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TSPAN4+
fibroblasts coordinate

metastatic niche assembly
through migrasome-driven
metabolic reprogramming and
stromal-immune crosstalk in
pancreatic adenocarcinoma
Qingwen Hu1,2†, Jiali Chen3†, Yang Liu2,4†, Haiqing Chen1,
Haotian Lai1, Lai Jiang1, Xuancheng Zhou1, Shengke Zhang1,
Jinbang Huang1, Hao Chi1*, Bo Li2* and Xiaolin Zhong5*

1Clinical Medical College, Southwest Medical University, Luzhou, China, 2Department of General
Surgery (Hepatopancreatobiliary Surgery), The Affiliated Hospital of Southwest Medical University,
Luzhou, China, 3Department of Oncology, Jinniu District People’s Hospital, Chengdu, China,
4Department of Hepatobiliary Surgery, Zizhong People’s Hospital, Neijiang, China, 5Department of
Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
Background: Pancreatic cancer (PC) is a highly aggressive pancreatic malignant

tumor with poor prognosis due to its complex tumor microenvironment (TME)

and metastatic potential. Fibroblasts play an important role in tumor progression

and metastasis by remodeling the extracellular matrix (ECM) and influencing the

immune response. This study explored migrasome-associated fibroblasts,

especially TSPAN4 and ITGA5, as key regulators of pancreatic cancer

metastasis, aiming to provide new ideas for therapeutic strategies targeting TME.

Methods: We employed single-cell RNA sequencing (scRNA-seq) and spatial

transcriptomics to analyze pancreatic cancer tissues. Data from the GEO and

TCGA databases were integrated and processed using batch correction

techniques. Single-cell data were analyzed with Seurat and Monocle for

dimensionality reduction and pseudotime trajectory analysis. Cell communication

was assessed using CellCall and CellChat. Spatial transcriptomic analysis was

conducted with RCTD and MISTy tools to investigate cell interactions within the

TME. Additionally, gene enrichment, deconvolution, and prognostic analyses were

performed, alongside experimental validation through siRNA transfection, qRT-

PCR, and various functional assays to investigate the role of TSPAN4 in metastasis.

Results: Our results underscore the critical role of TSPAN4+
fibroblasts in

pancreatic cancer. These fibroblasts were predominantly located at the tumor

periphery and exhibited elevated migrasome gene expression, which was

associated with enhanced ECM remodeling and immune suppression.

Intercellular communication analysis revealed that TSPAN4+
fibroblasts

engaged in extensive interactions with immune cells, such as macrophages

and endothelial cells, facilitating metastasis and immune evasion. Moreover,

the high expression of immune checkpoint markers indicated their

involvement in modulating the immune response.
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Conclusion: TSPAN4+
fibroblasts are key regulators of pancreatic cancer

progression, contributing to metastasis, immune suppression, and ECM

remodeling. Targeting these fibroblasts represents a promising therapeutic

strategy to improve clinical outcomes and enhance the effectiveness of

immunotherapies in pancreatic cancer.
KEYWORDS

single-cell analysis, pancreatic ductal adenocarcinoma, immunotherapy,
migrasomes, TSPAN4
1 Introduction

Pancreatic carcinoma maintains its status as one of oncology’s

most formidable malignancies, distinguished by dismal survival

metrics and recalcitrance to established treatment paradigms (1, 2).

While advancements in early detection methodologies and

therapeutic interventions have been achieved, longitudinal

survival analyses continue to document persistently suboptimal

five-year survival rates. This therapeutic impasse originates

fundamentally from the pathobiological complexity inherent in

TME dynamics coupled with the malignancy’s propensity for

systemic dissemination (3–5). The metastatic proclivity of

pancreatic neoplasms—manifested through colonization of distant

organ systems—emerges as the principal driver of mortality, yet the

molecular orchestrators mediating this multi-step metastatic

continuum demand further mechanistic clarification (6).

The TME serves as a critical regulatory axis in pancreatic

oncogenesis, governed through bidirectional molecular cross-talk

between malignant epithelia and stromal constituents, including

fibroblasts, immune infiltrates, and vascular networks (7). Emerging

evidence suggests that such intercellular communication networks

fuel cel lular adaptabili ty , particularly the phenotypic

reprogramming of quiescent fibroblasts into activated CAF

phenotypes during malignant progression (8). These activated

stromal components exhibit bifunctional pathological capabilities:

fostering neoplastic expansion via growth factor cascades while

concurrently facilitating immune escape through matrix

reorganization and immunoregulatory factor secretion—processes

that synergistically enhance metastatic competence (9). These

reciprocal interactions highlight the critical need to characterize

fibroblast-derived molecular determinants and their associated

signaling pathways, offering promising avenues for disrupting

protumorigenic microenvironmental niches through precision

therapeutic modalities (10).

Emerging research has elucidated the central regulatory

function of migrasomes—dynamic membrane-bound organelles

coordinating cellular locomotion—in metastatic pathophysiology

(11). Characterized by their molecular composition rich in adhesion

regulators and signaling mediators, these subcellular entities
02
facilitate critical microenvironmental crosstalk through spatially

organized vesicular trafficking (12). Within the migrasome-

associated genetic repertoire, TSPAN4 and ITGA5 emerge as

critical effectors governing fibroblast activation dynamics and

stromal communication networks, particularly within pancreatic

tumor ecosystems (11). The tetraspanin protein TSPAN4

modulates cellular adhesive properties and mechanotransduction

pathways, whereas ITGA5—a core component of fibronectin-

binding integrin complexes—mediates extracellular matrix

anchorage and migratory programming through focal adhesion

kinase activation (13, 14).

This investigation systematically examines the pathophysiological

contributions of migrasome-associated fibroblast subpopulations to

metastatic dissemination in pancreatic malignancies, with particular

emphasis on TSPAN4/ITGA5 expression gradients across tumor

ecosystem compartments. We mechanistically dissect these

biomarkers’ regulatory roles in disease progression through an

integrated multi-omics approach. Employing scRNA-seq coupled

with spatial transcriptomic profiling, our experimental paradigm

deciphers spatiotemporal interaction networks among stromal

fibroblasts, immune effectors, and vascular components, establishing

quantitative associations between intercellular crosstalk dynamics and

metastatic outcomes (15). By synthesizing transcriptional signatures,

ligand-receptor spatial mapping, and microenvironmental architecture

analysis, this multiplexed analytical framework unveils previously

unrecognized regulatory hierarchies within pancreatic TME and

proposes druggable targets for precision stromal modulation (16).
2 Materials and methods

2.1 Genomic data curation and integration

Single-cell transcriptomic profiles were sourced from the GEO

repository (Accession: GSE197177), comprising three clinical

cohorts: primary pancreatic carcinoma specimens (GSM5910784,

GSM5910787), hepatic metastatic lesions (GSM5910785,

GSM5910788) , and non-malignant pancreat ic t issues

(GSM5910786). Spatial transcriptomic datasets (GSM7498811,
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GSM7498813) were concurrently extracted for tumor

microenvironmental architecture analysis. Clinical annotation-

matched RNA-seq data for 178 pancreatic ductal adenocarcinoma

cases were procured from TCGA (National Cancer Institute

Genomic Data Commons). To address technical variability across

platforms, cross-dataset normalization was conducted via the

“limma”(3.60.3) (17) and “sva”(3.52.0) (18) computational

frameworks in R.
2.2 Transcriptomic signature quantification

The GSE132257 scRNA-seq dataset was curated and

interrogated through the “Seurat”(5.1.0) computational

framework (19). Initial quality control retained 28,912 high-

confidence cells from a raw dataset of 35,487 cells after applying

thresholds: mitochondrial gene content <10% (percent.mt < 10),

unique gene counts between 200 and 2,500 (nFeature_RNA > 200 &

nFeature_RNA < 2500). Following multi-algorithmic dimensional

compression—implementing principal component analysis (PCA)

for feature extraction with subsequent visualization via t-SNE and

UMAP projection (20) —we identified high-variance transcripts

(top 2000 genes) for cellular clustering and phenotypic

characterization (21). Five complementary scoring paradigms

(AUCell, UCell, singscore, GSEA, AddModuleScore) were

systematically implemented for pathway activity quantification

(22). Comparative module score analyses across defined cellular

clusters were conducted using nonparametric statistical approaches.
2.3 Cellular trajectory reconstruction and
signaling network mapping

Our analytical pipeline incorporated “monocle”(2.32.0) (23–25)

and “Seurat” (5.1.0) frameworks (20) for fibroblast-specific

transcriptomic interrogation. After quality filtering and stromal

cell population isolation, we constructed CellDataSet architectures

to calculate transcriptional variability metrics (26). High-confidence

genes meeting dual thresholds (expression magnitude & dispersion

variance) underwent DDRTree-based manifold learning (27) for

nonlinear dimensional reduction. Quasitemporal ordering

algorithms reconstructed cellular ontogeny trajectories (28), with

trajectory heatmaps and state projection plots delineating fibroblast

phenotypic evolution within tumor niches (29). Intercellular

signaling dynamics were decoded through CellCall/CellChat

platforms (30, 31), enabling systematic identification of ligand-

receptor interplay across microenvironmental compartments.
2.4 Spatial metabolic profiling in pancreatic
ecosystems

Spatial metabolomic analysis of pancreatic tumor architecture

was performed using integrated computational workflows. After

stringent quality control—including removal of mitochondrial
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transcripts and selection of ribosomal protein-coding genes—raw

sequencing data were normalized using SCTransform.

