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Explainable machine learning
reveals ribosome biogenesis
biomarkers in preeclampsia
risk prediction
Jingjing Chen1, Dan Zhang1, Chengxiu Zhu1, Lin Lin1, Kejun Ye1,
Ying Hua2* and Mengjia Peng1*

1Department of Gynecology and Obstetrics, The Third Affiliated Hospital of Wenzhou Medical
University, Rui’an, China, 2Department of Gynecology and Obstetrics, The Second Affiliated Hospital
of Wenzhou Medical University, Wenzhou, China
Background: Preeclampsia, a hypertensive disorder during pregnancy affecting

2-8% of pregnancies globally, remains a leading cause of maternal and fetal

morbidity. Current diagnostic reliance on late-onset clinical features and

suboptimal biomarkers underscores the need for early molecular predictors.

Ribosome biogenesis, critical for cellular homeostasis, is hypothesized to drive

placental dysfunction in PE, though its role remains underexplored.

Methods: We integrated placental transcriptomic data from two datasets

(GSE75010, GSE10588) to systematically investigate ribosome biogenesis

dysregulation in preeclampsia. Functional enrichment analyses delineated the

dysregulation of pathways, while weighted gene co-expression network analysis

identified hub genes within ribosome biogenesis-associated modules. A multi-

algorithm machine learning framework was employed to optimize predictive

performance, with model interpretability achieved through SHapley Additive

exPlanations and diagnostic accuracy validated by receiver operating

characteristic curves. Immune microenvironment profiling and regulatory

network analyses elucidated mechanistic links. Finally, qRT-PCR confirmed the

differential expression of key genes in clinical samples.

Results: We identified 25 ribosome biogenesis-related differentially expressed

genes, which were significantly enriched in RNA degradation and rRNA

processing. Weighted gene co-expression network analysis prioritized seven

hub genes. A random forest model incorporating six key feature genes (GLUL,

DDX28, NCL, RIOK1, SUV39H1, RRS1) demonstrated robust diagnostic

performance, achieving an AUC of 0.972 in the training dataset and 0.917 in

the validation dataset. SHapley Additive exPlanations interpretability analysis

revealed SUV39H1 as the dominant risk contributor, while GLUL exhibited a

protective effect. Regulatory network reconstruction identified 32 transcription

factors, 24 RNA-binding proteins, and 62 miRNAs as putative upstream

regulators of key genes. Immune Microenvironment Profiling linked key genes

to altered placental immune cell populations. qRT-PCR confirmed thatGLUL and

NCL expression decreased andDDX28 and RIOK1 expression increased in clinical

placental samples of preeclampsia group.
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1595222/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1595222/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1595222/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1595222/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1595222&domain=pdf&date_stamp=2025-06-09
mailto:Pengpemeji@wmu.edu.cn
mailto:wzfeyhy1015@126.com
https://doi.org/10.3389/fimmu.2025.1595222
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1595222
https://www.frontiersin.org/journals/immunology


Chen et al. 10.3389/fimmu.2025.1595222

Frontiers in Immunology
Conclusion: This study identifies ribosome biogenesis as one of the pivotal

molecular mechanisms to PE pathogenesis, leveraging SHAP-interpretable

machine learning to pinpoint six biomarkers. Future research is requisite for

the validation of CRISPR and the integration of multi-omics to translate the

findings into clinical diagnosis and targeted therapy.
KEYWORDS

preeclampsia, ribosome biogenesis dysregulation, multi-algorithm machine learning,
risk model, biomarker validation
1 Introduction

