108, 109). Saliva is initially derived from serous exudates and is

further enriched with a diverse array of molecules originating from

mucosal cells, immune cells, and resident microbiota (109). The

dynamic secretion and swallowing of saliva facilitate the mechanical

clearance of pathogens (109). Moreover, saliva contains

immunoglobulins (such as secretory IgA), antimicrobial peptides

(such as defensins), and enzymes secreted by the salivary glands,

collectively mediating innate and adaptive humoral immunity (109).

2.4.1 Structure and immune function of the oral
mucosa

Similar to other mucosal tissues, the oral mucosa consists of

three structural layers: the epithelial layer, the lamina propria (LP),

and specialized lymphoid tissue (106). However, unlike the single-

layer columnar epithelium of the gastrointestinal tract, the oral

mucosa is composed of stratified squamous epithelium, forming a

thicker and denser mechanical barrier (106). The LP is a loose

connective tissue rich in blood vessels and lymphatic vessels,

serving as a primary site for the induction and effector functions

of immune cells (110). Under homeostatic conditions, dendritic

cells (DCs) are present throughout the lamina propria, freely

migrating between self and foreign antigens (111) and playing a

critical role in tolerogenic immune responses. Oral DCs typically

express low levels of maturation markers (CD80, CD83, CD86) and

exhibit high tolerance to stimuli from the oral microenvironment

(112, 113). Upon encountering pathogens or injury, DCs become

activated and migrate to lymphoid tissues, initiating T-cell immune

responses (110). In mouse models, different subsets of CD11c+ DCs,

along with Langerhans cells (LCs), are distributed within the

epithelium of the oral, sublingual, and gingival mucosa. These

antigen-presenting cells (APCs) capture antigens and deliver

immune signals to T cells (114, 115).

2.4.2 Oral mucosa-related diseases and immune
regulation

Clinical studies have shown that the oral mucosa can be affected

by various pathological factors, including viral infections, Candida

infections, and OLP (110). Among these, immune deficiency and

imbalance in the oral immune system are major predisposing factors

for these diseases. Cases of mucosal immune dysfunction have been

observed in individuals infected with human immunodeficiency virus

(HIV). HIV infection leads to a reduction in CD4+ T cell levels,

resulting in immune deficiency and making patients more susceptible

to infections by commensal microorganisms in the oral and

pharyngeal regions, such as Candida albicans (116).

Another case involves hyper-IgE syndrome, which is caused by

mutations in STAT3 (117–119). Patients with hyper-IgE syndrome
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are highly prone to oral candidiasis due to the absence of TH17

cells, a finding consistent with animal studies: IL-17 receptor-

deficient mice (IL-17RA-/-) and IL-23p19-deficient mice exhibit

significantly increased susceptibility to C. albicans infection (120).

Although TH17 cells are critical for combating oral fungal

infections, their excessive activation may trigger chronic

inflammation and even lead to autoimmune diseases (118, 121).

2.4.3 Inflammation and autoimmune diseases of
the oral mucosa

Under normal conditions, the immune response of the oral

mucosa to food antigens and commensal bacteria does not induce

inflammation but rather promotes immune tolerance. However,

aberrant activation of the immune systemmay lead to inflammation

and autoimmune diseases such as periodontitis, Sjögren’s

syndrome, and OLP. Periodontitis is triggered by bacterial plaque

accumulation, associated tissue damage, and bone loss due to the

host immune response and inappropriate inflammation. T helper

(TH) cells play a crucial role in the recruitment of neutrophils and

osteoclasts, contributing to alveolar bone and gingival barrier

destruction (122, 123).OLP is a chronic inflammatory disease

characterized by massive lymphocyte infiltration in the LP and

chronic destruction of the epithelial basal layer (124–126). Scully

et al. demonstrated that TH1 and TH2 cells contribute to OLP-

associated inflammation and mucosal lesion formation, with

increased levels of pro-inflammatory cytokines, including IL-6,

IL-17, and TNF-a, in the saliva and serum of OLP patients (125,

127–129). In contrast, serum levels of TGF-b are lower in OLP

patients compared to healthy individuals (130, 131). A single

nucleotide polymorphism (SNP) study on IL-10 polymorphisms

revealed a higher frequency of four haplotypes (-1082 G/A, -819 C/

T, and -592 C/A polymorphisms) in the peripheral blood of OLP

patients, which is associated with reduced serum IL-10 levels (132).

Based on these findings, several reports suggest that T cells may

be involved in the development of OLP (133). However, given that

various immune cell types can produce these cytokines, the precise

role of T cells in OLP pathogenesis remains to be determined.
3 Potential applications of natural
products in mucosal barrier-related
diseases

In recent years, natural products have received much attention

in the study of mucosa-associated diseases due to their excellent

safety, biocompatibility, and therapeutic potential (134, 135).