Dimensionality reduction was conducted via PCA, followed by

UMAP for cluster identification (32). SpatialFeaturePlot

algorithms mapped transcriptomic gradients across tissue

microdomains (33), while “scMetabolism”(0.2.1) quantified

pathway activation states through enzyme-centric scoring.

DotPlot visualizations highlighted metabolic heterogeneity across

cellular compartments (34), complemented by spatiotemporally

resolved heatmaps delineating pathway-associated gene

distributions within tumor topographies.
2.5 Discriminative gene identification and
functional annotation

Our analytical cascade implemented a multi-stage computational

pipeline for spatial transcriptomic feature extraction and pathway

enrichment. Following rigorous preprocessing protocols (gene

filtration, read depth normalization, logarithmic conversion, and

expression standardization) (35, 36), principal component analysis

(PCA) facilitated feature space compression and discriminative gene

identification. Topological cell neighborhood mapping through K-

nearest neighbors (KNN) algorithms preceded community detection

via Louvain-Leiden clustering paradigms (37). Correlation-driven

gene prioritization employing Spearman’s rank metrics identified

statistically significant (p<0.05) positive/negative transcriptional

regulators, subsequently subjected to pathway enrichment

interrogation via Metascape’s bioinformatics suite (38, 39).
2.6 Spatial omics interrogation via RCTD-
MISTy frameworks

We implemented a dual-algorithm spatial omics pipeline

(“RCTD”/”MISTy”) to decode multicellular interactomes in

pancreatic malignancies (40, 41). Initial scRNA-seq curation

involved systematic cell type classification to generate reference

cellular atlases. Spatial transcriptomic inputs underwent topological

parsing through RNA localization mapping and marker

colocalization profiling. The “RCTD” computational framework

(41) enabled probabilistic cell type deconvolution by integrating

single-cell references with spatial resolution data. For

microenvironmental crosstalk mapping, the “MISTy” platform

(40) quantified intercellular signaling across defined spatial

domains (intra-tumoral, juxta-tumoral, para-tumoral), generating

multiplexed interaction matrices and spatially resolved ligand-

receptor activation heatmaps.
2.7 Cellular composition deconvolution
and trajectory modeling

Our analytical framework integrated scRNA-seq and spatial

transcriptomic (stRNA-seq) datasets for cellular topology
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reconstruction and temporal dynamics inference. Fibroblast

subpopulations were computationally isolated from annotated

single-cell repositories and stratified into TSPAN4+/- cohorts

based on transmembrane protein expression thresholds.

Transcriptomic profiles underwent format standardization via

“SingleCellExperiment” object conversion, followed by rigorous

preprocessing (count normalization, low-abundance ribosomal/

mitochondrial transcript filtration). The “SPOTlight”(1.8.0) (42)

deconvolution engine enabled cellular spatial mapping through

integrative analysis of single-cell and spatial resolution data,

employing randomized subsampling (n=100 per cell type) to

optimize computational tractability. High-confidence markers

(AUC>0.7) were prioritized for spatial pattern validation using

Seurat’s visualization modules (25), while “monocle” (2.32.0) (23,

24) pseudotemporal ordination algorithms reconstructed cellular

transition trajectories.
2.8 Spatial architecture mapping and
clinical prognostication

Our analytical pipeline implemented the “spacexr” (v2.2.1)

computational framework (41) for spatial deconvolution coupled with

multi-modal prognostic modeling. Stromal fibroblasts were

computationally segregated from scRNA-seq repositories and

stratified into TSPAN4-expressing versus null subpopulations.

Reference spatial atlases were constructed using “spacexr”‘s

probabilistic modeling architecture, enabling high-resolution mapping

of fibroblast spatial topographies within tumor microdomains.

Complementarily, bulk transcriptomic infiltration profiling and

survival prognostication were executed through TSPAN4+ fibroblast

marker-derived signatures. Pathway dysregulation was quantified via

“GSVA” (1.52.3) enrichment scoring (43), with parallel evaluations of

immunotherapy responsiveness and survival correlations conducted

through multivariate Cox regression modeling.
2.9 RNA interference and cellular model
preparation

Human pancreatic adenocarcinoma cell lines (SW1990, PANC-

1) were maintained in DMEM culture medium containing 10% heat-

inactivated FBS and antibiotic-antimycotic solution (100 U/mL

penicillin, 100 μg/mL streptomycin). Gene silencing experiments

employed TSPAN4-specific siRNA (si-TSPAN4) or scrambled

control siRNA (si-NC) delivered via GA-DNA Transfection

Reagent (GeneAdv Co., Suzhou), following the manufacturer’s

protocol. Post-transfection cellular models were subjected to a 48-

hour incubation period prior to downstream functional assays.
2.10 Transcript quantification via qRT-PCR

Total RNA was isolated employing TRIzol reagent (Thermo

Fisher Scientific), followed by reverse transcription into cDNA
Frontiers in Immunology 04
using PrimeScript RT Master Mix (Takara Bio Inc.). Amplification

reactions were conducted using the Applied Biosystems 7500

platform with SYBR Green chemistry (Takara Bio Inc.), utilizing

GAPDH as an endogenous control. TSPAN4 mRNA levels were

determined through comparative threshold cycle analysis, with

normalized expression levels computed via the DDCt (2^

−DDCt) algorithm.
2.11 Cellular proliferation kinetics
assessment

Proliferative dynamics were quantified using the CCK-8 assay

system (Dojindo Molecular Technologies). SW1990 and PANC-1

cellular models were plated in 96-well microtiter plates (1.5×10³

cells/well) and subjected to temporal monitoring at 24-hour

intervals (24-96h) post-transfection. Following each incubation

epoch, CCK-8 chromogenic solution (10mL/well) was introduced,
with subsequent spectrophotometric quantification (450nm

wavelength) performed using a multi-mode microplate reader to

determine relative proliferative indices.
2.12 Clonogenic potential evaluation

The clonogenic capacity of SW1990 and PANC-1 cellular

models was evaluated through 6-well plate assays (500 cells/well).

Following 14-day incubation under standard culture conditions,

clonogenic units were chemically immobilized with 4%

paraformaldehyde and chromatically labeled with 0.1% crystal

violet solution. Quantitative analysis of colony formation

efficiency was performed through digital image processing using

ImageJ’s automated enumeration algorithms.
2.13 In vitro migratory capacity assessment

Cellular migratory potential was analyzed through a

standardized scratch assay. SW1990 and PANC-1 cell monolayers

were established in 6-well culture plates until achieving 90%

confluency. Mechanical wound induction was performed using

sterile 200 mL pipette tips, followed by sequential image

acquisition at baseline (0 h) and 48 h post-wounding using an

Olympus IX73 inverted phase-contrast microscope system. Wound

closure kinetics were computationally quantified via ImageJ’s MRI

Wound Healing Tool plugin for normalized metric derivation.
2.14 In vitro invasive capacity profiling

Cellular invasiveness was evaluated using Matrigel-coated

Transwell systems (8mm pore, Corning Inc.). Post-transfection

cellular cohorts (si-TSPAN4 vs. scrambled siRNA controls) were

suspended in serum-free medium (2×10⁴ cells/insert) within upper

chambers, while lower compartments contained chemoattractant-
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enriched medium (10% FBS). Following 24-hour chemotactic

induction at 37°C/5% CO₂, non-invasive cellular fractions were

mechanically cleared from upper membranes. Transmigrated cell

populations were chemically immobilized (4% paraformaldehyde),

chromatically labeled (0.1% crystal violet), and quantified through

microscopic enumeration (5 randomized high-power fields).

