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Osteoarthritis (OA) is a chronic joint disease characterized by cartilage

degradation, inflammation, and bone structural changes, leading to significant

disability. Current therapeutic strategies, including traditional treatments and

stem cell-based therapies, face limitations such as inability to prevent disease

progression, immunogenic rejection, and tumorigenic risks. Extracellular vesicle

(EVs), nanoscale membrane-bound vesicles secreted by cells, has emerged as a

promising cell-free therapeutic approach due to their low immunogenicity,

stability, and ability to mediate intercellular communication. This review

summarizes the roles of EVs derived from various cell types, including cartilage

progenitor cells (CPCs), bone marrowmesenchymal stem cells (BMSCs), synovial

mesenchymal stem cells (SMSCs), adipose-derived stem cells (ADSCs), and

immune cells, in OA pathogenesis and treatment. EVs exhibit multifaceted

therapeutic potential , including immunomodulation, chondrocyte

regeneration, and anti-inflammatory effects. Additionally, EVs serve as

diagnostic biomarkers, offering non-invasive early detection of OA. Despite

their promise, challenges such as scalability, targeting efficiency, and safety

concerns remain. This review highlights the potential of EVs as both

therapeutic agents and diagnostic tools, paving the way for innovative OA

management strategies.
KEYWORDS
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1 Introduction

Osteoarthritis (OA), as a prevalent chronic whole-joint disease, is characterized by low-

grade systemic inflammation, degeneration of joint-associated tissues (such as articular

cartilage), and ultimately, bone structural alterations leading to disability (1, 2). The

degradation of articular cartilage is recognized as a hallmark of OA. Clinical factors such as

trauma, obesity, and congenital abnormalities contribute to pathological conditions that
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impair the load-bearing capacity of cartilage and lead to chronic

diseases such as OA (3, 4). With the aging population and rising

obesity rates, the incidence of OA is increasing, imposing a

substantial burden on individuals and socioeconomic systems.

However, current therapeutic strategies for OA remain limited,

encompassing both conventional treatments and stem cell-based

therapies (5, 6). Traditional OA management includes non-surgical

interventions, such as surgical procedures, and nonsteroidal anti-

inflammatory drugs, including advanced-stage joint replacement

(7–9). Unfortunately, these methods fail to address early disease

initiation, halt cartilage degradation, or promote tissue regeneration

(10). Novel treatment approaches, particularly those involving stem

cell applications, encounter substantial obstacles such as immune

rejection risks and potential tumor formation (11). Consequently,

comprehensive insights into the causative elements and biological

processes driving OA pathogenesis are crucial for formulating

enhanced prevention and treatment approaches.

Extracellular vesicle (EVs) are nanoscale membrane-bound

vesicles actively secreted by cells (12), capable of delivering

genetic information from donor cells and mediating intercellular

communication (13). EVs are produced through various biological

processes, with their formation primarily stemming from the

plasma membrane, which contributes to their minimal

immunogenic properties (14, 15). These vesicles not only inherit

most of the functional attributes of their parental cells but also

circumvent several associated challenges, such as immune-

compatibility, stability, heterogeneity, and the maintenance of

stemness (16). Given the substantial limitations and risks

associated with both conventional and stem cell-based therapies,

EVs have garnered increasing attention as a cell-free therapeutic

strategy for OA (1). Accumulating evidence suggests that EVs play a

crucial and multifaceted role in OA pathogenesis, diagnosis, and

treatment. This review provides a comprehensive overview of the

role of EVs from various sources in OA and their potential

applications in OA therapy.
2 The roles of different EVs in OA

EVs derived from various cell types exert distinct roles in the

treatment of OA. In normal physiological processes, OA repair and

tissue regeneration encompass multiple mechanisms, including

immune regulation, pain management, reduction of chondrocyte

aging and metabolic imbalance, as well as stimulation of cartilage cell

renewal (17, 18). In addition to their direct effects on chondrocytes,

EVs interact extensively with synovial fibroblasts, the synovium, and

subchondral bone. By modulating synovial fibroblast activity, EVs

can reduce production of pro-inflammatory cytokines and inhibit the

recruitment of immune cells (19). EVs also influence subchondral

bone remodeling by regulating osteoclastogenesis and osteoblast

activities via pathways such as RANKL-RANK-OPG (20).