Preeclampsia (PE), a multisystem hypertensive disorder of

pregnancy affecting approximately 2-8% of global pregnancies,

remains a leading cause of maternal and perinatal morbidity and

mortality, accounting for over 70,000 maternal deaths annually with

disproportionate impacts in low-resource settings due to limited

prenatal care access (1, 2). PE arises from multifactorial interactions

between maternal, fetal, and placental components. Central to its

pathophysiology is impaired trophoblast function, specifically

defective invasion leading to inadequate uterine spiral artery

remodeling, which results in shallow placental implantation (3,

4). These placental aberrations induce malperfusion-induced

ischemia, endothelial dysfunction, and systemic inflammatory

activation, clinically manifesting as gestational hypertension with

multiorgan complications. Without timely intervention, progressive

disease may culminate in critical maternal complications such as

eclampsia and hemolysis, elevated liver enzymes, and low platelet

count (HELLP) syndrome (3, 4). Current diagnostic approaches

predominantly depend on late-onset clinical features (e.g.,

proteinuria, hypertension) and suboptimal biomarkers such as

soluble fms-like tyrosine kinase-1 to placental growth factor (sFlt-

1/PlGF) ratio, which significantly constrains timely clinical

intervention. This limitation underscores the critical need for

predictive models based on early-stage biomarkers (5, 6).

Ribosome biogenesis is a dynamic, multi-step process involving

RNA polymerase I (Pol I)-driven transcription of 47S pre-rRNA,

ribosomal protein (RP) assembly, and nucleolar maturation. This

fundamental process serves as a pivotal regulator of cellular

proteostasis and plays a crucial role in mediating adaptive

responses to metabolic and oxidative stress (7). During placental

development, ribosome biogenesis is tightly regulated by nutrient-

sensing pathways, including MYC-mediated transcriptional

activation and mTOR-dependent ribosomal protein synthesis,

which collectively coordinate trophoblast proliferation,

differentiation, and invasive capacity (7, 44). Dysregulation of

ribosome biogenesis disrupts nucleolar architecture, triggering

nucleolar stress characterized by impaired rRNA processing,

defective ribosomal RNA (rRNA) surveillance, and p53-
02
dependent cell cycle arrest. These molecular perturbations directly

contribute to PE’s characteristic pathological features of inadequate

placental implantation and vascular dysfunction (8, 44). Moreover,

defects in mitochondrial ribosome biogenesis further exacerbate

oxidative injury by impairing electron transport chain (ETC)

complex assembly, leading to reactive oxygen species (ROS)

overproduction and trophoblast apoptosis, as evidenced by

downregulated mitochondrial RP expression in PE placentas (8,

45). Concurrently, ribosomopathies reduce translational precision,

causing dysregulation of key epithelial-mesenchymal transition

(EMT) mediators such as E-cadherin and Snail, thereby

suppressing trophoblast migration and spiral artery remodeling

(9). These pathological cascades are amplified by epigenetic

dysregulation, which represses Pol I activity and exacerbates

nucleolar stress (46). The resultant proteostatic imbalance

activates compensatory mechanisms such as ribophagy and

unfolded protein response (UPR), further depleting functional

ribosomes and creating a feedforward loop of placental ischemia

and sterile inflammation (47, 48). While these pathophysiological

parallels underscore ribosome biogenesis as a critical node in PE

pathogenesis, the key feature genes which could predict the PE risk

and associated mechanisms remain underexplored, necessitating

systematic investigations to translate these insights into biomarkers

and treatment targets.

In this study, we hypothesized that dysregulated ribosome

biogenesis represents a key molecular driver of PE progression

and may serve as a predictive biomarker for PE risk. To address this,

we explored the ribosome biogenesis-related differentially expressed

genes (RiboRDEGs) in PE and developed a ribosome biogenesis-

centric framework for PE risk prediction. Our multi-cohort

transcriptomic analysis identified 25 RiboDEGs significantly

associated with PE pathogenesis. Functional characterization of

these genes revealed their critical roles in PE development. Using

weighted gene co-expression network analysis (WGCNA) coupled

with ensemble machine learning approaches, we identified six core

predictive biomarkers (GLUL,DDX28,NCL, RIOK1, SUV39H1, and

RRS1) with high diagnostic potential. SHapley Additive

exPlanations (SHAP) analysis elucidated the synergistic

contributions of these feature genes to PE risk, while integrated
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regulatory network analysis uncovered their coordinated

transcriptional and post-transcriptional control mechanisms.