Invasion indices were calculated by normalizing experimental

group transmigration counts against control baselines.
2.15 Apoptotic profiling via flow cytometry

Programmed cell death quantification was performed using the

Annexin V-FITC/PI Apoptosis Detection System (BD Biosciences).

Post-transfection cellular cohorts (si-TSPAN4 vs. scrambled siRNA

controls) were harvested at 48h, subjected to dual PBS rinses, and

dual-stained with Annexin V-FITC/PI fluorophores. Cellular

fluorescence profiles were acquired via a BD FACSCanto II

analytical cytometer, with apoptotic indices (encompassing both

initial and terminal phases) computationally derived through

FlowJo™ v10.8.1 multiparametric analysis suites.
2.16 Statistical analysis

Statistical analyses were performed using R software (version

4.4.1). Data from the GEO and TCGA databases underwent quality

control and batch effect correction. Various computational

approaches were employed for dimensionality reduction, data

visualization, gene set scoring, pseudotime trajectory inference,

intercellular communication analysis, spatial transcriptomics, and

prognostic evaluation. Experimental validation was conducted to

confirm the findings. Statistical significance was defined as p-values

and false discovery rate (FDR) q-values < 0.05. These methodologies

ensured rigorous data processing and analysis, providing insights into

the initiation, progression, andmetastasis of pancreatic cancer, as well

as potential therapeutic targets.
3 Results

The research idea of this study is presented as a flow

chart (Figure 1).
3.1 Architectural diversification and
metastatic pathway activation in cellular
ecosystems

Through t-SNE-optimized transcriptomic cartography, we

deconstructed cellular landscapes across three clinical cohorts:

non-malignant controls (CT), metastatic carcinoma (MC), and

pancreatic adenocarcinoma (PC). Lineage-specific stratification

partitioned cell populations via canonical biomarkers, identifying

11 functionally discrete compartments including T cell effectors,
Frontiers in Immunology 05
ductal epithelia, b-islet clusters, myeloid phagocytes, acinar units,

macrophage subtypes, plasmacytoid secretors, stromal fibroblasts,

mast cell derivatives, vascular networks, and B lymphocytes

(Figure 2A). Quantitative intergroup comparisons unveiled

profound divergence in cellular stoichiometry and spatial

patterning among CT, MC, and PC specimens (Figure 2B).

Multi-algorithmic pathway activation profiling (AUCell/UCell/

singscore/ssGSEA/AddModuleScore) revealed preferential

upregulation of prometastatic gene modules within fibroblastic

compartments, as evidenced by concordant multi-metric scoring

matrices (Figure 2C violin plots). Transcriptional gradient mapping

confirmed fibroblast dominance in metastasis-related pathway

activation across all analytical platforms. t-SNE projection

analysis (Figure 2D) demonstrated compartment-specific spatial

segregation of major lineages, with MC/PC stromal fibroblasts and

vascular endothelia exhibiting heightened activation states versus

CT counterparts.

Differential expression validation identified fibroblast-selective

overexpression of TSPAN4/ITGA5 (Figure 2E). UMAP-based spatial

transcriptomics (Figure 2F) resolved distinct molecular geographies:

TSPAN4 showed niche-restricted expression in fibroblastic zones and

ductal interfaces, contrasting with ITGA5’s pan-stromal/endothelial

distribution. These polarized expression topographies implicate

complementary roles in tumor-stromal signaling - TSPAN4 as a

focal signaling node versus ITGA5 as a ubiquitous adhesion mediator.
3.2 Migrasome dynamics in fibroblast
activation and stromal crosstalk

Migrasome-enriched fibroblast subsets underwent comprehensive

characterization through pseudotemporal trajectory reconstruction

and intercellular signaling network resolution. Initial trajectory

modeling (Figure 3A) mapped the temporal activation of

migrasome-related transcriptional programs, pinpointing TSPAN4/

ITGA5 as key early-stage mediators during malignant transformation.

Phenotypic state transitions along the developmental continuum were

visualized through trajectory topology mapping (Figure 3B), revealing

progressive lineage diversification. UMAP cluster progression analysis

(Figure 3C) documented dynamic fibroblast subset expansion from 17

to 19 distinct phenotypes during disease progression.

Transcriptome-based stratification segregated fibroblasts into

migrasome-abundant (MigrasomeHigh-Fibro) and -depleted

(MigrasomeLow-Fibro) subgroups. Fibroblasts were classified as

MigrasomeHigh-Fibro if their expression of migrasome-associated

genes (TSPAN4, ITGA5) exceeded the 75th percentile of all

fibroblasts, and as MigrasomeLow-Fibro if below the 25th

percentile. Ligand-receptor flux quantification via chordal

network mapping (Figure 3D) revealed MigrasomeHigh-Fibro as

principal signal transducers, exhibiting preferential communication

with tumor-associated macrophages, vascular networks, and ductal

interfaces (Figure 3E). Pathway activation stratification (Figure 3F)

demonstrated subgroup-specific signaling polarization, with

MigrasomeHigh-Fibro displaying marked hyperactivity in

PERIOSTIN, non-canonical WNT, COMPLEMENT, FGF, TGFb,
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and ANGPTL pathways. Mechanistic dissection (Figure 3G)

established MigrasomeHigh-Fibro as central PERIOSTIN network

hubs, coordinating pro-metastatic signaling through PI3K/Akt axis

activation while concurrently regulating COMPLEMENT/FGF/

TGFb/ANGPTL cascades. CellCall-derived multilayer Sankey

network visualization (Figure 3H) decoded the hierarchical

architecture of fibroblast-dominated signaling circuits, revealing

topological specialization in niche-specific regulatory networks.
3.3 Spatial metabolic circuitry governed by
migrasome signaling hubs

Spatial omics mapping unveiled niche-restricted overexpression

of migrasome regulators TSPAN4/ITGA5 within specialized tumor

microdomains, prompting systematic interrogation of their metabolic

network engagement. UMAP-driven manifold learning resolved 14

transcriptionally discrete cellular modules (Figure 4A), with spatial
Frontiers in Immunology 06
deconvolution algorithms mapping their histoanatomical zonation

(Figure 4B). Transcriptional gradient quantification (Figure 4C)

identified clusters 4/13/14 as primary reservoirs of TSPAN4/ITGA5

co-expression, demonstrating exceptional cellular penetrance (>80%

detection frequency). Metabolic flux profiling (Figure 4D) revealed

coordinated activation of bioenergetic networks - particularly

oxidative phosphorylation and lipid handling machinery - within

migrasome-enriched compartments.

Cross-cohort validation delineated 13 conserved cellular ecotypes

(Figure 4E), with spatial zonation cartography (Figure 4F) confirming

microniche conservation across specimens. Cluster 13 emerged as the

predominant migrasome signaling hub (Figure 4G), exhibiting multi-

omic metabolic reprogramming signatures (Figure 4H) through

integration of glutaminolysis intermediates and nucleotide

biosynthesis precursors. These data position migrasome-active

cellular coalitions as metabolic master regulators, synchronizing

tumor microenvironmental rewiring via spatiotemporal control of

nutrient allocation and anabolic programming.
FIGURE 1

Flowchart of the study.
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FIGURE 2

Single-cell data processing and scoring. (A) t-SNE visualization of single cells from control tissue (CT), metastatic cancer (MC), and primary cancer
(PC). (B) Heatmaps of migration-related gene expression in different cell clusters, evaluated using AUCell, UCell, and singscore. (C) Violin plots
detailing the AUCell, UCell, singscore, ssGSEA, and AddModuleScore values in different cell clusters, where each point represents the average
expression and the percentage of cells expressing the given marker. (D) t-SNE projections of CT, MC, and PC samples highlighting the spatial
distribution of major cell types, with color-coded scores reflecting functional activity related to migration traits. (E) Violin plots of TSPAN4 and ITGA5
expression. (F) UMAP projections of TSPAN4 and ITGA5 expression.
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FIGURE 3

