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Roles and functions of tumor-
infiltrating lymphocytes and
tertiary lymphoid structures in
gastric cancer progression
Zhiyuan Yao1†, Gengchen Li1†, Di Pan1, Zichen Pei1, Yan Fang2,
Haonan Liu1* and Zhengxiang Han1*

1Department of Oncology, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu, China,
2Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University,
Suzhou, Jiangsu, China
Gastric cancer (GC), a leading cause of cancer mortality, exhibits profound

molecular heterogeneity and immunosuppressive tumor microenvironment

(TME) features that limit therapeutic efficacy. This review elucidates the dual

roles of tertiary lymphoid structures (TLS) and tumor-infiltrating lymphocytes

(TILs) in GC progression. TLS, ectopic lymphoid organs formed under chronic

inflammation, correlate with improved survival and immunotherapy sensitivity by

fostering effector T/B cell interactions and antigen presentation. Conversely,

immunosuppressive TME components like regulatory T cells (Tregs) and tumor-

associated macrophages (TAMs) drive immune evasion via cytokine-mediated

suppression and checkpoint activation (PD-1/PD-L1). CD8+ T cells exert context-

dependent effects, with high infiltration reducing recurrence risk but

paradoxically inducing exhaustion in PD-L1-rich microenvironments. Th17 and

memory T cells further modulate disease through IL-17-driven angiogenesis and

CD45RO+ immune memory dynamics. Multi-omics-based TLS scoring and

combinatorial therapies emerge as promising strategies to overcome resistance.
KEYWORDS

gastric cancer, tertiary lymphoid structures, tumor-infiltrating lymphocytes, tumor
microenvironment, immune checkpoint inhibitors, progression, biomarkers
1 Introduction

Gastric cancer (GC) poses a significant public health challenge due to its substantial

disease burden and clinical management complexities (1). Molecularly and phenotypically

heterogeneous feature exhibits distinct clinical intervention strategies (2–4). The tumor

microenvironment (TME) plays a pivotal role in therapeutic resistance (5–9), where

emerging evidence highlights tertiary lymphoid structures (TLS) as critical

immunological determinants. These ectopic lymphoid organs exhibit distinct

morphogenesis and functional specialization compared to embryonically derived

secondary lymphoid organs (SLOs). While SLOs develop constitutively during
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embryogenesis, TLS form de novo in inflamed non-lymphoid

tissues via lymphoid neogenesis under chronic inflammatory

conditions (10–12). Their molecular assembly is initiated by

stromal CXCL13 and IL-7 secretion, recruiting lymphoid tissue

inducer (LTi) cells that drive maturation through LTa/b and TNF

signaling, ultimately inducing VEGF-C-dependent high endothelial

venule (HEV) formation and PNAd-mediated lymphocyte homing

(13, 14).

Notably, TLS are associated with prolonged OS and enhanced

immunotherapy sensitivity in solid tumors (12, 15), likely through

sustaining effector T-cell clonal expansion and promoting B-cell-

mediated humoral immunity. This is particularly relevant given the

current landscape of immune checkpoint inhibitors (ICIs), which

reactivate antitumor immunity by targeting PD-1/PD-L1 signaling

and offer survival benefits for heavily pretreated advanced patients

(16). However, the objective response rate (ORR) in GC remains

markedly lower than in immunogenic cancers such as melanoma

(17–19), underscoring the need to better understand TLS biology

and its clinical implications. Histological features including TLS

maturity, spatial distribution patterns of tumor-infiltrating

lymphocytes, and stromal composition are now recognized as

critical biomarkers for predicting immunotherapy responsiveness

(20–23), positioning TLS as both biological regulators and

therapeutic targets in GC management.
2 Immunoregulatory network of TLS
in GC

2.1 Spatial interplay between TLS and
immune cells

GC-associated TLS exhibit a spatially organized immune cell

architecture: B-cell zones are dominated by CD20+ B lymphocytes

accompanied by CD21+ follicular dendritic cells, while T-cell zones

primarily comprise CD3+ T lymphocytes, including CD8+ cytotoxic

T lymphocytes (CTLs) and CD4+ helper T cells, forming a

functionally complementary immune microenvironment (24–26).