Natural products can attach to mucosal surfaces, inhibit

inflammation, modulate microflora, and enhance the expression

of tight junction proteins (TJPs), thereby restoring intestinal barrier

function (Table 1). Numerous studies have confirmed that

polysaccharides can alleviate dextran sulfate sodium (DSS)-

induced UC (136, 137).
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TABLE 1 Mechanism of natural products and their extracts in the treatment of mucosal barrier related diseases.

Natural
product

Compound
Name

Chemokines or chemokine receptors Machine References

OBG
OBG-
supplemented rats

High dose increases T lymphocyte ratio; low dose enhances
claudin-3, claudin-4 expression

Regulates intestinal immunity, enhances
barrier integrity

(139)

HSWP-1d DSS-induced UC mice
Increases TJPs expression, balances pro-inflammatory/anti-
inflammatory factors

Maintains intestinal barrier stability (140)

LNT
CP-induced intestinal
barrier damage
in mice

Regulates IL-6, IL-2, IFN-g, IgG levels; upregulates TNF-a, IL-
1b, Occludin, ZO-1 expression

Reduces CP-induced intestinal damage (141)

TFP DSS-induced UC mice Inhibits inflammation, restores intestinal and mucus barriers Improves UC symptoms (142)

CYP-1 DSS-induced UC mice
Inhibits colonic inflammation activation, restores TJPs
expression, regulates gut microbiota

Maintains intestinal barrier function (143)

APS
DSS-induced UC
mice, RSL3-stimulated
Caco-2 cells

Anti-ferroptosis effect Improves experimental colitis (144)

SPS DSS-induced UC mice
Inhibits STAT3/NF-kB pathway, enhances TJPs and
mucin expression

Maintains intestinal barrier integrity (145)

XG Allergic rhinitis mice
Reduces tissue damage, decreases pro-inflammatory factors,
maintains ZO-1 expression

Protects nasal mucosal barrier (146)

Matrine
Caco-2 cell model,
DSS-induced UC mice

Mediates Rho-ROCK signaling pathway via miR-155,
regulates ROCK1 expression

Maintains tight junction protein integrity (150)

Hordenine DSS-induced UC mice
Inhibits SPHK1/S1PR1 and STAT3 phosphorylation, improves
goblet cell morphology

Reduces intestinal damage, enhances
mucus barrier

(151)

IND UC mouse model
Acts as an aryl hydrocarbon receptor (AhR) ligand, promotes
CD4+ IL-10+ T cell proliferation

Enhances immunomodulatory function (152)

INB UC mouse model
Inhibits TLR4-mediated pro-inflammatory factor expression
via NF-kB and MAPK pathways

Alleviates UC (153, 154)

IND+INB UC mouse model
Combined enhancement of intestinal barrier, synergistic
action on AhR, NF-kB, and MAPK

Synergistically alleviates UC symptoms,
improves therapeutic efficacy

(155)

Berberine
Acute and chronic UC
mouse models

Regulates Th17/Treg immune balance, improves gut
microbiota, enhances glial-epithelial-immune cell interaction

Alleviates colitis symptoms, restores
intestinal homeostasis

(156, 157)
(158)

Berbamine DSS-induced UC mice Mechanism similar to BBR, but effective at lower doses
Similar effects to BBR, but effective at
lower doses

(160)

Saussurea
costus

UC mouse model
Reduces TNF-a, IL-1b, IL-8, IL-18 levels, increases ZO-1 and
Occludin expression

Improves UC pathological changes,
enhances intestinal barrier function

(161)

Costunolide
DSS-induced UC
mouse model

Binds to NLRP3’s Nacht domain, inhibits NLRP3
inflammasome assembly and ATPase activity

Significantly inhibits intestinal
inflammation, exerts anti-
inflammatory effects

(162)

Farnesol UC mouse model
Reduces IL-6, IL-12, TNF-a, COX-2, INF-g, increases IL-
10 expression

Inhibits inflammatory response, reduces
mucosal damage caused by
leukocyte chemotaxis

(163–165)

OAG
Caco-2 cell model,
DSS-induced UC mice

Enhances claudin-1, E-cadherin expression, increases
TEER value

Enhances intestinal epithelial barrier
function, maintains barrier integrity

(166)

Ori
DSS-induced UC
mouse model

Inhibits intestinal mucosal cell apoptosis, reduces oxidative
stress via Sirtuin-1/NF-kB/p53 pathway

Protects colonic mucosal barrier, reduces
inflammation and oxidative damage

(167)

Ursolic acid
DSS-induced UC
mouse model

Downregulates MAPKs, IL-6/STAT3, and PI3K classical
inflammatory pathways

Delays UC pathological changes, such as
weight loss and intestinal shortening

(168)