Fibroblast pseudotime and communication analysis based on migration traits. (A) Pseudotime heatmap showing TSPAN4 and ITGA5 expression
during cancer cell progression. (B) Trajectory plots of different cell states along pseudotime. (C) UMAP plots of fibroblasts from CT, MC, and PC
tissues. (D, E) Chord diagrams of intercellular communication signals between Migrasome-high fibroblasts and Migrasome-low fibroblasts.
(F) Heatmap of communication signals (e.g., PERIOSTIN, ncWNT, COMPLEMENT, FGF, THFb, ANGPTL) between different cell clusters. (G) Specific
Sender, Receiver, Mediator, and Influencer of the PERIOSTIN, ncWNT, Complement, FGF, THFb, and ANGPTL signaling pathways in Migrasome-high
and Migrasome-low fibroblasts. (H) Sankey diagram of important ligand-receptor pairs involved in communication between Migrasome-high and
Migrasome-low fibroblasts.
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3.4 Temporal dynamics of spatial
transcriptomic programs and pathway
hierarchy

Temporal trajectory reconstruction of spatial transcriptomic

signatures decoded molecular hierarchies governing ECM

remodeling, signaling axis activation, migratory programming,
Frontiers in Immunology 09
and immune modulation across tumor progression. Cluster 5→0

temporal progression (Figure 5A) identified divergent

transcriptional patterning across 30 co-directional and inverse

regulatory modules (Figure 5B). Functional enrichment clustering

of co-directional modules revealed predominant ECM catabolic

pathway activation (Figure 5C), establishing mechanistic linkage to

desmoplastic remodeling, invasive niche formation, and PD-L1-
FIGURE 4

Spatial transcriptomics and metabolic analysis. (A) UMAP dimensionality reduction showing pancreatic cancer cell clustering. (B) Spatial distribution
of the 14 clusters within tissue sections. (C) DotPlot displaying the average expression levels and percentages of cells expressing TSPAN4 and ITGA5.
(D) Heatmap of expression levels of different metabolic pathways across cell clusters. (E) UMAP dimensionality reduction displaying 13 cell clusters.
(F) Spatial distribution of the 13 clusters within tissue sections. (G) DotPlot showing migration-related gene expression levels and the percentage of
cells expressing these genes. (H) Heatmap of expression levels in various metabolic pathways across cell clusters.
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mediated immune evasion. Counter-gradient modules exhibited

inverse correlation with MAPK signaling cascades (Figure 5D)—

central regulators of proliferative signaling and survival pathways.

Cluster 5→1 trajectory analysis (Figure 5E) uncovered integrin

signalosome assemblies as dominant co-directional networks
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(Figure 5G), while inverse modules governed endosomal

trafficking and receptor recycling (Figure 5H). Cluster 8→5

temporal mapping (Figure 5I) exposed interferon-responsive

apoptotic regulators as synchronized modules (Figure 5K),

opposed by counter-regulated programs controlling ECM
FIGURE 5

Spatial developmental trajectory and enrichment analysis of characteristic genes. (A, E, I, M, Q) Developmental trajectory of cell clusters in tissue
sections. (B, F, J, N, R) Top 30 positively and negatively correlated genes. (C, G, K, O, S) Gene enrichment analysis for positively correlated genes.
(D, H, L, P, T) Gene enrichment analysis for negatively correlated genes.
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scaffolding, oxidative stress buffering, and differentiation

arrest (Figure 5L).

Cross-cohort validation confirmed conserved temporal logic.

Cluster 6→10 progression (Figure 5M) highlighted co-directional

activation of ECM proteolysis, FAK signaling, and mesenchymal

motility (Figure 5O), contrasted with suppressed leukocyte

recruitment and b2-integrin adhesion (Figure 5P). Cluster 7→10

deconvolution (Figure 5Q) demonstrated synchronized avb3 integrin

mechanosensing, miR-509-3p regulatory hubs, and IL-mediated

paracrine signaling (Figure 5S), juxtaposed against attenuated antigen

presentation and complement surveillance (Figure 5T).
3.5 Spatial niche specialization of
migrasome-enriched fibroblasts and
immunomodulatory circuitry

Dynamic spatial profiling of tumor specimens identified

fibroblast subpopulations with migrasome accumulation

displaying peritumoral localization patterns, coordinating

immune-suppressive microenvironment formation through

adaptive molecular remodeling. Zonal architecture analysis

(Figure 6A) revealed concentric spatial patterning of high-

migrasome fibroblasts along tumor-stroma boundaries.

Regulatory network decomposition (Figure 6B) delineated

counteractive associations between migrasome-enriched

fibroblasts and cytotoxic immune cells, particularly demonstrating

heightened interface propensity scores for T cell and macrophage

populations (Figure 6C). Three-dimensional spatial quantification

across distinct anatomical regions – tumor parenchyma (intra),

peritumoral stroma (juxta-5mm), and invasive periphery (para-

15mm) – (Figure 6D) validated migrasome-rich fibroblast

dominance at para-15mm invasion zones.

Core tumor microenvironment evaluation (Figure 6E) revealed

operational T cell-epithelial communication networks, implying

immune escape mechanisms through direct intercellular signaling.

Stromal compartments within juxta-5mm zones (Figure 6F)

displayed low-migrasome fibroblast-endothelial assemblies

functionally associated with angiogenesis promotion and

premetastatic conditioning. Para-15mm invasive territories

(Figure 6G) manifested migrasome-dense fibroblast-induced

immune silencing, establishing self-contained signaling nodes

with diminished leukocyte infiltration.

Multiregional verification analyses (Figures 6H, I) corroborated

this spatial architecture, identifying migrasome-enriched fibroblast-

mediated immune suppression mechanisms involving STAT3-

dependent checkpoint activation and chemokine signaling

attenuation. Weighted significance analysis (Figure 6J) coupled

with cellular distribution mapping (Figure 6K) enhanced spatial

mechanistic interpretation. Intratumoral migrasome-rich

fibroblasts (Figure 6L) activated B regulatory pathways via dual

IL-10/TGFb signaling, whereas juxta-5mm low-migrasome

counterparts (Figure 6M) facilitated stromal-tumor cooperativity

through MMP9/VEGF-A axis activation. Para-15mm migrasome-
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abundant fibroblasts (Figure 6N) executed L1CAM-integrin

mechanical signaling with epithelial cells, potentiating Wnt/b-
catenin-mediated proliferative cascades.
3.6 TSPAN4+
fibroblasts as central

coordinators in tumor ecosystem networks

Comprehensive multi-platform profiling identified TSPAN4-

positive fibroblasts as critical network hubs within tumor

microecosystems, exhibiting mutualistic functional partnerships with

innate immune components (macrophages, monocytes) and stromal

elements (vascular networks). Graph theory-based centrality

assessments (Figure 7A) highlighted these fibroblasts as primary

conductors of cell-cell communication, whereas boundary signaling

evaluations (Figure 7B) characterized their dual role as stromal-

immune mediators via selective interactions with endothelial and

epithelial interfaces. Reciprocal regulatory axes emerged between

adaptive immune clusters, where Th2-skewed T cell/plasma cell

interaction metrics (Figure 7C) implied IgE-dependent modulation

of antitumor immunity.

Network topology mapping (Figure 7D) delineated TSPAN4+

fibroblasts as core organizers, generating spoke-like connectivity

frameworks bridging CD14+ myeloid progenitors, M2-polarized

macrophages, and CD31+ vascular units. Spatial interdependency

analyses (Figure 7E) uncovered microdomain colocalization patterns

between TSPAN4+ fibroblasts and CX3CR1+ monocytic derivatives at

tumor invasion zones. Temporal progression modeling (Figure 7F)

traced phenotypic diversification trajectories from resting (Cluster 1) to

activated fibroblast subtypes (Clusters 4-5), with stepwise TSPAN4

upregulation (Figure 7G) paralleling extracellular matrix remodeling

dynamics and SOX9-mediated malignant reprogramming.
3.7 TSPAN4+
fibroblasts as dual regulatory

centers in immune-matrix crosstalk

TSPAN4-expressing stromal cells were identified as pivotal

regulators of immune suppression and desmoplastic remodeling,

operating through multifaceted ligand-receptor (LR) networks

involving myeloid (macrophages) and vascular (endothelial)

lineages. Spatial colocalization analysis across pancreatic ductal

adenocarcinoma microenvironments (Figure 8A) unveiled

compartment-specific cellular cooperativity. Systematic LR

network mapping (Figure 8B) prioritized high-avidity COL1A2-

ITGB1 complexes as key biomechanical signaling units (Figure 8C),

with thermodynamic spatial profiling (Figure 8D) highlighting their

concentration at stromal-vascular junctions. Directional

communication profiling (Figure 8E) revealed asymmetrical

signaling dominance from TSPAN4+ fibroblasts to macrophages

(via CXCL12-CXCR4 pathways) and endothelial cells (through

VEGFC-VEGFR3 cascades).