Importantly, immune microenvironment profiling demonstrated

significant associations between key RiboDEGs and altered

placental immune cell compositions. These findings provide novel

insights into the role of ribosome biogenesis dysregulation in PE

pathogenesis. Furthermore, we present a clinically applicable

prediction model that bridges molecular mechanisms with early

risk assessment, representing a significant advancement toward

personalized obstetric care.
2 Materials and methods

2.1 Data acquisition and preprocessing

Gene expression profiles of PE were retrieved from the National

Center for Biotechnology Information (NCBI) Gene Expression

Omnibus (GEO) database (7). Three placental tissue-derived Homo

sapiens datasets were analyzed: GSE75010 (GPL6244 platform; 80

PE cases and 77 controls) (8–13), GSE10588 (GPL2986 platform; 17

PE cases and 26 controls) (14), and GSE54618 (GPL10558 platform;

12 PE cases and 12 controls) (15) (Table 1). Probe annotation was

performed for GSE75010 and GSE10588 using platform-specific

annotation files, followed by dataset merging and batch effect

correction via the sva R package (v3.52.0) (16). The combined

dataset (97 PE cases and 103 controls) underwent normalization

using the R package limma (v3.60.4) (17), with principal

component analysis (PCA) (18) confirming effective batch effect

removal. The GSE54618 dataset served as an independent

validation cohort, processed identically with probe annotation

and normalization.
2.2 Acquisition of ribosome biogenesis-
related genes

RiboRGs were systematically acquired through a dual-source

approach. Firstly, the GeneCards database (19) was queried using

the keyword “ribosome biogenesis,” retaining protein-coding genes

with a relevance score >5, which yielded 59 candidate genes.

Secondly, 331 RiboRGs were retrieved from the published

literature using the same keyword on the PubMed website (20).

After merging these two gene lists and removing duplicates, a final

set of 344 nonrepetitive RiboRGs was generated for subsequent

analysis (Supplementary Table S1).
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2.3 Identification of RiboRDEGs in PE

Differentially expressed genes (DEGs) between PE and control

groups were identified using the R package limma with thresholds

of |log2 fold change (log2FC) | > 0.1 and adjusted p-value (P.adj) <

0.05 (Benjamini-Hochberg correction). Upregulated and

downregulated DEGs were defined as log2FC > 0.1 and log2FC <

-0.1, respectively, with statistical significance (P.adj < 0.05). Volcano

plots were generated using R package ggplot2 (v3.5.1) to visualize

differential expression patterns. RiboRDEGs were subsequently

identified by intersecting the DEG list with the precompiled 344

RiboRGs, with results visualized through a Venn diagram.

Heatmaps generated by R package ComplexHeatmap (v2.20.0)

(21) employed Z-score-normalized counts, hierarchical clustering

(Euclidean distance, complete linkage), and three-dimensional PCA

maps generated by R package rgl (v1.3.1) demonstrated clear

separation of PE and controls.
2.4 Functional enrichment analysis

Gene set enrichment analysis (GSEA) (22) was performed on

the combined dataset using the R package clusterProfiler (v4.12.6)

(23) with the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database (24), employing gene set size thresholds of 10–500 genes

and significance criteria of P.adj < 0.05 (Benjamini-Hochberg

method) and false discovery rate (FDR) < 0.05. To elucidate the

biological functions of RiboRDEGs, Gene Ontology (GO) (25),

which encompasses biological process (BP), cellular component

(CC), and molecular function (MF), and KEGG pathway analysis

were performed using clusterProfiler, with the same statistical

thresholds. Pathway interaction networks were reconstructed

using the R package CBNplot (v1.4.0) (26), where Bayesian

networks were inferred through the bnpathplot function by

modeling biological pathways as nodes weighted by pathway

activity scores derived from RiboRDEG expression profiles.
2.5 Weighted gene co-expression network
construction and hub gene identification

WGCNA was implemented using the R package WGCNA

(v1.73) (27) to identify hub genes among RiboRDEGs. A scale-

free topology model was constructed by selecting an optimal soft-

thresholding power (b) to maximize network connectivity while

minimizing spurious correlations. The adjacency matrix was
TABLE 1 GEO microarray chip information.