Paclitaxel UC mouse model
Inhibits NF-kB signaling pathway and regulates
gut microbiota

Effectively promotes recovery of
intestinal barrier in colitis mice

(169)

(Continued)
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TABLE 1 Continued

Natural
product

Compound
Name

Chemokines or chemokine receptors Machine References

Luteolin
IEC-18 cells and
LPS stimulation

Inhibits IKK activity, blocks NF-kB signaling pathway
Downregulates pro-inflammatory gene
expression, reduces intestinal epithelial
cell inflammation

(175)

Naringenin In vitro cell model Protects IkB, prevents NF-kB translocation to the nucleus
Inhibits pro-inflammatory factor
expression, reduces inflammation

(176)

Pomegranate
juice

HT-29 cells + TNF-
a treatment

Inhibits Cox-2 expression
Reduces TNF-a-induced
inflammatory response

(178)

Red
wine extract

HT-29 cells Inhibits excessive IL-8 production
Reduces inflammatory factor release,
alleviates inflammation

(179)

Marie
Ménard
freeze-
dried apple

In vitro
cell experiment

Reduces MPO activity, inhibits Cox-2 and iNOS
gene expression

Reduces inflammatory factor release,
alleviates inflammation

(180)

Flavonoid
metabolites

DSS-induced
colitis model

Downregulates TNF-a, IL-1a, IL-8 expression, reduces
mucosal damage

Reduces inflammatory factor release,
alleviates inflammation

(181)

Grape powder
Inflammatory colon
cancer mouse model

Increases butyrate-producing bacteria abundance
Reduces inflammatory colon cancer
incidence by 29%

(182)

Oat and
bran
polyphenols

DSS-induced enteritis
mouse model

Regulates intestinal macrophages, inhibits T cell activation,
enhances IL-10 expression, reduces TNF-a/IL-6 ratio

Restores gut microbiota balance (183)

Quercetin IBD mouse model
Regulates intestinal mucosal macrophage immune response
via HO-1-dependent pathway

Balances gut microbiota, improves IBD (184)

Arbutin
Ethanol and aspirin-
induced gastric ulcer
animal model

Enhances epithelial cell survival rate Has gastric mucosal protective effects (185, 186)

Arbutin
DSS-induced UC
mouse model

Upregulates tight junction proteins (Occludin, Claudin, ZO-1)
via MAPK/ELK1 pathway

Enhances intestinal barrier function (187)

Kaempferol
DSS-induced UC
mouse model

Regulates gut microbiota, downregulates TLR4-NF-kB
signaling pathway

Improves intestinal permeability, reduces
intestinal barrier damage

(188)

Formononetin
DSS-induced UC
mouse model

Regulates gut microbiota, inhibits NF-kB signaling pathway Protects intestinal mucosal barrier (189)

Licochalcone
A

DSS-induced UC
mouse model

Inhibits apoptosis, maintains TJ expression, regulates
gut microbiota

Maintains intestinal barrier integrity (190)

Silibinin
Colitis-associated
cancer mouse model

Inhibits STAT3 phosphorylation, inhibits IL-6/STAT3
signaling pathway

Reduces inflammatory factor production,
alleviates intestinal mucosal
barrier damage

(191)

Lactulose UC mouse model
Downregulates inflammatory factors, regulates TLRs/NF-kB
pathway, increases butyrate-related beneficial microbiota,
improves intestinal mucosal barrier

Low-dose lactulose effectively improves
UC symptoms, such as diarrhea, bloody
stools, and weight los

(192)

HCA
UC mouse model/
in vitro

Binds to STAT3, inhibits its activation and downstream
signaling, reduces TJ damage, reduces apoptosis

Reduces UC-related intestinal barrier
damage, reduces apoptosis

(193)

VA IBD mouse model
Targets CA9, regulates INSIG2 and STIM1 interaction,
inhibits ferroptosis-induced excessive apoptosis of intestinal
epithelial cells

Alleviates IBD symptoms by regulating
ferroptosis to inhibit excessive intestinal
epithelial cell death

(194)

Daikenchuto IBD mouse model
Increases abundance of beneficial microbiota such as
Parabacteroides, Allobaculum, increases butyrate levels

Exerts anti-protease and anti-
microbial activity

(195)

Inulin
IBD mouse model/
in vitro

Induces b-defensin-1 and TJ gene expression in colon,
improves intestinal permeability; fermentation produces SCFA
butyrate and acetate

Alleviates IBD symptoms by inducing
antimicrobial agent expression

(196–198)

(Continued)
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3.1 Polysaccharides

Magdalena et al. found that dietary oat b-glucan (OBG)

supplementation modulated gut immune responses and barrier

integrity. Rats receiving high-dose (3%) OBG exhibited a higher

percentage of LP T lymphocytes, whereas those receiving low-dose

(1%) OBG showed significantly increased expression of intestinal

barrier proteins claudin-3 and claudin-4 (138, 139).