Notably, tumor-infiltrating B cells in GC predominantly cluster

within TLS. These antigen-experienced B cells can differentiate into

antigen-presenting cells, promoting CTL clonal expansion and

survival by presenting tumor-associated antigens, thus serving as

pivotal orchestrators of antitumor immunity (27). Clinico-

pathological evidence reveals that TLS-high gastric tumors exhibit

significantly elevated infiltration of CD20+ B cells, CD8+ T cells, and

CD3+ T cells compared to TLS-low counterparts, with CD20+ B/

CD8+ T cell co-infiltration independently correlated with prolonged

overall survival (28, 29). Mechanistically, TLS enhance T-cell-

mediated antitumor immunity by supporting CD8+ T cell

differentiation into effector memory T cells and driving Th1-type

cytokine secretion, like IFN-g, TNF-a, as demonstrated by

transcriptional profiling of tumor-infiltrating lymphocytes (30).

Hennequin et al. (31) further identified a strong positive

correlation between B-cell aggregate density within gastric TLS

and Tbet+ effector T-cell infiltration, a phenotype linked to
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improved recurrence-free survival. These findings collectively

suggest that TLS orchestrate T/B cell crosstalk to maintain tumor-

immune equilibrium. Recent evidence reveals the spatiotemporal

co-evolution of TLS and TILs during tumor progression, wherein

immature TLS mature into organized FDC networks with HEVs

(32, 33), while TILs transition from naïve/effector to memory/

exhausted phenotypes, with longitudinal studies showing that TLS

germinal center maturation correlates with CD8+ T cell

proliferation but also eventual exhaustion, underscoring their

dynamic interplay in antitumor immunity (34).
2.2 Prognostic significance of TLS and the
immunosuppressive microenvironment

TLS development proceeds through distinct stages: (i) stromal

cells secrete homeostatic chemokines to attract lymphocytes; (ii)

lymphoid tissue inducer (LTi) cells are recruited to the

inflammatory site; (iii) LTbR and TNF signaling drive vascular

remodeling and lymphocyte retention; (iv) high endothelial venules

(HEVs) expressing PNAd emerge, facilitating lymphocyte

trafficking; and (v) organized B/T cell zones form with follicular

dendritic cell (FDC) networks, establishing functional TLS capable

of antigen presentation and immune cell activation (27, 35). The

prognostic impact of TLS is critically modulated by TAMs. CD68+

TAM infiltration inversely correlates with TLS density in gastric

cancer, while elevated TAM levels predict increased risks of tumor

progression (36–40). Furthermore, immune checkpoint

dysregulation within TLS may counteract their protective

functions: high expression of TIGIT in TLS-associated CD20+ B

cells accelerates CD8+ T cell exhaustion, correlating with reduced

median OS. Intriguingly, this TIGIT-enriched subset may derive

therapeutic benefit from adjuvant chemotherapy (41). In the gastric

cancer microenvironment, TAMs polarize into M1-like (pro-

inflammatory) or M2-like (immunosuppressive) phenotypes via

cytokine/growth factor signals, regulating TLS formation (42).

Mature TLS correlate with robust antitumor immunity, CD8+/

memory T cell infiltration, and improved survival, supporting

immune surveillance (43, 44). Immature TLS lack structured T/B

zones/FDC networks, yielding poor responses. Mature TLS predict

better immunotherapy efficacy via efficient neoantigen

presentation/T cell priming, unlike immature TLS.
2.3 TLS and neoantigen-driven immune
responses

Genomic studies have established a positive correlation between

TLS formation and tumor neoantigen burden (45). As central hubs

for antigen presentation within the TME, TLS facilitate cross-

presentation of tumor-derived neoantigens via enriched mDCs,

thereby driving T-cell receptor clonal expansion—a process

validated in both gastric and other solid tumors (40, 46, 47).

Single-cell technologies have unveiled the intricate connections

among diverse cells within the complex tumor microenvironment
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(48), including novel cell subtypes (49, 50). Single-cell RNA

sequencing analyses of GC-associated mTLS reveal mucosal-

associated lymphoid tissue-derived IgA+ plasma cells and natural

killer T (NKT) cell subsets, with upregulated complement

activation-related genes, such as C1QA, C3AR1, suggesting

coordinated humoral and innate antitumor mechanisms (51).