Furthermore, EV cargo containing proteolytic enzymes or their

inhibitors can reshape the local extracellular matrix (ECM)

environment, balancing matrix synthesis and degradation (21).
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Through this multidimensional interplay, EVs help restore joint

homeostasis, thereby exerting regenerative and anti-inflammatory

actions across multiple tissue interfaces in OA. EVs derived from

various cellular origins demonstrate distinct biological characteristics.

The following analysis focuses on the functional contributions of EVs

produced by different cell types in OA.
2.1 Synovial mesenchymal stem cells
derived EVs

Synovial mesenchymal stem cells have been demonstrated to

attenuate OA progression. With superior proliferation and

chondrogenic potential, SMSCs facilitate cartilage repair by

accelerating chondrocyte proliferation (22). SMSCs promote

cartilage repair by accelerating chondrocyte proliferation and

differentiation, and their chondrogenic potential is attributed to

several key factors (23). Furthermore, SMSCs exhibit tissue

specificity for cartilage regeneration, underscoring their potential

applications in cartilage repair (24). SMSCs express high levels of

chondrogenic markers, including Sox9, collagen type II (COL2A1),

and aggrecan, which are essential for cartilage formation (25).

Mechanistically, SMSCs exhibit enhanced chondrogenic

differentiation through the activation of the Wnt signaling

pathway, which mediate the activation of the Yes-associated

protein (YAP) pathway in chondrocytes (26–29). These signaling

cascades stimulate chondrocyte proliferation and matrix synthesis,

promoting cartilage regeneration.

A study revealed that extracellular vesicles secreted by

lipopolysaccharide (LPS)-preconditioned SMSCs (LPS-pre-EVs)

promote chondrocyte proliferation and migration while inhibiting

apoptosis. This effect is primarily mediated by suppressing IL-1b-
induced aggrecan and COL2A1 degradation and reducing

ADAMTS5 expression (30). In a murine OA model, LPS-

preconditioned EVs delayed early OA progression and prevented

OA-induced knee cartilage damage in vivo. Given the reduced

expression of miR-129-5p and the upregulation of HMGB1 in

OA patients and IL-1b-induced chondrocytes, which stimulate

inflammatory and apoptotic responses (31, 32). Exosomes are a

subtype of EVs with a diameter typically ranging from 30 to 150 nm

(33). Another study has demonstrated that SMSC-derived

exosomes (SMSC-Exo) with high miR-129-5p expression

significantly alleviated chondrocyte inflammation and apoptosis,

whereas low miR-129-5p expression exacerbated IL-1b-mediated

chondrocyte inflammation and apoptosis. This mechanism is

primarily mediated through the suppression of HMGB1 release

by miR-129-5p in SMSC-Exo, thereby inhibiting IL-1b-induced OA
pathogenesis (34). Furthermore, SMSC-derived extracellular

vesicles were found to contain abundant Wnt5a and Wnt5b,

which activate YAP through non-canonical Wnt signaling

pathways (35). Collectively, these findings establish SMSC-EVs as

a promising acellular therapeutic strategy for OA, capable of

simultaneously promoting chondrocyte differentiation, migration,

and proliferation while inhibiting apoptotic processes.
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2.2 EVs derived from bone marrow
mesenchymal stem cells

BMSCs are a population of multipotent stem cells with

adipogenic, osteogenic, and chondrogenic potential (36). They

exhibit regenerative capacity and immunomodulatory functions

and have been utilized in treating inflammatory and degenerative

diseases such as OA, rheumatoid arthritis, and bone defects (36, 37).