Ni et al. extracted a mannose-glucan (HSWP-1d) from

Hirsutella sinensis, which effectively improved DSS-induced

colitis symptoms in mice and maintained intestinal barrier

stability by enhancing TJP expression and regulating the balance

of pro-inflammatory and anti-inflammatory factors (140). Likewise,

Jin et al. evaluated the protective effects of lentinan (LNT) on

cyclophosphamide (CP)-induced intestinal barrier injury by

assessing serological markers, histopathological changes in ileal

tissues, TJP expression, and cytokine levels. The results indicated

that LNT significantly alleviated CP-induced abnormalities in body

weight, immune organ index, and serum IL-6, IL-2, IFN-g, and IgG

levels (p<0.05), while increasing the mRNA levels of TNF-a, IL-1b,
IFN-g, occludin, and ZO-1 (p<0.05), thereby mitigating CP-induced

intestinal barrier damage (141).

Furthermore, Tremella fuciformis polysaccharides (TFP) have

been shown to exert therapeutic effects in DSS-induced UC models

by suppressing inflammation and restoring intestinal and mucus

barrier functions (142). A water-soluble polysaccharide (CYP-1)

from Dioscorea opposita inhibited the activation of colonic

inflammation, restored TJP expression, and regulated gut

microbiota in UC mice (143). Astragalus polysaccharides (APS)

have been demonstrated to ameliorate experimental colitis in DSS-

challenged mice and RSL3-stimulated Caco-2 cells, significantly

inhibiting ferroptosis (144). Additionally, safflower polysaccharides

(SPS) alleviated intestinal inflammation in UC models by

suppressing the STAT3/NF-kB signaling pathway, protecting

goblet cells, and enhancing the expression of TJPs and mucins,

thereby improving intestinal barrier integrity (145).

Moreover, polysaccharides offer advantages in restoring barrier

integrity with fewer adverse effects, ultimately improving patients’
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quality of life. Marika et al. evaluated the therapeutic efficacy of

xyloglucan (XG) nasal spray compared to several standard

treatments (corticosteroid sprays, oral mast cell stabilizers, and

oral antihistamines) for AR. The results indicated that XG

exhibited significant efficacy in reducing histological damage in

AR mice, suppressing pro-inflammatory cytokines, and

maintaining ZO-1 expression (146). Additionally, xyloglucan has

been shown to possess barrier-forming protective properties in

adult and pediatric gastroenteritis and dry eye symptoms, making

it a safe, non-pharmacological alternative for various diseases (147).

Its potential role in other mucosal barrier disorders, such as

dermatological diseases, warrants further investigation.
3.2 Alkaloid

Alkaloids are important active compounds in natural herbal

medicines, characterized by highly diversified heterocyclic

structures (148). Among them, plant alkaloids have attracted

attention in traditional Chinese medicine due to their anti-

inflammatory properties, which can suppress the expression of

pro-inflammatory cytokines, lipid mediators, histamine, and

inflammation-related enzymes (149). Based on this, alkaloids are

considered important candidate drugs for repairing the mucosal

barrier. Yu et al. studied the protective effect of matrine on the

intestinal barrier through miR-155 in the Caco-2 cell line, DSS-

induced colitis in mice, and clinical samples from patients with

obstructive sterility. The results indicated that matrine could

promote the expression of ROCK1, a protein associated with the

Rho-Rock pathway, in Caco-2 cells and maintain tight junctions

(150). Xu et al. treated DSS-induced ulcerative colitis (UC) mice

with hordenine, and the histological examination showed that

intestinal damage in the treatment group was significantly

improved. Additionally, compared to the control group, the

hordenine-treated group exhibited a more regular arrangement of

goblet cells, more complete cell shapes, and a greater surface

coverage of glycoproteins and other mucous substances, showing

a certain dose-dependent effect. At the molecular level, hordenine
TABLE 1 Continued

Natural
product

Compound
Name

Chemokines or chemokine receptors Machine References

FL3, FL37
Caco-2BBE and IEC-
6 cells

Inhibits NF-kB and Cox2 expression, reduces inflammation,
maintains mitochondrial survival, reduces cell permeability

Increases cell activity, inhibits
inflammation, reduces intestinal
barrier damage

(199)

Ginsenoside
Rb1

UC mouse model
Downregulates pro-inflammatory factors TNF-a and IL-6,
increases anti-inflammatory cytokine IL-10; upregulates TJ

Improves intestinal barrier by regulating
immune factors and upregulating tight
junction proteins

(200)

VK2 UC mouse model
Reduces pro-inflammatory cytokine levels, increases IL-10
expression, promotes mucin and tight protein expression

Improves UC symptoms (201, 202)