Furthermore, Zhu et al. (52) demonstrated that TLS-resident

naïve T cells undergo clonal selection and activation through

direct contact with mDCs in lung cancer models. The homology

of this mechanism in GC, however, requires experimental

validation to confirm its conservation across malignancies.
2.4 TLS and cancer immunotherapy

TLS serve as pivotal immunotherapeutic hubs, with their

biological traits correlating multidimensionally with treatment

sensitivity (53, 54). Cottrell et al. (55) demonstrated TLS-plasma

cell co-localization in PD-L1-responsive tumors, implicating TLS in

enhancing effector T/B cell synergy. Memory B cells within TLS

exhibit dual roles: as APCs driving T-cell expansion and as

antibody-secreting plasma cells, while shaping pro-inflammatory

microenvironments via TNF/IL-6/IFN-g secretion (56). TLS density

correlates with immune-active tumor microenvironments,

supporting TLS-induction therapies (57). Genomically, TLS are

enriched in EBV-positive, MSI-high, and PI3K-mutant gastric

cancers, where TLR/NF-kB activation driven by high neoantigen

loads may enhance responses to PD-1 blockade (28, 45, 58).

Clinically, TLS scoring systems have emerged as valuable

predictors of immunotherapy efficacy, with a 2.1-fold increase in

objective response rate (ORR) observed in high-TLS patients,

particularly those harboring CD103+ tissue-resident memory T

cell niches (59, 60). Besides, current therapeutic approaches

involving triggering the formation of TLS are being applied in GC

therapy (61). Therapeutic strategies targeting TLS or checkpoint

pathways differ in both mechanism and maturity of evidence. PI3K

inhibitors (BAY1082439) promote TLS maturation through

chemokine induction and HEV formation—findings supported by

preclinical models and early-phase clinical data (62). TLR/NF-kB
agonists (CpG-ODNs) stimulate de novo TLS formation and remain

in the experimental phase with robust murine evidence but limited

clinical translation (63, 64). Conversely, PD-1/PD-L1 inhibitors

(pembrolizumab) primarily reverse T-cell exhaustion, with efficacy

validated in phase II/III trials such as KEYNOTE-061 (65).

Combination strategies (PI3K+PD-1 blockade) are currently

under early-phase investigation and exhibit synergistic

immunostimulatory effects in gastric and other solid tumors

(66–68).

Notably, despite its promise as a predictive biomarker, the

utility of TLS scoring techniques is constrained by several

limitations. First, spatial heterogeneity within tumors means TLS

density may vary significantly across sampled regions, leading to

under- or overestimation depending on biopsy location. Second,

sampling bias in endoscopic or surgical specimens may fail to

capture peritumoral TLS clusters that critically influence immune
Frontiers in Immunology 03
responses. Third, TLS undergo dynamic remodeling during disease

progression and treatment, including transitions from immature to

mature states or regression following chemotherapy, complicating

longitudinal assessments.
3 Role of TILs in gastric cancer
development

3.1 Dynamics and functions of CD4+ and
CD8+ T cells in gastric cancer

CD4+ helper T cell polarization imbalance drives GC immune

evasion, with Th1/Th2 disequilibrium being pivotal. Th1 cells

enhance cellular immunity via IL-2/IFN-g/TNF-b, promoting

CTL/NK activity, while Th2 cells stimulate humoral immunity

through IL-4/IL-6/IL-10-mediated B-cell differentiation (69).

Cross-regulation occurs via IFN-g suppression of Th2 and Th2

cytokine inhibition of Th1 (70–74). H. pylori and dietary

carcinogens promote Th2 bias, inducing Treg/M2 macrophage-

mediated immunosuppression (75, 76). Th17 cells, regulated by

TGF-b/IL-6/STAT3, secrete IL-17 to promote tumor progression

primarily through pro-inflammatory and pro-angiogenic effects. IL-

17 enhances angiogenesis by stimulating the expression of

chemokines, while simultaneously recruiting neutrophils via IL-8/

IL-17 feedback loops, thereby facilitating local inflammation and

metastasis in gastric cancer (77). In early-stage GC, IL-17A can

activate the NF-kB pathway and induce stromal remodeling,

leading to enhanced tumor proliferation. Moreover, certain IL-17

cytokines, including IL-17B, IL-17C, and IL-17F, upregulate VEGF

and MMP-9, contributing to vascular invasion and extracellular

matrix degradation (78, 79).

Conversely, Th17 cells also exhibit immunostimulatory

functions. IL-21 produced by Th17 cells recruits CD8+ cytotoxic

T lymphocytes through the CXCR3–CXCL10 axis and enhances

their cytolytic capacity by upregulating granzyme B expression.