Series Platform Species Tissue PE Samples Control Samples Cohort

GSE75010 GPL6244 Homo sapiens Placenta 80 77 Training

GSE10588 GPL2986 Homo sapiens Placenta 17 26 Training

GSE54618 GPL10558 Homo sapiens Placenta 12 12 Validation
GEO, Gene Expression Omnibus; PE, Preeclampsia.
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transformed into a topological overlap matrix (TOM) to quantify

gene co-expression similarity, followed by dynamic tree cutting to

define gene modules. Module-trait relationships were assessed by

calculating Pearson correlation coefficients between module

eigengenes (MEs) and PE status, with the most significantly

associated module (p < 0.05) selected for downstream analysis.

Hub genes were identified as the intersection of RiboRDEGs and

genes within the PE-correlated module, visualized via Venn

diagrams. Pairwise Spearman correlations among hub genes were

computed and displayed using the corrplot R package (v0.94).
2.6 Predictive model construction and
feature gene identification via integrated
machine learning

A comprehensive machine learning framework comprising (28)

113 prediction models was developed using the combined dataset to

identify key feature genes associated with PE risk. Twelve distinct

algorithms spanning linear models (Stepglm, Lasso, Ridge, Enet),

ensemble methods (XGBoost, RandomForest, GBM), Bayesian

approaches (NaiveBayes), hybrid dimensionality reduction &

regularization (plsRglm) and supervised learning techniques

(SVM, glmBoost, LDA) were implemented through their

respective R packages (glmnet, xgboost, randomForest, etc.), with

algorithm combinations detailed in Supplementary Table S2. Model

performance was evaluated via 10-fold cross-validation, receiver

operating characteristic (ROC) curve analysis, and decision curve

analysis (DCA), with diagnostic efficacy quantified by mean area

under curve (AUC) values across training and validation cohorts

(GSE54618). Models demonstrating AUC >0.9 were prioritized as

high-diagnostic-value candidates. Final feature gene selection

was guided by consensus across top-performing models,

validated through calibration curves and confusion matrices to

ensure robustness.
2.7 Interpretability analysis of optimal
predictive model

Model interpretability was assessed using SHAP (29) to

delineate the contribution of key feature genes to PE risk

prediction. SHAP values were computed via the R package

kernelshap (v0.7.0), with positive/negative values indicating

directional effects on risk (increase/decrease). Global feature

importance rankings were derived from mean absolute SHAP

values using shapviz (v0.9.5), visualized through bar plots (overall

importance) and beeswarm plots (feature value-SHAP value

distributions). SHAP interaction values quantified pairwise

feature interdependencies, visualized via scatterplots, while

waterfall plots generated for representative cases provided

localized interpretability of model decisions. This comprehensive

SHAP-based interpretability framework quantifies the importance

of key feature genes in predictive model decisions in PE.
Frontiers in Immunology 04
2.8 ROC curve analysis and protein-protein
interaction network analysis of key genes

Key genes were assessed for differential expression between PE

and control groups using Mann-Whitney U tests, with results

visualized through violin plots. Diagnostic performance was

evaluated via ROC curve analysis using the R package pROC

(v1.18.5) (30), calculating AUC values to quantify predictive

capacity. PPI networks were reconstructed via the GeneMANIA

database (31), integrating key genes with functionally associated

partners to infer biological modules relevant to PE pathogenesis.
2.9 Regulatory network reconstruction