FHL UC mouse model
Induces macrophage M2 phenotype differentiation via Notch
signaling pathway

Alleviates colonic inflammation (203)

QBD UC mouse model
Inhibits inflammatory cascade via NF-kB and Notch signaling
pathways, improves intestinal permeability

Improves colitis symptoms in UC mice (204)
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inhibited the increase in sphingosine kinase-1 (SPHK1) and

sphingosine-1-phosphate receptor-1 (S1PR1) expression, as well

as the phosphorylation of STAT3 in the colon tissue of DSS-

induced mice (151). Indirubin (IND) and indirubin-3’-monoxime

(INB) are isomers and active molecules of natural indigo in

traditional Chinese medicine, with therapeutic activity against

UC. IND is a ligand for the aryl hydrocarbon receptor (Ahr),

which can promote the proliferation of CD4+ IL-10+ T cells

(152). INB reduces the expression of inflammatory factors such as

TNF-a and IFN-g through the NF-kB and MAPK signaling

pathways mediated by TLR4, thereby eliminating inflammation

(153, 154). Xie et al. explored the therapeutic effect of combined

IND and INB treatment for UC, and the results showed that this

combination could synergistically enhance the function of the

intestinal barrier (155). Previous experiments have shown that

berberine (BBR) can alleviate acute and chronic experimental

colitis by regulating the T17/Treg balance (156), gut microbiota

balance and metabolism (157), and the interactions between gut

glial cells, epithelial cells, and immune cells (158). Dong et al.’s

proteomics study indicated that the Wnt/b-catenin pathway was

significantly enhanced in the colon tissue of mice treated with BBR,

and the therapeutic effect of BBR was lost after intervention with the

Wnt pathway inhibitor FH535, suggesting that BBR protects the

mucosal barrier through the Wnt/b-catenin pathway (159).

Interestingly, berberine’s main active metabolite, berberrubine

(BB), has also been shown to exert a similar effect in attenuating

DSS-induced UC, with a similar mechanism but at much lower

doses (160).
3.3 Terpenoid

Terpenoid compounds are widely present in various traditional

Chinese medicines and have been shown to repair intestinal barrier

function by downregulating inflammatory factors and increasing

the expression of tight junction proteins. Pang et al. revealed that

Saussurea costus could reduce the levels of TNF-a, IL-1b, IL-8, and
IL-18, while enhancing the expression of ZO-1 and Occludin,

thereby improving the pathological characteristics of ulcerative

colitis (UC) (161). They identified its main components,

including proline, phenylalanine, isoleucine, ganoderic acid M,

and pyroglutamic acid. Xu et al. demonstrated that the main

active ingredient of Saussurea lappa, the sesquiterpene lactone

Costunolide (COS), exerted a potent anti-inflammatory effect in a

UC mouse model by inhibiting the NLRP3 inflammasome.

Although the specific mechanism is not fully elucidated, the study

suggested that COS could bind to the Nacht domain of NLRP3,

altering its ATPase activity and inflammasome assembly (162).

Farnesol (FAR), one of the main volatile oil components of

grapefruit flowers, is a natural sesquiterpene alcohol (163). FAR

alleviates intestinal inflammation and reduces intestinal mucosal

damage caused by leukocyte chemotaxis by lowering the levels of

IL-6, IL-12, TNF-a, COX-2, and IFN-g, while increasing the

expression of IL-10 (164, 165). Wang et al. demonstrated in
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Caco-2 cell models and DSS-induced mouse models that oleanolic

acid 28-O-b-D-glucopyranoside (OAG), a naturally occurring

pentacyclic triterpene, enhances intestinal epithelial barrier

function by increasing the expression of tight junction proteins

(claudin-1 and E-cadherin) and raising TEER values (166). Wang

et al.’s research also showed that oridonin (Ori) could alleviate DSS-

induced UC inflammation in mice and reduce oxidative stress

levels, while inhibiting intestinal mucosal cell apoptosis through

the Sirtuin-1/NF-kB/p53 pathway, thereby protecting the integrity

of the colonic mucosal barrier (167). Sheng et al. demonstrated that

ursolic acid (UA) downregulated three classical inflammatory

signaling pathways—MAPKs, IL-6/STAT3, and PI3K—effectively

delaying weight loss and intestinal shortening in mice (168). Hou

et al. showed that dietary paclitaxel effectively enhanced the

recovery of the intestinal barrier in colitis mice by inhibiting the

NF-kB signaling pathway and regulating the gut microbiota (169).
3.4 Flavonoid

Flavonoids have been shown to exert protective effects on the

epithelial barrier (170). Studies suggest that the underlying

mechanisms may be closely related to the regulation of tight

junction proteins (TJs) and the balance of the gut microbiota. For

example, cranberry extract, which is rich in flavonoids, significantly

increases the proportion of Akkermansia spp. in the mouse gut

(171). Akkermansia, a mucin-degrading bacterium in the intestinal

mucus layer, has been confirmed to be crucial for maintaining

epithelial integrity (172). Luteolin, a flavonoid abundant in plants

such as carrots, peppers, and celery (173, 174), has been shown by

Jin et al. to inhibit the activity of IkB kinase (IKK) in LPS-induced

IEC-18 cells (175), thus blocking the NF-kB signaling pathway and

reducing the expression of pro-inflammatory genes. Additionally,

flavonoids such as naringenin can protect IkB from degradation,

preventing the translocation of NF-kB to the nucleus and further

inhibiting the expression of pro-inflammatory factors (176).