BMSC-EVs exert their anti-inflammatory and regenerative effects

by modulating pathways such as NF-kB, which governs the release

of pro-inflammatory cytokines (38). Besides, BMSC-EVs

significantly mitigate IL-1b-induced suppression of chondrocyte

proliferation and motility in vitro (39). Furthermore, EV-based

treatment effectively counteracts the IL-1b-mediated upregulation

of MMP13 and a disintegrin and metalloproteinase with

thrombospondin motifs (ADAMTS), while preventing the

downregulation of collagen type II and aggrecan (35). Among

EVs explored for OA therapy, BMSC-derived EVs (BMSC-EVs)

are the most extensively studied. A recent study demonstrated that

BMSC-EVs induce cartilage reconstruction in OA via the autotaxin-

YAP signaling axis. Specifically, sEVs-autotaxin promotes cartilage

repair and upregulates key Hippo pathway regulators (40). BMSC-

EVs also facilitate cartilage defect repair by promoting cell

proliferation and infiltration and modulating cellular functions

through various miRNAs (41, 42). When co-cultured with OA

chondrocytes , BMSC-EVs exhibit high express ion of

cyclooxygenase-2 (COX-2) and pro-inflammatory interleukins

while inhibiting tumor necrosis factor-a (TNF-a)-induced
collagen degradation and promoting ACAN and collagen II

synthesis (43). Collectively, BMSC-EVs display substantial

regenerative and immunoregulatory properties in OA cartilage,

making them an ideal candidate for OA treatment.
2.3 EVs derived from cartilage progenitor
cells

CPCs possess high self-renewal capacity and chondrogenic

potential (44). Cellular populations with mesenchymal stem cell

(MSC)-like properties, particularly CPCs and cartilage-derived

stem cells, play pivotal roles in both cartilage formation and its

regulatory processes due to their oligopotent differentiation capacity

(45). Serving as cartilage progenitor cells, CPCs play a pivotal role in

maintaining cartilage homeostasis. Moreover, CPCs may

significantly impact OA progression by mitigating chondrocyte

proliferation and cartilage formation (46). Changes in their spatial

organization during OA development indicate their potential role in

mediating cellular interactions among articular cartilage,

subchondral bone, and adjacent joint components (44). An in

vitro study demonstrated that CPCs effectively reduce

inflammatory cytokines (IL-6, MCP-1, and IL-1b) and matrix

metalloproteinases (MMPs) while significantly upregulating

collagen II expression in IL-1b-induced human chondrocytes

(47). Additionally, CPCs exhibit lower expression of the

transcription factor RUNX2, which is essential for chondrocyte
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terminal differentiation and calcified bone formation (48).

Consequently, CPCs resist hypertrophy and continuously produce

hyaline-like cartilage.

A recent study applied CPC-derived EVs (CPC-EVs) in OA for

the first time, comparing their therapeutic effects with MRL-EVs

and normal murine EVs. This study also investigated the impact of

CPC-EVs and MRL-EVs on chondrocyte proliferation and

migration in vitro and in vivo (49). Unlike BMSC-EVs, which

primarily act through the autotaxin-YAP signaling axis and

Hippo pathway to induce cartilage reconstruction (40), CPC-EVs

exhibit a more direct ECM-modulatory role, enhancing type II

collagen synthesis in inner meniscal fibrochondrocytes and

promoting cellular regeneration without significant involvement

of hypertrophic pathways (50, 51). Recent studies have

demonstrated that EVs derived from CPC-EVs exhibit a

preferential localization to cartilage tissue following intra-articular

injection (52). These EVs have been shown to promote matrix

anabolism and inhibit inflammatory responses, at least partially by

blocking STAT3 activation, thereby enhancing cartilage repair

mechanisms. Intra-articular secreted EVs from CPCs may impede

OA progression, paving the way for novel therapeutic strategies.
2.4 EVs derived from adipose
mesenchymal stem cells

ADSCs possess regenerative capabilities akin to BMSCs. However,

ADSCs have gained increasing attention due to the ease of adipose

tissue harvesting and the relatively simple cell isolation process,

yielding approximately 500 times more stem cells than bone

marrow (53). Several studies have investigated the therapeutic

potential of ADSCs in OA (54, 55). Early studies demonstrated that

intra-articular injection of ADSCs confers anti-inflammatory,

antioxidative, and chondroprotective effects (56, 57). Recent findings

indicate that ADSC-derived EVs (ADSC-EVs) primarily function by

preserving chondrocytes and suppressing inflammation. ADSC-EVs

promote human OA chondrocyte proliferation and migration while

modulating catabolic and anabolic factors and effectively preventing

macrophage infiltration into synovial tissue (58). Inflammatory factors

are pivotal in inflammatory diseases progression (59, 60). ADSC-

derived EVs regulate gene expression and protein secretion in

chondrocytes and synoviocytes, effectively counteracting IL-1b-
induced inflammatory responses and mitigating NF-kB pathway-

mediated inflammatory and catabolic environments, offering a

promising strategy for OA treatment (61). Additionally, miRNAs

present in ADSC-EVs have been implicated in OA pathogenesis (62).