Graph-based architecture modeling (Figure 8F) established

TSPAN4+ fibroblasts as integrative nodes coordinating fibrogenic
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1594879
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hu et al. 10.3389/fimmu.2025.1594879
(TGFb1-LTBP1) and angiogenic (ANGPT2-TIE1) signaling

hierarchies. Unified LR pathway mapping (Figure 8G) exposed tri-

modal signaling networks linking fibroblast-secreted proteases

(MMP2/MMP9) to macrophage phagocytic regulation (CD47-

SIRPa) and vascular barrier restructuring (JAM3-ITGAV).

Hierarchical network resolution (Figure 8H) characterized TSPAN4+

fibroblasts as stromal control units, harmonizing immune inhibitory

(IL10-IL10R) and matrix-condensing (LOXL2-EGFR) mechanisms via

spatial orchestration of myeloid and vascular components.
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3.8 TSPAN4+
fibroblasts as architects of

immunotherapy resistance and checkpoint
network configuration

Analysis of the TCGA-PAAD transcriptome identified

TSPAN4-positive fibroblasts as critical regulators of immune

checkpoint balance. Computational evaluation using the TIDE

algorithm (Figure 9A) revealed an inverse relationship between

TSPAN4+ fibroblast prevalence and therapeutic efficacy, signifying
FIGURE 6

Spatial interaction analysis. (A, H) Distribution of cell types on tissue sections, with each color representing a different cell type, and migration-
related fibroblasts being significantly expressed around cancer tissue. (B, I) Correlation heatmap of cell types. (C, J) Significance ranking of different
cell types. (D, K) Bar graph comparing the distribution of different cell types under various conditions (e.g., intra, juxta 5, para 15). Cell interaction
networks and significance heatmaps for (E, L) para_15, (F, M) intra, and (G, N) juxta 5 views, showing potential interaction patterns between specific
cell types. Spatial zones were defined based on histopathological landmarks: intra-tumoral (within tumor epithelium), juxta-tumoral (≤5 mm from
tumor-stroma interface), and para-tumoral (≥15 mm into stroma).
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stroma-driven immune suppression. Multidimensional covariance

analysis (Figure 9B) uncovered synchronized transcriptional

patterns linking these fibroblasts to CD8+ T cell dysfunction

(p=7.51×10⁻⁶), with lineage specification profiling (Figure 9C)

confirming their canonical stromal origin (p=1.96×10⁻³⁷). Energy-
based correlation networks (Figure 9D) mapped TSPAN4’s

functional integration with immune escape components (CD27,

CTLA4, PDCD1, TNFRSF; r=0.5–0.9), further substantiated by

dual-axis interaction analysis (Figure 9E) demonstrating

concurrent associations with both activating (CD28) and

suppressive (TIM3) immune receptors.

Regulatory network topology (Figure 9F) characterized

TSPAN4’s transcriptional interplay with matrix regulators

(TYRBP9, TSPAN9) and stromal adaptability markers (VIM,

VASN). Immune compartment decoding (Figure 9G) revealed

counterintuitive relationships: robust FOXP3+ regulatory T cell

(p=0.003) and immature B cell recruitment contrasted with

diminished antigen-presenting cell interactions. Transcriptional
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covariance networks (Figure 9H) further confirmed TSPAN4’s

integration with protein homeostasis (UBTQ1) and mesenchymal

transition (WTIP) pathways. Notably, TSPAN4 displayed inverse

correlation with genomic instability (R=-0.16, p=0.046) (Figure 9I),

implying its involvement in shaping immunologically silent

microenvironments via tumor mutational burden regulation.
3.9 TSPAN4 knockdown suppresses
malignant progression in pancreatic cancer
models

Gene-specific suppression of TSPAN4 was confirmed through

quantitative polymerase chain reaction (qPCR), with siRNA-mediated

silencing achieving substantial mRNA downregulation in SW1990 (p

< 0.001) and PANC-1 (p < 0.0001) cell lines relative to scramble

controls (Figure 10A). Functional characterization uncovered potent

growth-inhibitory effects, as evidenced by CCK-8 proliferation assays
FIGURE 7

Cell cluster interaction and pseudotime analysis. (A) Cell cluster correlation weight diagram, where different cell types are weighted in specific
themes, with larger bubbles indicating greater importance. (B) Correlation heatmap of cell clusters, with red representing positive correlation and
blue representing negative correlation. (C) Heatmap of cell type interaction ratios, where the color gradient from purple to yellow indicates the
strength of interactions (stronger interaction is represented by higher ratios). (D) The network topology map showed that TSPAN4+ fibroblasts acted
as the core organizer and formed a hub-and-spoke connection framework. (E) Distribution of different cell types on tissue sections. (F, G)
Pseudotime trajectory analysis and TSPAN4 expression in fibroblast subgroups.
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FIGURE 8

Spatial ligand-receptor pair interaction analysis. (A) Spatial distribution of cell types within tissue sections, with different colors representing various
cell types. (B) Ligand-receptor (LR) score distribution. (C) Ranking of ligand-receptor pairs based on significance. (D) Spatial distribution of the
COL1A2_ITGB1 ligand-receptor pair. (E) Cell-to-cell ligand-receptor (LR) interaction point diagram, where each point represents a ligand-receptor
pair, and the color indicates the number of interactions (from blue for low interaction to red for high interaction). (F) Overall cell-to-cell ligand-
receptor interaction network. (G) Ligand-receptor interaction networks between various cell types, with color intensity reflecting interaction
strength. (H) Cell-to-cell interaction signaling pathway network chord diagram.
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FIGURE 9

Immune therapy and immune microenvironment analysis at the bulk level. (A) TIDE immune therapy boxplot, with a Wilcoxon test p-value of 5.6e-
11, indicating statistical significance. (B, C) Correlation analysis between TSPAN4+ fibroblasts and immune-related markers. (D) Heatmap showing
the correlation of TSPAN4 with immune checkpoint and inflammatory marker genes, with red representing positive correlation and blue
representing negative correlation. (E) Heatmap of TSPAN4 correlation with other immune marker genes. (F) Chord diagram displaying gene
relationships and co-expression, with color indicating correlation strength (blue for negative correlation, orange for positive correlation). (G) Bar
graph showing the correlation between TSPAN4 expression and various immune cell subpopulations (e.g., regulatory T cells, B cells). (H) Scatter plot
showing the correlation between TSPAN4 expression and various gene expressions. (I) Heatmap of TSPAN4 expression correlated with tumor
mutation burden.
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showing progressive suppression of cellular viability over a 96-hour

observation period (SW1990: p < 0.01; PANC-1: p < 0.001)

(Figure 10B). Colony formation analyses further validated these

observations, revealing near-total elimination of clonogenic capacity

in both models (SW1990: p < 0.0001; PANC-1: p < 0.001), consistent

with disrupted tumorigenic self-renewal mechanisms (Figure 10C). In

parallel assessments of metastatic behavior, TSPAN4-depleted cells

exhibited statistically significant migratory impairment at 48 hours

post-transfection, demonstrating 82% invasion reduction in SW1990

(p < 0.0001) and 63% attenuation in PANC-1 (p < 0.05), thereby

establishing TSPAN4’s functional necessity for metastatic

competence (Figure 10D).
3.10 TSPAN4 knockdown inhibits
metastatic potential and triggers apoptotic
activation

Genetic silencing of TSPAN4 significantly impaired invasive

behavior in pancreatic cancer cell models (SW1990/PANC-1).