Activated NF-kB is involved in the transcription and activation of

genes related to immune and inflammatory responses, such as pro-

inflammatory cytokines (TNF-a, IL-1b, and IL-6) (177) and

inflammation-related enzymes (Cox-2 and iNOS). Flavonoids

play a significant role in suppressing intestinal inflammation and

the expression of pro-inflammatory enzymes. In one study,

pretreatment of HT-29 cells with pomegranate juice rich in

anthocyanins and catechins resulted in a reduction of TNF-a-
induced Cox-2 expression (178). Nunes et al. observed that

pretreatment with red wine extract containing catechins,

oligomeric procyanidins, and anthocyanins effectively suppressed

excessive IL-8 production in HT-29 cells (179). Furthermore,

naringenin can downregulate adhesion molecules (ICAM-1),

chemokines (MCP-1), iNOS, Cox-2, TNF-a, and IL-6 (176).

Marie Ménard’s freeze-dried apples, rich in flavonols and flavan-

3-ols, reduce myeloperoxidase (MPO) activity and inhibit

the expression of Cox-2 and iNOS genes (180). MPO is

considered a marker of disease activity in intestinal inflammation,
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further supporting the regulatory role of flavonoids in

intestinal inflammation.

It is important to note that the anti-inflammatory properties of

flavonoids in the intestine may be mediated by their metabolites.

After entering the intestine, flavonoids are metabolized by intestinal

cells and the microbiota, resulting in a series of bioactive

metabolites. A study by Larrosa et al. demonstrated that certain

flavonoid-derived metabolites significantly inhibit DSS-induced

colonic mucosal damage and downregulate the expression of

TNF-a, IL-1b, and IL-8 (181). However, research on flavonoid

metabolites is still limited, and it is expected that this will become a

key direction for elucidating their mechanisms of action and

developing novel anti-inflammatory drugs in the future.
3.5 Polyphenols

Polyphenolic compounds are primarily found in plant-based

foods and regulate the gut microbiome through dynamic

interactions with intestinal microbes, alleviating intestinal

inflammation and enhancing gut barrier function. Zhao et al.

discovered that, compared to a normal diet, the inclusion of

polyphenol-rich grape powder in the diet reduced the incidence

of inflammatory colon cancer in mice by 29%, with the mechanism

related to the increased abundance of butyrate-producing bacteria

in the gut (182). Duan et al. demonstrated that the polyphenols in

oats and wheat bran could regulate intestinal macrophages, inhibit

T-cell activation, enhance IL-10 expression, and significantly reduce

the TNF-a/IL-6 ratio, thereby restoring gut microbiota balance

(183). Quercetin (QCN) can regulate the immune response of

intestinal mucosal macrophages through a heme oxygenase-1

(HO-1)-dependent pathway, improving gut microbiota imbalance

and alleviating IBD (184). Studies have shown that arbutin protects

against ethanol- and aspirin-induced gastric ulcers in animal

models (185) and increases epithelial cell viability (186). Zhang

et al. demonstrated that arbutin mediates the expression levels of

tight junction proteins (Occludin, Claudin, and ZO-1) through the

MAPK/ELK1 signaling pathway (187). Qu et al. used a UC mouse

model to show that kaempferol improves intestinal permeability

and significantly prevents DSS-induced intestinal barrier disruption

by regulating gut microbiota and downregulating the TLR4-NF-kB
signaling pathway (188). Similarly, Peng et al. demonstrated that

astragaloside can improve the intestinal mucosal barrier function in

DSS mice by reducing gut microbiota dysbiosis and inhibiting the

NF-kB pathway (189). Zhang et al. revealed that Glycyrrhiza

chalcone A (LA) maintains intestinal barrier integrity by

inhibiting cell apoptosis and maintaining TJ expression.