Transcriptional and post-transcriptional regulatory networks

were systematically reconstructed to elucidate molecular

interactions involving key genes. Transcription factor (TF)-gene

interactions were identified using the ChIPBase database (32),

retaining TF-gene pairs with combined upstream/downstream

supporting samples ≥8. RNA binding protein (RBP) and

microRNA (miRNA) interactors were predicted via the ENCORI

database (33), applying evidence-based thresholds of clipExpNum

≥10 for RBPs and ≥7 for miRNAs. All interaction networks (TF-

gene, RBP-gene, miRNA-gene) were integrated and visualized using

Cytoscape (v3.10.2).
2.10 Immune microenvironment
characterization

Placental immune cell infiltration profiles were quantified via

single-sample gene set enrichment analysis (ssGSEA) using the R

package GSVA (v1.52.3), with 28 immune cell-specific gene sets

derived from established markers (34). Enrichment scores

representing relative immune cell abundance were compared

between PE and control groups, identifying differentially infiltrated

cell types. Spearman correlation matrices generated via the R package

linkET (v0.0.7.4) revealed intercellular immune interactions and key

gene-immune cell associations (|r| >0.3), visualized through network

diagrams. Significant correlations (|r| >0.3) were further validated

using scatterplots to delineate linear relationships.
2.11 Clinical sample collection and
processing

Placental tissue samples were collected from 20 singleton

pregnancies (10 PE cases, 10 gestational age-matched controls, each

group included five term pregnancy and five preterm pregnancies)

undergoing cesarean delivery at the Third Affiliated Hospital of

Wenzhou Medical University. PE diagnosis followed ISSHP

criteria: sustained hypertension (≥140/90 mmHg) with proteinuria

(≥0.3 g/24h) emerging after 20 gestational weeks. Inclusion criteria
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1595222
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1595222
required maternal age 20–40 years, uncomplicated antenatal course

prior to PE onset, and absence of fetal anomalies. Exclusion criteria

encompassed pre-existing comorbidities (chronic hypertension,

diabetes), acute infections (including COVID-19), gestational

diabetes, fetal congenital disorders, and exposure to confounding

medications. Full-thickness placental biopsies were obtained from the

central region within 15 minutes of delivery, snap-frozen in liquid

nitrogen, and stored at −80°C. Ethical approval was granted by the

Research Ethics Committee of Ruian People’s Hospital (Approval

No. YJ2024178), with written informed consent obtained from

all participants.
2.12 RNA isolation and quantitative real-
time PCR validation

Total RNA was isolated from placental tissues using the Tissue

Total RNA Isolation Kit V2 (Vazyme Biotech, RC112-01), with purity

and concentration assessed via NanoDrop spectrophotometry

(Thermo Fisher Scientific; A260/A280 ratios: 1.8–2.0). Reverse

transcription was performed with 1 μg RNA using HiScript III All-

in-One RT SuperMix (Vazyme Biotech, R333-01) under optimized

conditions: 25°C for 5 min, 50°C for 15 min, and 85°C for 5 min. qRT-

PCR assays were conducted on a CFX Connect system (Bio-Rad) with

Taq Pro Universal SYBRMaster Mix (Vazyme Biotech, Q712-02) in 10

μL reactions (40 cycles: 95°C/10 s denaturation, 60°C/30 s annealing/

extension). Melt curve analysis confirmed amplification specificity, and

relative gene expression was normalized to GAPDH using the 2−DDCt
method. All reactions included triplicate technical replicates, with fold-

change calculations relative to control samples.
2.13 Statistical analysis

All analyses were conducted within the R statistical environment

(v4.4.0). Normality assumptions were verified through Shapiro-Wilk

testing, with parametric comparisons (Student’s t-test) applied to

normally distributed continuous variables and non-parametric

alternatives (Mann-Whitney U test) for skewed distributions.

Spearman’s rank correlation coefficient (r) quantified associations

between molecular features. Unless otherwise stated, all reported

p-values were two-tailed, with statistical significance defined as p <

0.05. Multiple testing correction was implemented via the Benjamini-

Hochberg method for high-throughput datasets to control false

discovery rate (FDR < 0.05).
3 Results

3.1 Analytical flow diagram

Figure 1 displays the technical approach of the study, providing

a concise overview of the analytical processes used in this study. The

analytical flow commenced with merging transcriptomic datasets
Frontiers in Immunology 05
GSE75010 and GSE10588, followed by identification of DEGs.