Hence, ADSC-EVs should be considered a potential therapeutic

approach for OA.
2.5 EVs derived from other cell types

Comprehensive investigations into EVs from diverse cellular

origins are essential for developing robust therapeutic strategies and

advancing our understanding of OA pathogenesis. Immune cells,
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such as neutrophils and macrophages, influence the inflammatory

milieu and chondrocyte senescence and metabolism in OA.

Compared to stem cell-derived EVs, immune cell-derived EVs

typically exhibit simpler functionality, potentially minimizing

adverse effects (63). Neutrophil-derived EVs have been shown to

be internalized by fibroblast-like synoviocytes in OA patients,

thereby downregulating TNF-a-induced inflammatory cytokines

such as IL-5, IL-6, IL-8, and MCP-1, exerting an anti-inflammatory

effect (64). However, not all immune cell-derived EVs exhibit

protective roles (65). Recent studies have revealed that EVs

secreted by pro-inflammatory macrophages in the osteoarthritic

synovium can carry potent inflammatory cargo, such as IL-1b,
contributing to local joint inflammation and cartilage degradation

(66). These IL-1b+ macrophage-derived EVs can enhance the

activation of fibroblast-like synoviocytes and upregulate MMPs

and other catabolic mediators, thereby exacerbating synovial

inflammation and OA progression (67, 68). This highlights the

dual, context-dependent nature of immune-derived EVs, which can

either attenuate or aggravate OA pathology depending on their

cellular origin and microenvironmental stimuli. Moreover, antler

stem cell-derived exosomes (ASC-Exos) restore heterochromatin

stability and rejuvenate senescent MSCs, offering a novel OA

treatment strategy (69). While EVs from various sources present

diverse therapeutic potentials for OA, rigorous preclinical studies,

including long-term efficacy assessments and safety evaluations, are

imperative before clinical translation (Figure 1).
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3 Application of EVs in osteoarthritis
treatment

3.1 Potential of EVs as therapeutic carriers

Natural EVs are widely investigated for osteoarthritis therapy

due to their accessibility and effectiveness in promoting cartilage

regeneration and joint repair, yet challenges such as poor targeting,

scalability, and safety hinder clinical translation, driving research

into engineered EVs as optimized drug delivery systems (70, 71).

Currently, engineering strategies are being developed to improve

EV-mediated drug delivery, targeting precision, and therapeutic

efficacy (72). Methods for loading exogenous molecules into EVs

can be broadly categorized into two approaches (73, 74). The first

approach involves modifying donor cells using biochemical factors

or mechanical factors. The second strategy entails direct EV

modifications, including exogenous cargo loading and

membrane engineering.

Moreover, numerous studies have demonstrated that MSC-

derived exosomes contain bioactive molecules, such as miR-8485,

miR-95a-5p, miR-320c, miR-150-5p, and miR-26a-5p, which

regulate pathways such as Wnt/b-catenin and RANKL-RANK-

TRAF6 by targeting proteins including MMPs, histone

deacetylase 2 (HDAC2), and COX-2. These regulatory effects help

mitigate inflammation, maintain ECM stability, reduce OA

chondrocyte apoptosis, and promote chondrocyte proliferation
FIGURE 1

Mechanisms of extracellular vesicles in osteoarthritis.
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and migration, thereby alleviating joint damage (75–81).