Furthermore, RORgt+ IL-17A+ Th17 cells are associated with

increased infiltration of mast cells and NK cells, correlating with

improved patient survival and suppression of M2 macrophage-

mediated immunosuppression (78, 80). The duality of Th17 cell

function appears to be context-dependent: promoting

tumorigenesis via NF-kB in early-stage cancer while enhancing

immunotherapy response in advanced disease (74, 76).

Additionally, IL-17D and IL-17E have been shown to stimulate

IFN-g production by CD8+ T cells, contributing to antitumor

immunity (78).

CD8+ T cells, as central effectors of cellular immunity, mediate

tumor cell lysis via MHC-I-restricted antigen recognition,

migrating along chemokine gradients to infiltrate tumor

parenchyma and executing cytotoxicity through granzyme-

perforin-mediated exocytosis and Fas/FasL death receptor

signaling (81). Pan-cancer analyses substantiate the prognostic

universality of CD8+ T cell infiltration, with elevated densities

correlating significantly with improved outcomes in cervical,

colorectal, and breast cancers (82–84). In GC-specific studies, Li
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et al. (33) demonstrated that high CD8+ T cell infiltration inversely

associates with histological grade (G1/G2) and early TNM staging

(I/II), confirming their tumor-suppressive role. Furthermore, Wang

et al. (85) revealed in multicohort analyses that GC patients with

CD8+ T cell-rich infiltrates exhibit significantly reduced

lymphovascular invasion and perineural infiltration rates,

underscoring their metastasis-inhibitory potential. The

immunosuppressive TME, however, counteracts these advantages:

dysregulated PD-L1 upregulation engages the PD-1/PD-L1

inhibitory pathway, driving CD8+ T cells toward functional

impairment and clonal depletion, a process strongly associated

with aggressive disease manifestations (81). Thus, although the

extent of CD8+ T cell infiltration provides essential prognostic

insights in GC, their cytotoxic potential is continuously shaped by

immunoediting processes within the tumor (Figure 1).
3.2 Regulatory T cells in gastric cancer
pathogenesis and progression

Regulatory T cells (Tregs) play dual roles in gastric cancer,

suppressing immunity via contact-dependent mechanisms and

inhibitory IL-10 and TGF-b, while impairing NK cell activity

(86–90). Treg subsets include CD4+CD25+, Tr1 (IL-10+), Th3

(TGF-b+), and CD4−CD8− populations, with FOXP3 as the

definitive marker for functional CD4+CD25+ Tregs (88).
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Clinically, FOXP3+ Treg infiltration correlates with advanced

tumor stage and reduces 5-year survival by 41.3% (91). Notably,

aberrant FOXP3 expression in GC cells promotes PBMC

differentiation into Tregs via the miR-155/miR-21 axis, while

inducing PBMC secretion of IL-35 and TGF-b to establish

immune escape circuits (92). Spatial transcriptomic evidence

demonstrates that FOXP3+ Tregs form immunosuppressive

synapses with CD20+ B cells in metastatic niches, driving

regulatory B cell (Breg) differentiation via LAG-3/MHC-II

interactions to synergistically enforce immune tolerance (92–94).

Recent studies have also identified a subset of CCR8+ tumor-specific

Tregs in advanced GC exhibits strong immunosuppression and TLS

proximity, impairing antitumor immunity by suppressing T-cell

activation (95). Thus, targeting CCR8 may restore immune

responses in treatment-resistant cases.
3.3 CD45RO+ memory T cells in gastric
cancer pathogenesis and progression

CD45RO+ T cells, the core subset of memory T cells, play

pivotal roles in antitumor immunity through their unique immune

memory retention and effector cell activation properties. They

express high levels of adhesion molecules like CD44, facilitating

rapid inflammatory homing and endothelial adhesion, sustaining

long-term memory and swift secondary immune responses.
FIGURE 1

The immune interactions between TLS and TILs in gastric cancer and their impact on immunotherapy response.
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Clinically, CD45RO+ T cells decline during GC progression: stage

III–IV patients show reduced peripheral frequencies versus healthy

controls and stage I–II patients, with metastatic tumors exhibiting

lower CD45RO+ density than non-invasive lesions. This depletion

impairs tumor-specific T cell activation, hindering metastatic cell

clearance (96). Mechanistically, CD45RO+ memory T cell decline

may stem from chronic tumor-associated antigen exposure-induced

clonal exhaustion, compounded by excessive TGF-b secretion in the
TME that disrupts memory-to-effector differentiation, ultimately

fostering a pro-metastatic immune landscape.
4 Impact of tumor-infiltrating
lymphocytes on gastric cancer
prognosis