Quantitative assessment of cellular invasion demonstrated 4.7-fold

(SW1990: p < 0.0001) and 3.9-fold (PANC-1: p < 0.0001) suppression

of transmigration capacity, establishing TSPAN4’s mechanistic

involvement in preparing metastatic microenvironments

(Figure 11A). Cytometric analysis uncovered apoptosis-promoting

reprogramming, with TSPAN4-depleted cells showing dramatic

increases in programmed cell death: SW1990 apoptotic rates surged

from 0.08% (control) to 11.56% (p < 0.001), while PANC-1 apoptosis

rose from 2.09% to 12.87% (p < 0.01), confirming caspase-mediated

death pathway activation (Figure 11B).
4 Discussion

Pancreatic cancer is a highly malignant tumor originating from

the pancreas, often presenting asymptomatically in its early stages

(44, 45). This lack of symptoms contributes to delayed diagnosis

and poor prognosis (46). Treatment remains particularly

challenging due to the absence of early-stage markers and the

deep location of the pancreas within the abdomen, which

complicates detection during routine examinations (47–49).

While surgical resection can improve patient survival, the overall

survival rate remains dismal because most patients are diagnosed at

advanced stages. Thus, early screening and diagnosis are critical to

improving survival outcomes (50–52).

Migrasomes, which are membrane-bound structures formed

during cell migration, are typically composed of cytoplasmic

vesicles or inclusions (53). These structures play crucial roles in

signal transduction, matrix remodeling, and facilitating cell

movement by altering cell membrane morphology and aiding

material transport (54), and it plays an important role in

intercellular communication (55). Migrasomes are integral to

overcoming physical barriers and enhancing cell motility,

enabling tumor cells to navigate the ECM and migrate to distant

sites (56). Furthermore, migrasomes have been shown to regulate
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the organization of microtubules and microfilaments, influencing

the shape and motility of tumor cells and contributing to metastasis

by facilitating the movement of tumor cells into the bloodstream or

lymphatic system (54). While migrasomes are recognized as

metastasis facilitators (57), their role in fibroblast-immune

crosstalk remains contentious. Our work resolves this by

demonstrating context-dependent migrasome functions,

contingent on fibroblast-TSPAN4 expression. Among them,

TSPAN4 has been confirmed to be associated with the prognosis

of a variety of cancers (58, 59).

In the present study, it was observed that fibroblasts derived

from metastatic and primary pancreatic cancer tissues exhibited a

notable upregulation of genes associated with migration, including

TSPAN4 and ITGA5. These observations are in alignment with

earlier research that has demonstrated the pivotal role of fibroblasts

in facilitating tumor cell migration, invasion, and metastasis

through their interactions within the tumor microenvironment

(60–62). The observation of significant signaling between

fibroblasts expressing high levels of migrator-related genes and

other cell types, including macrophages, endothelial cells, and

ductal cells, suggests that fibroblasts interact with immune cells

and stromal components to collectively regulate the tumor

microenvironment (63–65). Of particular interest, we found

through enrichment analysis that signaling pathways such as

PERIOSTIN, FGF and ANGPTL were highly enriched in

Migrasomehighfibro cells, suggesting that these fibroblasts may

affect cancer cell migration and invasion through mechanisms

such as the PI3K/Akt pathway (50, 66). This synergistic cellular

environment may drive pancreatic cancer progression, particularly

in terms of ECM remodeling and immune evasion (67).

The correlation of TSPAN4 expression with immune

checkpoint markers such as PDCD1 and CTLA4 further suggests

that TSPAN4+ fibroblasts may reduce the effectiveness of

immunotherapy (68). Indeed, patients exhibiting high expression

of TSPAN4+ fibroblasts displayed poorer responses to

immunotherapy, highlighting the potential of TSPAN4 as both a

prognostic marker and a therapeutic target (69).

Tetraspanin 4 (TSPAN4), a member of the transmembrane 4

superfamily, has emerged as a potential contributor to the

pathogenesis of pancreatic cancer. The broader TSPAN family has

been implicated in multiple oncogenic processes in this malignancy.

For instance, TSPAN1 has been shown to promote autophagy via the

MIR454–FAM83A–TSPAN1 regulatory axis and facilitates the

crosstalk between WNT–CTNNB1 signaling and autophagic

pathways in pancreatic cancer (70). Notably, the extracellular

domain of TSPAN4 offers a viable target for monoclonal antibody-

based therapies, in line with ongoing efforts to develop TSPAN-

directed therapeutics (71). Furthermore, gene-editing technologies

such as CRISPR/Cas9, or the application of small-molecule inhibitors

to disrupt TSPAN4–integrin interactions, may enhance the efficacy of

current immunotherapies by overcoming resistance mechanisms and

modifying the tumor immune microenvironment (72).

Further studies found that fibroblasts with high expression of

migrator-related genes interact weakly with immune cells such as T

cells and macrophages, suggesting that they may play an
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FIGURE 11

Cell experiments. (A) Microscopic images and histogram analysis of Transwell invasion assays, showing the invasion ability of SW1990 and PANC-1
cells after TSPAN4 knockdown compared to the control group. (B) Flow cytometry dot plots and histogram analysis showing apoptosis rates of
SW1990 and PANC-1 cells after TSPAN4 knockdown. *: p<0.05; **: p<0.01; ***: p<0.001; ****p<0.0001.
FIGURE 10

Cell experiments. (A) PCR histograms and (B) CCK-8 cell proliferation assay line plots for normal and TSPAN4 low-expression groups in SW1990 and
PANC-1 cell lines. (C) Microscopic images and histogram results from the clone formation assay in SW1990 and PANC-1 cells. (D) Microscopic
images and histogram results of the wound healing assay. *: p<0.05; **: p<0.01; ***: p<0.001; ****p<0.0001.
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immunosuppressive role in the tumor microenvironment (73).

Interestingly, TSPAN4+ fibroblasts were significantly more in the

responder group than in the non-responder group and showed

strong positive correlations with multiple immune cell interactions.

This phenomenon highlights that TSPAN4+ fibroblasts contribute

to tumor immune escape and progression.

Single-cell resolution mitigated tumor heterogeneity biases, yet

spatial variability warrants further exploration. Spatial

transcriptomic analysis revealed significant spatial heterogeneity

in the expression of migrator-related genes in different cell

populations of pancreatic cancer (74). The complex distribution

of TSPAN4 and ITGA5 likely with pancreatic cancer cell migration,

proliferation, and ECM degradation highlights the dynamic

interactions between cells that drive pancreatic cancer metastasis.

In the TSPAN4 knockdown assay, knockdown of TSPAN4

significantly reduced the proliferation and migration ability of

SW1990 and PANC-1 cells, suggesting that TSPAN4 promotes

tumor malignancy by promoting cancer cell migration and invasion.

While TSPAN4 emerged as a focal regulator, ITGA5 also

demonstrated pan-stromal expression, suggesting complementary

roles in ECM adhesion and integrin-mediated mechanotransduction

(75). Future studies should dissect ITGA5’s distinct contributions to

migrasome signaling and stromal crosstalk.

However, although our study still has some limitations such as

the single cell dataset only included 3 clinical cohorts (2 primary

cancers, 2 metastatic cancers, and 1 normal tissue), and the detailed

molecular mechanism of TSPAN4 in inducing fibroblasts to promote

pancreatic cancer progression needs to be further investigated.

Furthermore, the development of therapeutic strategies

targeting TSPAN4 may block tumor progression and metastasis

and enhance the efficacy of existing immunotherapies. In-depth

study of the specific mechanisms by which TSPAN4+ fibroblasts

regulate immune responses and extracellular matrix remodeling

using spatial transcriptomics will be essential for the development

of targeted therapeutic strategies against pancreatic cancer (76).
5 Conclusion

Utilizing single-cell RNA sequencing and spatial transcriptomics,

this study identified migrator-associated genes, including TSPAN4 and

ITGA5, as critical regulators offibroblast function in pancreatic cancer.

Notably, TSPAN4+ fibroblasts were found to play pivotal roles in

shaping the tumor microenvironment by promoting tumor

progression, metastasis, immune evasion, and ECM remodeling.