Furthermore, immune responses within joint cartilage play a

crucial role in OA progression. Evidence suggests that MSC-

derived exosomes exert immunomodulatory effects by suppressing

T lymphocytes while activating B lymphocytes, highlighting their

potential in immune regulation and making this a promising

avenue for future research (82). Notwithstanding their generally

low immunogenicity, EVs may still pose immunological risks under

certain conditions. If EVs carry unexpected alloantigens pathogen-

derived components, or pro-inflammatory molecules (83, 84), they

could inadvertently trigger immune activation, particularly in

individuals with underlying autoimmune disorders or

compromised immune tolerance. Hence, stringent purification,

characterization, and screening protocols are vital to minimizing

adverse immunologic reactions in EV-based therapies.
3.2 Application of EVs as diagnostic
biomarkers

Currently, OA diagnosis relies on clinical symptoms and

physical examinations, with imaging techniques such as

radiography used as supplementary tools when necessary (85).

However, early-stage OA is often asymptomatic, and treatment

becomes increasingly challenging as the disease progresses.

Therefore, there is an urgent need for biomarkers to facilitate

early diagnosis (86). Blood sampling provides a minimally

invasive approach, and given that EVs remain stable in body

fluids, they hold promise as screening tools for early-stage OA.

EV-based diagnostics could enable non-invasive assessment of joint

burden and potential risk factors before imaging-confirmed OA

manifestations. Additionally, early biomarker-based diagnosis

could offer insights into cellular and molecular alterations,

facilitating timely and targeted interventions. EVs are promising

novel biomarkers due to their ability to encapsulate donor cell-

derived molecular signatures while maintaining strong stability

within the circulatory system (86). Compared with existing OA

biomarkers such as cartilage oligomeric matrix protein (COMP)

(87), C-reactive protein (CRP) (88), and certain pro-inflammatory

cytokines (89), EV-derived markers may offer higher sensitivity and

specificity by virtue of their cell-type-specific cargo (90). Their

encapsulated structure not only prolongs half-life in the circulation

but also preserves the integrity of proteins and nucleic acids that can

be degraded in free form. Additionally, EV-based biomarkers may

allow for earlier detection of OA by capturing dynamic changes in

gene expression and protein composition within the joint

environment, thus providing a more refined molecular fingerprint

of disease progression (91). Studies have demonstrated that plasma-

derived exosomal miR-193b-3p expression is significantly reduced

in OA patients compared to healthy individuals, mirroring findings

from degenerative cartilage samples (92). Furthermore, previous

research has indicated an inverse correlation between serum miR-

142-5p expression and inflammatory responses, suggesting that

plasma exosomal miR-142-5p represents a potential biomarker

for OA (93). However, given that these miRNAs also exhibit
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differential expression patterns in rheumatoid arthritis (94), the

development of a multi-miRNA panel would significantly improve

the accuracy of clinical differential diagnosis between these two

arthritic conditions.

The advancement of EV-derived biomarker systems,

incorporating diverse molecular components such as genetic

material, protein complexes, lipid structures, and carbohydrate

molecules, has demonstrated significant potential across multiple

medical domains, especially in cancer research, metabolic syndrome

investigations, and neurological disorder studies (95–97). A notable

example is the ExoDx™ Lung test, which was the first EV-based

biomarker to undergo clinical trials in 2016 for detecting EML4-

ALK mutations in lung cancer diagnosis (98). This milestone

underscored the superior diagnostic potential of EVs. In the

context of OA, synovial EVs have been identified as markers for

differentiating disease stages, further expanding their diagnostic

value (99). Initial studies on EVs as OA biomarkers emerged from

mechanistic investigations, revealing differential miRNA and other

nucleic acid expressions between healthy individuals and OA

patients (100). Subsequently, EVs were found to facilitate OA

subtype differentiation, introducing a novel paradigm for clinical

diagnosis (101). Furthermore, the isolation of exosomes derived

from biological fluids such as blood and urine, followed by the

characterization of their cargo, has emerged as a promising

approach for identifying biochemical biomarkers to predict

cartilage degeneration and assess the progression of joint-related

diseases. Recent studies have extracted synovial fluid-derived

exosomes from patients with OA and performed RNA sequencing

analysis on their miRNA content, revealing a significant

upregulation of miR-210-5p (102). Further investigations have

demonstrated that miR-210 is markedly upregulated in synovial

fluid samples from both early- and late-stage OA patients and is

positively correlated with VEGF levels. These findings suggest that

the upregulation of miR-210 in synovial fluid may occur at the early

stages of OA, highlighting its potential as a non-invasive and early

diagnostic biomarker for identifying individuals at risk of

developing OA and enabling rapid disease detection (103). EVs

have already been employed in clinical research for disease

diagnosis, progression monitoring, and prognostic evaluation.