RiboRGs were intersected with DEGs to derive RiboRDEGs.

Subsequent multi-modal enrichment analyses included GSEA,

GO, KEGG pathway mapping, and Bayesian network inference to

elucidate functional associations. WGCNA identified PE-correlated

modules and key genes, while machine learning algorithms refined

core diagnostic biomarkers. Model interpretability was enhanced

through SHAP, with ROC curve analysis validating diagnostic

efficacy using external dataset GSE10588. Immune infiltration

profiling via ssGSEA revealed microenvironmental interactions of

key genes. Regulatory networks encompassing mRNA-TF, mRNA-

miRNA, and mRNA-RBP interactions were reconstructed to

delineate molecular mechanisms. Final clinical validation

confirmed differential expression patterns of candidate genes in

PE cohorts.
3.2 Identification of ribosome biogenesis-
related differentially expressed genes

The GSE75010 and GSE10588 datasets were merged into a

combined cohort (n=200) and subjected to batch effect correction

using the R package sva, followed by normalization via the R

package limma. Pre-correction boxplots (Supplementary Figure

S1A) revealed pronounced inter-batch variability in expression

distributions, which resolved post-correction (Supplementary

Figure S1B). PCA demonstrated distinct separation between

original datasets along PC1 and PC2 prior to adjustment

(Supplementary Figure S1C), whereas post-correction PCA

(Supplementary Figure S1D) showed overlapping clusters with

reduced variance contributions (PC1: 2.97%, PC2: 2.19%),

confirming effective batch effect mitigation. Based on this

combined cohort, we conducted differential expression analysis

using the R package limma and identified 2,783 DEGs (|log2FC|

> 0.1, P.adj < 0.05) between PE and control groups, comprising

1,304 upregulated and 1,479 downregulated genes (Figure 2A).

Intersection of these DEGs with the precompiled ribosome

biogenesis-related gene set (344 RiboRGs) yielded 25 RiboRDEGs,

including C1QBP,DDX28,DDX51,DHX30, EXOSC2,GLUL, LSM6,

MPHOSPH6, MRPL36, NCL, NOL6, PAK1IP1, POLR1B, PRKDC,

RAN, RIOK1, RNASEL, RPP25, RPS27L, RRS1, SUV39H1, TBL3,

TFB1M, WDR12 and XRCC5 (Figure 2B). The heatmap reveals the

stratified clustering and expression disparity of 25 RiboRDEGs

between the PE group and the control group (Figure 2C), which

is corroborated by 3D PCA demonstrating significant intergroup

separation (Figure 2D).
3.3 Functional enrichment profiling

For exploring significantly dysregulated pathways in PE, we

conducted GSEA analysis on the combined dataset. Results showed

that top enriched terms in PE including HIF-1 signaling, AMPK

signaling, and proteasome activity (Figure 3A). Subsequent GO and
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KEGG analyses of the 25 RiboRDEGs demonstrated their

predominant involvement in rRNA metabolic processes (BP:

ncRNA processing, ribosome biogenesis), nucleolar complexes

(CC: 90S preribosome, small-subunit processome), and RNA

helicase activities (MF: U3 snoRNA binding) (Figure 3B). KEGG

pathway enrichment further implicated these genes in ribosome

biogenesis and RNA degradation. Bayesian network analysis

identified rRNA processing as a central hub (Figures 3C, D),

exhibiting robust connectivity with immune response pathways

(STING-mediated host immunity, IRF3-dependent IFN

induction) and subcellular rRNA maturation processes.
3.4 Weighted gene co-expression network
analysis and hub gene prioritization

A scale-free co-expression network was constructed using

WGCNA (power = 10, scale-free fit R² = 0.9; Figure 4A). Dynamic

module detection identified 9 gene clusters (Figures 4B, C), with low

inter-module correlations confirmed by a heatmap analysis

(Figure 4D). The MEblue module exhibited the strongest positive

correlation with PE (cor = 0.66, p = 3×10−26; Figure 4E). Intersection

of MEblue module genes (n=955) with RiboRDEGs revealed seven

hub genes (GLUL, LSM6, DDX28, NCL, RIOK1, RRS1, SUV39H1;