These findings highlight the potential of TSPAN4+ fibroblasts as

therapeutic targets and provide novel insights into the stromal

dynamics driving pancreatic cancer malignancy.
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35. Martıńez VS, Saa PA, Jooste J, Tiwari K, Quek LE, Nielsen LK. The topology of
genome-scale metabolic reconstructions unravels independent modules and high
network flexibility. PloS Comput Biol. (2022) 18:e1010203. doi: 10.1371/
journal.pcbi.1010203

36. Chen H, Zuo H, Huang J, Liu J, Jiang L, Jiang C, et al. Unravelling infiltrating T-
cell heterogeneity in kidney renal clear cell carcinoma: Integrative single-cell and spatial
transcriptomic profiling. J Cell Mol medicine. (2024) 28:e18403. doi: 10.1111/
jcmm.v28.12

37. Huan C, Li J, Li Y, Zhao S, Yang Q, Zhang Z, et al. Spatially resolved multiomics:
data analysis from monoomics to multiomics. BME frontiers. (2025) 6:0084.
doi: 10.34133/bmef.0084

38. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al.
Metascape provides a biologist-oriented resource for the analysis of systems-level
datasets. Nat communications. (2019) 10:1523. doi: 10.1038/s41467-019-09234-6

39. Tu H, Hu Q, Ma Y, Huang J, Luo H, Jiang L, et al. Deciphering the tumour
microenvironment of clear cell renal cell carcinoma: Prognostic insights from
programmed death genes using machine learning. J Cell Mol medicine. (2024) 28:
e18524. doi: 10.1111/jcmm.v28.13

40. Tanevski J, Flores ROR, Gabor A, Schapiro D, Saez-Rodriguez J. Explainable
multiview framework for dissecting spatial relationships from highly multiplexed data.
Genome Biol. (2022) 23:97. doi: 10.1186/s13059-022-02663-5

41. Cable DM, Murray E, Zou LS, Goeva A, Macosko EZ, Chen F, et al. Robust
decomposition of cell type mixtures in spatial transcriptomics. Nat Biotechnol. (2022)
40:517–26. doi: 10.1038/s41587-021-00830-w

42. Elosua-Bayes M, Nieto P, Mereu E, Gut I, Heyn H. SPOTlight: seeded NMF
regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes.
Nucleic Acids Res. (2021) 49:e50. doi: 10.1093/nar/gkab043

43. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinf. (2013) 14:7. doi: 10.1186/1471-2105-14-7

44. Tian Z, Liang G, Cui K, Liang Y, Wang Q, Lv S, et al. Insight into the prospects
for RNAi therapy of cancer. Front Pharmacol. (2021) 12:644718. doi: 10.3389/
fphar.2021.644718

45. Chi H, Su L, Yan Y, Gu X, Su K, Li H, et al. Illuminating the immunological
landscape: mitochondrial gene defects in pancreatic cancer through a multiomics lens.
Front Immunol. (2024) 15:1375143. doi: 10.3389/fimmu.2024.1375143

46. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer
statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers
in 185 countries. CA: A Cancer J clinicians. (2018) 68:394–424. doi: 10.3322/caac.21492

47. Ideno N, Mori Y, Nakamura M, Ohtsuka T. Early detection of pancreatic cancer:
role of biomarkers in pancreatic fluid samples. Diagnostics (Basel Switzerland). (2020)
10:1056. doi: 10.3390/diagnostics10121056

48. Amaral MJ, Oliveira RC, Donato P, Tralhão JG. Pancreatic cancer biomarkers:
oncogenic mutations, tissue and liquid biopsies, and radiomics-A review. Digestive Dis
Sci. (2023) 68:2811–23. doi: 10.1007/s10620-023-07904-6

49. Chi H, Peng G, Wang R, Yang F, Xie X, Zhang J, et al. Cuprotosis programmed-
cell-death-related lncRNA signature predicts prognosis and immune landscape in
PAAD patients. Cells. (2022) 11:3436. doi: 10.3390/cells11213436

50. Man Q, Pang H, Liang Y, Chang S, Wang J, Gao S. Nomogram model for
predicting early recurrence for resectable pancreatic cancer: A multicenter study.
Medicine. (2024) 103:e37440. doi: 10.1097/MD.0000000000037440

51. Spiers L, GrayM, Lyon P, Sivakumar S, Bekkali N, Scott S, et al. Clinical trial protocol
for PanDox: a phase I study of targeted chemotherapy delivery to non-resectable primary
pancreatic tumours using thermosensitive liposomal doxorubicin (ThermoDox®) and
focused ultrasound. BMC cancer. (2023) 23:896. doi: 10.1186/s12885-023-11228-z

52. Huang X, Chi H, Gou S, Guo X, Li L, Peng G, et al. An aggrephagy-related
lncRNA signature for the prognosis of pancreatic adenocarcinoma. Genes. (2023)
14:124. doi: 10.3390/genes14010124

53. Huang Y, Zucker B, Zhang S, Elias S, Zhu Y, Chen H, et al. Publisher Correction:
Migrasome formation is mediated by assembly of micron-scale tetraspanin
macrodomains. Nat Cell Biol. (2019) 21:1301. doi: 10.1038/s41556-019-0389-z

54. Zhang K, Zhu Z, Jia R, Wang NA, Shi M, Wang Y, et al. CD151-enriched
migrasomes mediate hepatocellular carcinoma invasion by conditioning cancer cells
and promoting angiogenesis. J Exp Clin Cancer research: CR. (2024) 43:160.
doi: 10.1186/s13046-024-03082-z

55. Jiang D, He J, Yu L. The migrasome, an organelle for cell-cell communication.
Trends Cell Biol. (2025) 35:205–16. doi: 10.1016/j.tcb.2024.05.003

56. Jha A, Chandra A, Farahani P, Toettcher J, Haugh JM, Waterman CM. CD44
and Ezrin restrict EGF receptor mobility to generate a novel spatial arrangement of
cytoskeletal signaling modules driving bleb-based migration. bioRxiv: preprint server
Biol. (2025). doi: 10.1101/2024.12.31.630838
Frontiers in Immunology 20
57. Liu X, Jiao H, Zhang B, Zhang S, Yan K, Qu J, et al. Migrasomes trigger innate
immune activation and mediate transmission of senescence signals across human cells.
Life Med. (2023) 2:lnad050. doi: 10.1093/lifemedi/lnad050

58. Zhang X, Li J, Yao Y, Zhou M, He Y, Zhao Y. Migrasome-related prognostic
signature TSPAN4 correlates with immune infiltrates and metabolic disturbances in
hepatocellular carcinoma. J gastroenterology. (2025) 60:593–606. doi: 10.1007/s00535-
025-02212-4

59. Huang Z, Wang M, Chen Y, Tang H, Tang K, Zhao M, et al. Glioblastoma-
derived migrasomes promote migration and invasion by releasing PAK4 and LAMA4.
Commun Biol. (2025) 8:91. doi: 10.1038/s42003-025-07526-w

60. Hirakawa T, Yashiro M, Doi Y, Kinoshita H, Morisaki T, Fukuoka T, et al.
Pancreatic Fibroblasts Stimulate the Motility of Pancreatic Cancer Cells through IGF1/
IGF1R Signaling under Hypoxia. PloS One. (2016) 11:e0159912. doi: 10.1371/
journal.pone.0159912

61. Li M, Peng F, Wang G, Liang X, Shao M, Chen Z, et al. Coupling of cell surface
biotinylation and SILAC-based quantitative proteomics identified myoferlin as a
potential therapeutic target for nasopharyngeal carcinoma metastasis. Front Cell Dev
Biol. (2021) 9:621810. doi: 10.3389/fcell.2021.621810

62. Bian Z, Chen J, Liu C, Ge Q, Zhang M, Meng J, et al. Landscape of the
intratumroal microenvironment in bladder cancer: Implications for prognosis and
immunotherapy. Comput Struct Biotechnol J. (2023) 21:74–85. doi: 10.1016/
j.csbj.2022.11.052

63. Mondal C, Di Martino JS, Bravo-Cordero JJ. Actin dynamics during tumor cell
dissemination. Int Rev Cell Mol Biol . (2021) 360:65–98. doi: 10.1016/
bs.ircmb.2020.09.004

64. Zhang J, Lu S, Lu T, Han D, Zhang K, Gan L, et al. Single-cell analysis reveals the
COL11A1(+) fibroblasts are cancer-specific fibroblasts that promote tumor
progression. Front Pharmacol. (2023) 14:1121586. doi: 10.3389/fphar.2023.1121586

65. Chi H, Chen H, Wang R, Zhang J, Jiang L, Zhang S, et al. Proposing new early
detection indicators for pancreatic cancer: Combining machine learning and neural
networks for serum miRNA-based diagnostic model. Front oncology. (2023)
13:1244578. doi: 10.3389/fonc.2023.1244578