These findings underscore the robust potential of EVs as

biomarkers, and it is anticipated that EV-based OA biomarker

applications will be realized in clinical practice in the near

future (Table 1).
4 Conclusion

OA remains a significant global health challenge, with current

therapeutic strategies offering limited efficacy in halting disease

progression or promoting cartilage regeneration. EVs have emerged

as a promising alternative, offering a cell-free approach to OA

treatment with advantages such as low immunogenicity, stability,

and the ability to mediate intercellular communication. EVs derived

from various cell types, including CPCs, BMSCs, SMSCs, ADSCs,

and immune cells, demonstrate diverse therapeutic potentials,
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including immunomodulation, chondrocyte regeneration, and anti-

inflammatory effects.

Furthermore, EVs hold significant promise as diagnostic

biomarkers, enabling early detection and monitoring of OA

progression through non-invasive methods. However, challenges

such as scalability, targeted delivery, and safety concerns must be

addressed before clinical translation. Future research should focus

on optimizing EV-based therapies, improving their targeting

efficiency, and conducting rigorous preclinical and clinical trials

to ensure their efficacy and safety. Overall, EVs represent a

transformative approach to OA management, offering hope for

more effective prevention, diagnosis, and treatment of OA.
Author contributions

CS: Writing – original draft. FT: Writing – original draft. YX:

Writing – review & editing, Writing – original draft.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This work was supported

by The National Natural Science Foundation of China (82060405

and 82360436); Lanzhou Science and Technology Plan Program
Frontiers in Immunology 06
(2021-RC-102); Natural Science Foundation of Gansu Province

(22JR5RA943, 22JR5RA956 and 23JRRA1500); Cuiying Scientific

and Technological Innovation Program of Lanzhou University

Second Hospital (CY2021-MS-A07, CY2022-MS-A19).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
TABLE 1 Potential and challenges of EVs in osteoarthritis treatment and diagnosis.

EV Source Target Mechanism Benefits Limitations

MSC-Derived EVs miR-8485, miR-92a-3p,
miR-320c, miR-140-5p,
miR-26a-5p

Regulate Wnt/b-catenin,
RANKL-RANK-TRAF6
pathways, and target MMPs,
HDAC2, COX-2

Alleviate inflammation; Maintain ECM
stability; Promote chondrocyte
proliferation and migration; Mitigate
joint damage

Limited targeting specificity;
Difficulties in large-scale
production and purification;
Potential safety risks due
to heterogeneity

Engineered EVs Loaded with exogenous
drugs/genes through
biochemical or/mechanical
factors/direct EV
modification (e.g.,
electroporation,
membrane engineering)

Surface modification to
enhance tissue/cell targeting;
Increased loading efficiency
of exogenous molecules

Improved specificity for OA treatment
and reduced immunogenicity;
Enhanced drug accumulation and
tissue repair at the target site

1Need for optimized loading
efficiency and drug stability;
Long-term safety and
immunological profiles
remain to be fully assessed

Plasma-Derived EVs miR-193b-3p Expression inversely
correlated with
inflammatory responses

Potential early screening marker for
OA; Reflects molecular changes related
to cartilage degeneration

Larger clinical studies needed
to confirm specificity and
sensitivity;
Lack of standardized
detection methods

Synovial Fluid-Derived EVs miR-210-5p Positively correlated with
vascular endothelial growth
factor (VEGF) levels

Early diagnosis and staging of OA;
Evaluation of synovial environment
and microvascular formation

Synovial fluid collection is
more invasive;
Larger-scale cohort studies
required for
further validation;

Naturally Derived
EVs (General)

Endogenous proteins,
peptides, miRNAs, etc.

Reduced immune recognition
through adhesion proteins
and ligands on EV surface
Extended circulation time

Enhanced biocompatibility and
stability;
Broad potential in pathological and
diagnostic applications

No universal standard for
large-scale production and
purification;
Heterogeneity may lead to
variable efficacy
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