4.1 Prognostic implications of CD4+ T cells
in gastric cancer

The dynamic equilibrium of CD4+ T cell subsets, particularly the

Th1/Th2 polarization bias, holds critical prognostic significance in GC

immunoregulation. Th1 cells orchestrate antitumor immunity through

IL-2 and IFN-g secretion, activating CTLs and enhancing NK cell

cytotoxicity, whereas Th2 cells drive humoral responses via IL-4, IL-6,

and IL-10 production, with reciprocal regulatory mechanisms

maintaining immune homeostasis (97). GC patients exhibit

characteristic Th1 suppression. Th2 activation, a disequilibrium that

impairs immune surveillance and accelerates disease progression (98).

Clinical evidence indicates that Th2-dominant polarization correlates

with elevated risks of tumor recurrence and metastasis, mechanistically

linked to Treg expansion and M2-polarized TAM infiltration.

Consequently, contemporary immunotherapeutic strategies focus on

redirecting naïve T cell differentiation toward Th1 polarization to

restore Th1/Th2 balance, while monitoring IL-2/IL-4 cytokine

profiles in tumor tissues provides molecular insights for personalized

treatment optimization and prognostic stratification.
Frontiers in Immunology 05
4.2 Impact of regulatory T cells on GC
prognosis

Regulatory T cells (Tregs), as pivotal immunosuppressive

components within the TME, exert profound clinical significance in

GC prognosis through dynamic functional modulation. Inflammatory

factors play important roles in disease’s progression (99–103). Tregs

impair antitumor immunity by secreting inhibitory cytokines and

inducing effector T cell dysfunction via direct contact-dependent

mechanisms such as CTLA-4/B7-1 interactions, while concurrently

promoting vascular endothelial apoptosis to facilitate immune escape

(104). Notably, advanced GC patients exhibit characteristic peripheral

Treg expansion coupled with B-cell lymphopenia, an immune

imbalance partially reversible through neoadjuvant chemotherapy

combined with surgical intervention, which restores B-cell-mediated

humoral immunity and improves survival outcomes. The prognostic

relevance of Tregs has galvanized efforts to develop novel therapeutic

strategies targeting the FOXP3 signaling axis, aiming to deplete Tregs

or disrupt their immunosuppressive functions to remodel the TME,

thereby advancing precision immunotherapy for metastatic GC (105).
4.3 Prognostic impact of CD45RO+

memory T cells in GC

CD45RO+ memory T cells, a critical subset of TILs, exhibit

stage-dependent prognostic associations with GC progression. In

early-stage GC, CD45RO+ cells confer physiological protection by

sustaining immune surveillance, with infiltration density positively

correlating with tumor cell clearance efficiency. Conversely, in

advanced-stage patients, high CD45RO+ infiltration significantly

correlates with improved disease-free survival (DFS) and OS,

underscoring its phase-specific prognostic utility (106–108).

CD45RO+ T cell infiltration is an independent predictor of

survival benefit in advanced solid tumors (106, 107). Notably,

while post-operative CD45RO+ infiltration serves as a biomarker

for prognostic stratification in advanced GC, its predictive power
TABLE 1 Tumor-infiltrating lymphocyte (TIL) subsets in gastric cancer: functional dichotomy and clinical impact.

TIL Subset
Pro-Tumor
Mechanisms

Anti-Tumor
Mechanisms

Prognostic Association Targeted Strategies

CD8+ T cells
PD-L1-induced exhaustion
via TIM-3/LAG-
3 upregulation

Granzyme B-mediated
cytotoxicity; IFN-g-dependent
MHC-I upregulation

High infiltration improves OS
(HR=0.54) in PD-L1-low tumors

PD-1 blockade + IL-15
superagonist
reverses exhaustion

Th17 cells
IL-17A-driven angiogenesis
(VEGF↑, CXCL8↑)

IL-21-mediated CTL recruitment
via CXCL10

Dual role: Early-stage IL-17A↑ predicts
poor OS; Late-stage correlates with
ICI response