Additionally, 16S rRNA analysis indicated that LA also regulates

gut barrier-associated microbiota (190). Zheng et al. found that

silymarin significantly inhibited the phosphorylation of STAT3 in

colitis-associated cancer (CAC) mice, thereby suppressing the IL-6/

STAT3i signaling pathway to reduce the production of

inflammatory cytokines and alleviate damage to the intestinal

mucosal barrier (191).
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3.6 Other extracts from natural products

The study by Cui et al. demonstrated that low-dose lactulose

effectively alleviates symptoms of UC, including diarrhea,

hematochezia, and weight loss. Its mechanism involves

downregulation of inflammatory factors, modulation of TLRs/NF-

kB signaling pathways, and reduction of cecal pH, promoting the

proliferation of beneficial microbiota such as SCFAs, thereby

improving the intestinal mucosal barrier (192). Chen et al.

discovered that the natural product 2-hydroxycinnamaldehyde

(HCA), isolated from cinnamon bark, directly interacts with

STAT3 to inhibit its activation and downstream signaling. This

compound effectively mitigated UC-induced disruption of intestinal

barrier tight junctions both in vitro and in vivo, reducing apoptosis

and improving intestinal inflammation (193). Ni et al. showed that

vanillic acid (VA) targets carbonic anhydrase IX (CA9), facilitating

the interaction between INSIG2 and STIM1, which promotes

SCAP-SREBP1 translocation and activates SREBP1. This

enhances SCD1 transcription, inhibits ferroptosis, and prevents

excessive intestinal epithelial cell death (194). Some natural

products exert anti-inflammatory effects by modulating the gut

microbiota and regulating microbial metabolites. Daikenchuto

(DKT) prevents IBD by exhibiting anti-protease and anti-

microbial activity via secretory leukocyte protease inhibitor

(SLPI), increasing the abundance of butyrate-producing bacteria

such as Parabacteroides, Allobaculum, and Akkermansia, thereby

enhancing butyrate levels (195). Inulin and sodium butyrate also

improve intestinal permeability by inducing b-defensin-1 and tight

junction proteins. SCFAs generated from inulin fermentation

further stimulate antimicrobial peptide expression by Paneth cells

(196–198). In vitro results indicated that flavonoids FL3 and FL37

increased basal activity of Caco-2BBE and IEC-6 cells, reduced

apoptosis, and decreased epithelial monolayer permeability. Their

mechanism involved the suppression of TNF-a and IFN-g induced
NF-kB and COX-2 expression to alleviate inflammation.

Additionally, they preserved mitochondrial survival by

maintaining complex I activity and inhibiting TNF-ainduced
mitochondrial superoxide generation (199). Zhou et al. used

RNA-seq and network pharmacology to study ginsenoside Rb1 in

UC, finding that it downregulated TNF-a and IL-6 while increasing

IL-10 and tight junction proteins (ZO-1, Occludin, E-cadherin).

These effects may be linked to VDR, PPARg, and NF-kB signaling

pathways (200). Vitamin K2 (VK2), a naphthoquinone derivative,

has been shown to worsen UC symptoms in mice fed a vitamin K-

deficient diet (201). Hu et al. demonstrated that VK2 reduces pro-

inflammatory cytokine levels, increases IL-10 levels, and promotes

the expression of mucins and tight junction proteins to restore

mucosal barrier function (202). Additionally, traditional Chinese

medicine formulas have shown potential efficacy. For example,

Huaihua Decoction regulates the Notch signaling pathway in

mice, inducing macrophage M2 phenotype differentiation, thus

enhancing intestinal barrier function in DSS-induced colitis (203).

Qingbai Decoction (QBD) similarly modulates NF-kB and Notch

signaling to inhibit inflammatory cascades and enhances the mucus
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and epithelial cell barriers, improving intestinal permeability in

colitis mice (204).

The gut microbiota plays a key role in mucosal repair. UC patients

often show reduced levels of SCFA-producing bacteria. Zhao et al.

found that supplementing mice with SCFA-producing bacterial

supernatants restored SCFA levels and inactivated the JAK/STAT3/

FOXO3 axis, leading to M2 macrophage polarization and improved

colonic health (205). Zhuang et al. demonstrated that extracellular

vesicles from O. splanchnicus effectively alleviated weight loss, colon

shortening, disease activity index, and histological damage in a DSS-

induced IBD mouse model. These effects were associated with the

downregulation of IL-1b, TNF-a, and IL-6 expression, the

upregulation of IL-10, and the blockade of NLRP3 inflammasome

activation, thus ameliorating intestinal barrier dysfunction and colonic

apoptosis (206). Yue et al. reported that cytoplasmic membrane vesicles

(CMVs) secreted by L. reuteri, which interact with host cells, were

taken up by intestinal epithelial cells. This uptake enhanced the

expression of ZO-1, E-cadherin, and occludin, reduced intestinal

permeability, and improved tight junction function, thereby

alleviating DSS-induced colitis in mice (207). Pan et al. evaluated the

preventive effect and mechanisms of Lactobacillus fermentum 016 (LF)