Figure 4F). Spearman correlation analysis demonstrated strong co-
Frontiers in Immunology 06
expression patterns among hub genes (Figure 4G), suggesting

functional synergy in PE pathogenesis.
3.5 Machine learning-based predictive
model construction and validation

A multi-algorithm framework comprising 113 model

combinations was implemented to identify optimal predictors of

PE risk using seven hub genes (Figure 5A). Random Forest (RF)

demonstrated superior diagnostic performance, achieving AUCs of

0.972 (95% CI: 0.953–0.988) in the training cohort and 0.917 (95%

CI: 0.757–1.000) in the validation cohort (Figure 5B). The final RF

model incorporated six feature genes (GLUL, DDX28, NCL, RIOK1,

SUV39H1, RRS1; Table 2). DCA shows that this model can provide

substantial clinical net benefits for clinical decision making

(Figure 5C), while calibration curves showed strong concordance

between predicted and observed PE probabilities (Figure 5D).

Confusion matrices further validated the model’s diagnostic

accuracy, achieving sensitivity >90% and specificity >85% in both

training and validation cohorts (Figure 5E).

To elucidate the potential impact of the six feature genes on the

risks associated with PE, we conducted SHAP analysis. This analysis

revealed SUV39H1 as the most influential feature in the RF model

(mean |SHAP| = 0.0944), followed by GLUL (|SHAP| = 0.0843),
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RRS1 (mean |SHAP| = 0.0649), DDX28 (mean |SHAP| = 0.0606),

NCL (mean |SHAP| = 0.0534) and RIOK1 (mean |SHAP| = 0.0495)

(Figure 6A). The expression levels of these genes have different

directional effects on PE risk. Elevated SUV39H1, RRS1 and RIOK1

expression correlated with increased PE probability, whereas higher

GLUL, DDX28 and NCL levels exhibited protective effects

(Figure 6B). Interaction analysis identified synergistic risk

amplification between SUV39H1 and RRS1 (Figure 6C), while

GLUL-NCL co-expression showed concerted risk reduction

(Figure 6D). A negative interaction between RRS1 and NCL

(Figure 6E) suggested compensatory regulatory dynamics.

Waterfall plots for representative PE (predicted probability =

0.864) and control (probability = 0.131) cases demonstrated

model interpretability, with SUV39H1 contributing most

substantially to risk prediction (Figures 6F, G).
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3.6 ROC curve analysis and protein
interaction network of key genes

Differential expression analysis confirmed significant

downregulation of GLUL , DDX28 , and NCL (p < 0.01;

Figures 7A–C) alongside upregulation of RIOK1, SUV39H1, and

RRS1 (p < 0.001; Figures 7D–F) in PE placentas. ROC analysis

revealed moderate diagnostic utility for GLUL (AUC = 0.724),

RIOK1 (AUC = 0.707), and SUV39H1 (AUC = 0.745) in the

training cohort, with weaker performance for DDX28 (AUC =

0.613), NCL (AUC = 0.634), and RRS1 (AUC = 0.663)

(Figures 7G–L). External validation in GSE54618 maintained

moderate diagnostic accuracy for DDX28 (AUC = 0.847), RIOK1

(AUC = 0.771), SUV39H1 (AUC = 0.840), and RRS1 (AUC =

0.764), whileGLUL (AUC = 0.604) andNCL (AUC = 0.688) showed
FIGURE 2

Identification of RiboRDEGs. (A) Volcano plot of DEGs (|log2FC| > 0.1, P.adj < 0.05), red indicates upregulated genes and blue indicates
downregulated genes (B) Venn diagram intersecting DEGs and RiboRGs,red indicates DEGs and blue indicates RiboRGs. (C) Heatmap of RiboRDEG
expression across samples, red indicates high expression and blue indicates low expression. (D) 3D PCA plot demonstrating group segregation based
on RiboRDEG profiles, red indicates PE samples, blue indicates normal samples.
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limited discriminative power (Figures 7M–R). Protein-protein