Anti-IL-17A mAbs in early
GC; IL-17F agonists
in advanced

Tregs
FOXP3+CTLA-4+ subset
induces CD8+ anergy via
TGF-b/IL-35

Tumor-intrinsic FOXP3
suppresses proliferation

≥50 FOXP3+ cells/HPF reduces 5-year
OS by 41.3%

Depleting CCR4+ Tregs
using mogamulizumab

CD45RO+ Tm
Chronic antigen exposure
induces clonal attrition

Immune memory against tumor
stem cells via CD103+ TRM

Post-op CD45RO+ density ≥25%
predicts 68% 3-year DFS

Personalized vaccines to
expand tumor-specific Tm

Bregs
LAG-3+ Bregs secrete IL-10;
Promote TAM
M2 polarization

TLS-associated B cells enhance
PD-1 inhibitor efficacy

Breg/Tfh ratio >2.5 correlates with
peritoneal metastasis

CD40 agonists + BTK
inhibitors to reprogram B
cell fate
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lacks statistical significance in early-stage disease, likely attributable

to incomplete activation of immunoediting mechanisms during

initial tumor evolution (109). Clinical observations reveal

markedly reduced peripheral CD45RO+ T cell proportions in

recurrent/metastatic patients, though surgical resection combined

with adjuvant therapy can partially reverse this immune exhaustion

phenotype by restoring effector T cell cytotoxicity. Despite the

therapeutic potential of targeting CD45RO+ cell dynamics, the

development of specific regulatory strategies and pharmacological

interventions necessitates further elucidation through multi-omics.
4.4 Prognostic impact of CD8+ T cells in
GC

Immune cells, as core effector components of the TME (110–114),

exhibit complex spatial distribution patterns that critically influence

cancer outcomes (115–117). High-density CD8+ T cell infiltration

reduces recurrence risk and improves OS through granzyme-

perforin-mediated cytotoxicity and Fas/FasL death receptor signaling,

enabling tumor cell-specific elimination (118). demonstrated via

multivariate Cox regression analysis of a 509-patient GC cohort that

CD8+ T cell density serves as an independent prognostic factor for OS,

showing a strong positive correlation with survival benefit.

Paradoxically, Thompson et al. (119) revealed that increased CD8+ T

cell infiltration may activate the PD-L1/PD-1 immune checkpoint axis,

inducing T cell exhaustion and shortening OS. Notably, recent meta-

analyses consolidate evidence supporting the unequivocal protective

role of CD8+ T cells in GC prognosis, though their effect magnitude is

modulated by tumor molecular subtypes and therapeutic regimens

(120). Thus, combining immune modulation strategies to enhance

CD8+ T cell infiltration with PD-1/PD-L1 blockade to counteract

functional suppression represents a promising therapeutic paradigm

for optimizing multimodal GC treatment efficacy (Table 1).
5 Conclusion

The interplay between TLS, TIL subsets, and immunosuppressive

networks defines GC progression and therapeutic outcomes. TLS

enhance antitumor immunity via lymphoid neogenesis and

neoantigen presentation, yet their efficacy is counterbalanced by

Treg/TAM-mediated suppression and checkpoint dysregulation.

CD8+ T cells and Th17 subsets exhibit dual roles, influenced by

molecular subtypes and TME spatial architecture. Memory T cell

attrition and Th1/Th2 imbalance further impair immune

surveillance, highlighting the need for stage-specific therapeutic

approaches. Single-cell profiling of TIL exhaustion states and

spatial-temporal TLS maturation analysis can refine prognostic and

therapeutic strategies (121–123). Key TLS biomarkers such as

CXCL13/CCL21 levels and Tfh/B cell clonality may improve

patient stratification for combination immunotherapies. Future
Frontiers in Immunology 06
research should focus on TLS induction, T cell rejuvenation, and

biomarker-driven combinations. Cross-omics validation and

standardized TLS quantification are essential for clinical translation.

Targeted delivery systems could enhance TLS-localized

immunomodulation, minimizing systemic toxicity. These advances

promise to bridge TLS biology with precision oncology, optimizing

GC immunotherapy.
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63. Gallotta M, Assi H, Degagné É, Kannan SK, Coffman RL, Guiducci C. Inhaled
TLR9 agonist renders lung tumors permissive to PD-1 blockade by promoting optimal
CD4(+) and CD8(+) T-cell interplay. Cancer Res. (2018) 78:4943–56. doi: 10.1158/
0008-5472.CAN-18-0729

64. Torrejon DY, Abril-Rodriguez G, Champhekar AS, Tsoi J, Campbell KM,
Kalbasi A, et al. Overcoming genetically based resistance mechanisms to PD-1
blockade. Cancer Discov. (2020) 10:1140–57. doi: 10.1158/2159-8290.CD-19-1409
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