in a DSS-induced UC mouse model, showing that LF improved

intestinal mucosal barrier function through the Nrf2-Keap1 signaling

pathway and modulation of systemic inflammatory factors such as IL-

1b, IL-6, TNF-a, IFN-g, IL-4, and IL-10 (207). Cui et al. also showed

that HnAg (membrane shell antigen) intervention in UC mice

increased goblet cell numbers and elevated mucin and tight junction

protein expression. These effects were likely mediated through

activation of the AhR/IL-22 pathway (208).
4 Discussion

The mucosal barrier is widely present in various organ systems,

including the gastrointestinal tract, respiratory tract, urinary tract,

and oral cavity. As an important defense line against harmful

external substances, it performs multiple functions such as

physical barrier, immune defense, and microbial balance. The

integrity of the barrier is maintained by structures such as tight

junctions, adherens junctions, and desmosomes between epithelial

cells, and it works in conjunction with abundant immune cell

populations to form the mucosal immune system, which regulates

inflammatory responses and immune tolerance (209).

However, various pathological factors, such as infections,

inflammation, autoimmune abnormalities, environmental toxins,

drugs (such as NSAIDs and antibiotics), and poor dietary habits,

can disrupt the mucosal barrier, leading to increased barrier

permeability (leaky mucosa), which in turn triggers IBD,

ulcerative colitis (UC), Crohn’s disease (CD), respiratory diseases

(such as asthma and chronic obstructive pulmonary disease,

COPD), gastric ulcers, oral ulcers, and other conditions (210).
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These diseases are typical ly accompanied by chronic

inflammation and may further progress to cancer, such as

colorectal cancer (CRC) and esophageal cancer. Therefore,

repairing the damaged mucosal barrier has become a crucial

strategy in the treatment of these diseases (211).

Currently, conventional treatment options for mucosal barrier

injury-related diseases mainly rely on chemical drugs, including

aminosalicylates, corticosteroids, immunosuppressants (such as

azathioprine and cyclosporine), and biologics (such as TNF-a
inhibitors). Although these drugs can effectively control

inflammation and alleviate symptoms in the short term, long-

term use may lead to a range of side effects, such as

immunosuppression, osteoporosis, hyperglycemia, and liver and

kidney damage. Furthermore, these treatments typically target a

single pathway and are insufficient in comprehensively addressing

the complex pathophysiology of the diseases. Additionally, some

patients may develop drug resistance or poor therapeutic response.

Therefore, identifying safer treatment strategies with broader

mechanisms of action has become a research focus.

In recent years, extensive studies have shown that natural

products offer advantages in improving mucosal barrier damage,

with multiple targets, high safety, and fewer side effects, showing

promising therapeutic effects in refractory diseases (210). Moreover,

the wide variety of traditional Chinese medicine provides abundant

sources for treating mucosal barrier diseases. The main mechanisms

of natural products in mucosal barrier injury diseases include the

regulation of immune cell functions, reduction of inflammatory

factor levels, and promotion of tight junction protein expression to

aid in mucosal barrier repair and restore its function (212).

With the deepening research on microbiota, the modulatory

effects of natural products on the microbiome are gradually being

revealed. For instance, some natural products can increase the

abundance of short-chain fatty acid-producing bacteria, thereby

enhancing the levels of butyrate in the gut (213). Butyrate can be

absorbed by intestinal epithelial cells and assist in mucosal barrier

repair. Microbial-targeted therapies have become a novel strategy

for mucosal barrier repair. Additionally, combination therapy with

natural products exhibiting complementary mechanisms of action

can improve therapeutic efficacy, providing ideas for exploring new

treatment options.

Although natural products demonstrate significant potential in

the treatment of mucosal barrier diseases, several challenges remain.

For example, current research mainly focuses on gastrointestinal

mucosal repair, while studies on mucosal tissues in other organs,

such as the respiratory, oral, and urinary systems, remain limited.

Furthermore, some traditional Chinese medicines or formulations,

although showing good efficacy, still lack a clear understanding of

their specific mechanisms of action and active components,

requiring further investigation. The interactions between natural

products and the microbiome also warrant deeper research to fully

elucidate their mechanisms and enhance clinical applications.
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106. Suárez LJ, Arboleda S, Angelov N, Arce RM. Oral versus gastrointestinal
mucosal immune niches in homeostasis and allostasis. Front Immunol. (2021)
12:705206. doi: 10.3389/fimmu.2021.705206

107. Moutsopoulos NM, Konkel JE. Tissue-specific immunity at the oral mucosal
barrier. Trends Immunol. (2018) 39:276–87. doi: 10.1016/j.it.2017.08.005

108. Russell MW, Mestecky J. Mucosal immunity: The missing link in
comprehending SARS-CoV-2 infection and transmission. Front Immunol. (2022)
13:957107. doi: 10.3389/fimmu.2022.957107
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