66. Wu IC, Chen YK, Wu CC, Cheng YJ, Chen WC, Ko HJ, et al. Overexpression of
ATPase Na+/+ transporting alpha 1 polypeptide, ATP1A1, correlates with clinical
diagnosis and progression of esophageal squamous cell carcinoma. Oncotarget. (2016)
7:85244–58. doi: 10.18632/oncotarget.13267

67. Chia PL, Ang KH, Thura M, Zeng Q. PRL3 as a therapeutic target for novel
cancer immunotherapy in multiple cancer types. Theranostics. (2023) 13:1876–91.
doi: 10.7150/thno.79265

68. Song J, Yang R, Wei R, Du Y, He P, Liu X. Pan-cancer analysis reveals RIPK2
predicts prognosis and promotes immune therapy resistance via triggering cytotoxic T
lymphocytes dysfunction. Mol Med (Cambridge Mass). (2022) 28:47. doi: 10.1186/
s10020-022-00475-8

69. Wang LJ, Xu R, Wu Y. Migrasome regulator TSPAN4 shapes the suppressive
tumor immune microenvironment in pan-cancer. Front Immunol. (2024) 15:1419420.
doi: 10.3389/fimmu.2024.1419420

70. Zhou C, Liang Y, Zhou L, Yan Y, Liu N, Zhang R, et al. TSPAN1 promotes
autophagy flux and mediates cooperation between WNT-CTNNB1 signaling and
autophagy via the MIR454-FAM83A-TSPAN1 axis in pancreatic cancer. Autophagy.
(2021) 17:3175–95. doi: 10.1080/15548627.2020.1826689

71. Shao S, Bu Z, Xiang J, Liu J, Tan R, Sun H, et al. The role of Tetraspanins in
digestive system tumor development: update and emerging evidence. Front Cell Dev
Biol. (2024) 12:1343894. doi: 10.3389/fcell.2024.1343894

72. Viktorsson K, Rieckmann T, Fleischmann M, Diefenhardt M, Hehlgans S, Rödel
F. Advances in molecular targeted therapies to increase efficacy of (chemo)radiation
therapy. Strahlentherapie und Onkologie: Organ der Deutschen Rontgengesellschaft.
(2023) 199:1091–109. doi: 10.1007/s00066-023-02064-y

73. Liu T, Cheng S, Xu Q, Wang Z. Management of advanced pancreatic cancer
through stromal depletion and immune modulation. Medicina (Kaunas Lithuania).
(2022) 58:1298. doi: 10.3390/medicina58091298

74. Choi B, Vu HT, Vu HT, Radwanska M, Magez S. Advances in the immunology
of the host-parasite interactions in african trypanosomosis, including single-cell
transcriptomics. Pathog (Basel Switzerland). (2024) 13:188. doi: 10.3390/
pathogens13030188

75. Zhao R, Pan Z, Qiu J, Li B, Qi Y, Gao Z, et al. Blocking ITGA5 potentiates the
efficacy of anti-PD-1 therapy on glioblastoma by remodeling tumor-associated
macrophages. Cancer Commun (London England). (2025) 45:1–25. doi: 10.1002/
cac2.70016

76. Kovaleva O, Sorokin M, Egorova A, Petrenko A, Shelekhova K, Gratchev A.
Macrophage - tumor cell interaction beyond cytokines. Front oncology. (2023)
13:1078029. doi: 10.3389/fonc.2023.1078029
frontiersin.org

https://doi.org/10.1371/journal.pcbi.1010203
https://doi.org/10.1371/journal.pcbi.1010203
https://doi.org/10.1111/jcmm.v28.12
https://doi.org/10.1111/jcmm.v28.12
https://doi.org/10.34133/bmef.0084
https://doi.org/10.1038/s41467-019-09234-6
https://doi.org/10.1111/jcmm.v28.13
https://doi.org/10.1186/s13059-022-02663-5
https://doi.org/10.1038/s41587-021-00830-w
https://doi.org/10.1093/nar/gkab043
https://doi.org/10.1186/1471-2105-14-7
https://doi.org/10.3389/fphar.2021.644718
https://doi.org/10.3389/fphar.2021.644718
https://doi.org/10.3389/fimmu.2024.1375143
https://doi.org/10.3322/caac.21492
https://doi.org/10.3390/diagnostics10121056
https://doi.org/10.1007/s10620-023-07904-6
https://doi.org/10.3390/cells11213436
https://doi.org/10.1097/MD.0000000000037440
https://doi.org/10.1186/s12885-023-11228-z
https://doi.org/10.3390/genes14010124
https://doi.org/10.1038/s41556-019-0389-z
https://doi.org/10.1186/s13046-024-03082-z
https://doi.org/10.1016/j.tcb.2024.05.003
https://doi.org/10.1101/2024.12.31.630838
https://doi.org/10.1093/lifemedi/lnad050
https://doi.org/10.1007/s00535-025-02212-4
https://doi.org/10.1007/s00535-025-02212-4
https://doi.org/10.1038/s42003-025-07526-w
https://doi.org/10.1371/journal.pone.0159912
https://doi.org/10.1371/journal.pone.0159912
https://doi.org/10.3389/fcell.2021.621810
https://doi.org/10.1016/j.csbj.2022.11.052
https://doi.org/10.1016/j.csbj.2022.11.052
https://doi.org/10.1016/bs.ircmb.2020.09.004
https://doi.org/10.1016/bs.ircmb.2020.09.004
https://doi.org/10.3389/fphar.2023.1121586
https://doi.org/10.3389/fonc.2023.1244578
https://doi.org/10.18632/oncotarget.13267
https://doi.org/10.7150/thno.79265
https://doi.org/10.1186/s10020-022-00475-8
https://doi.org/10.1186/s10020-022-00475-8
https://doi.org/10.3389/fimmu.2024.1419420
https://doi.org/10.1080/15548627.2020.1826689
https://doi.org/10.3389/fcell.2024.1343894
https://doi.org/10.1007/s00066-023-02064-y
https://doi.org/10.3390/medicina58091298
https://doi.org/10.3390/pathogens13030188
https://doi.org/10.3390/pathogens13030188
https://doi.org/10.1002/cac2.70016
https://doi.org/10.1002/cac2.70016
https://doi.org/10.3389/fonc.2023.1078029
https://doi.org/10.3389/fimmu.2025.1594879
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	TSPAN4+ fibroblasts coordinate metastatic niche assembly through migrasome-driven metabolic reprogramming and stromal-immune crosstalk in pancreatic adenocarcinoma
	1 Introduction
	2 Materials and methods
	2.1 Genomic data curation and integration
	2.2 Transcriptomic signature quantification
	2.3 Cellular trajectory reconstruction and signaling network mapping
	2.4 Spatial metabolic profiling in pancreatic ecosystems
	2.5 Discriminative gene identification and functional annotation
	2.6 Spatial omics interrogation via RCTD-MISTy frameworks
	2.7 Cellular composition deconvolution and trajectory modeling
	2.8 Spatial architecture mapping and clinical prognostication
	2.9 RNA interference and cellular model preparation
	2.10 Transcript quantification via qRT-PCR
	2.11 Cellular proliferation kinetics assessment
	2.12 Clonogenic potential evaluation
	2.13 In vitro migratory capacity assessment
	2.14 In vitro invasive capacity profiling
	2.15 Apoptotic profiling via flow cytometry
	2.16 Statistical analysis

	3 Results
	3.1 Architectural diversification and metastatic pathway activation in cellular ecosystems
	3.2 Migrasome dynamics in fibroblast activation and stromal crosstalk
	3.3 Spatial metabolic circuitry governed by migrasome signaling hubs
	3.4 Temporal dynamics of spatial transcriptomic programs and pathway hierarchy
	3.5 Spatial niche specialization of migrasome-enriched fibroblasts and immunomodulatory circuitry
	3.6 TSPAN4+ fibroblasts as central coordinators in tumor ecosystem networks
	3.7 TSPAN4+ fibroblasts as dual regulatory centers in immune-matrix crosstalk
	3.8 TSPAN4+ fibroblasts as architects of immunotherapy resistance and checkpoint network configuration
	3.9 TSPAN4 knockdown suppresses malignant progression in pancreatic cancer models
	3.10 TSPAN4 knockdown inhibits metastatic potential and triggers apoptotic activation

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References