interaction (PPI) network analysis via GeneMANIA identified 20

functionally associated partners (Figure 7S), with co-expression

(47.61%) and physical interactions (51.88%) as predominant
Frontiers in Immunology 08
interaction modes, suggesting that these key genes may

collaboratively regulate ribosome biogenesis and RNA processing

through transcriptional coordination and direct molecular binding,

thereby contributing to placental dysfunction in PE pathogenesis.
FIGURE 3

Multi-modal enrichment analysis of PE-associated molecular pathways. (A) GSEA heatmap of combined dataset pathways (red: leading-edge
enrichment; blue: trailing-edge enrichment). (B) Bubble plot of RiboRDEG-enriched GO terms (BP, CC, MF) and KEGG pathways, with term counts
on the x-axis. (C) Bayesian pathway enrichment bar plot. (D) Bayesian network illustrating pathway interactions, with node size reflecting functional
centrality and edge properties indicating interaction strength (thickness) and directionality (arrows). Solid/dashed lines distinguish established vs.
hypothesized regulatory relationships.
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FIGURE 4

Co-expression network construction and hub gene identification. (A) Soft-threshold selection for scale-free topology (left: fit index; right: mean
connectivity). (B) Hierarchical clustering dendrogram with merged modules. (C) Module eigengene clustering tree. (D) Inter-module correlation
heatmap. (E) Module-trait correlation heatmap highlighting MEblue-PE association. (upper: correlation coefficients; lower: p-values) (F) Venn
diagram intersecting MEblue genes and RiboRDEGs. (G) Correlation heatmap of seven hub genes. In the heatmap, red indicates a positive
correlation and blue indicates a negative correlation. |r|>0.95: significant correlation; |r|≥0.8: highly correlated; 0.5≤|r|<0.8: moderately correlated;
0.3≤|r|<0.5: weakly correlated; |r|<0.3: not correlated.
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3.7 Reconstruction of regulatory networks

To explore the systematic regulatory network of ribosome

biogenesis in preeclampsia, the reconstruction of regulatory

networks was conducted. Transcriptional and post-transcriptional
Frontiers in Immunology 10
regulatory networks were systematically mapped to elucidate

molecular interactions involving key genes. The TF network,

constructed using ChIPBase with a stringent filtering criterion

(combined upstream/downstream supporting samples ≥8),

comprised 6 key genes (GLUL, DDX28, NCL, RIOK1, SUV39H1,
FIGURE 5

Development and validation of the machine learning-based predictive model. (A) Bar plot comparing mean AUCs of 113 algorithm combinations
across training and validation cohorts. (B) ROC curves of the RF model (TPR, true positive rate; FPR, false positive rate; AUC>0.9 indicates high
diagnostic value). (C) Decision curve analysis evaluating clinical utility. (D) Calibration curves assessing prediction accuracy. (E) Confusion matrices
quantifying classification performance.
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RRS1) interacting with 32 TFs through 59 regulatory pairs

(Supplementary Figure S2A, Supplementary Table S3). RBP

interactions predicted via ENCORI (clipExpNum ≥10) revealed

45 functional associations between 6 key genes (GLUL, DDX28,

NCL, RIOK1, SUV39H1, RRS1) and 24 RBPs (Supplementary Figure

S2B, Supplementary Table S4). miRNA-mediated regulation

analysis identified 63 mRNA-miRNA pairs involving GLUL,

SUV39H1, and NCL with 62 miRNAs (clipExpNum ≥7;

Supplementary Figure S2C, Supplementary Table S5),

highlighting transcriptional and post-transcriptional modulation

of ribosome biogenesis pathways in PE.
3.8 Immune microenvironment profiling
via ssGSEA

To explore the role of Ribosome biogenesis in the immune

microenvironment of PE, we conducted an ssGSEA analysis on the

combined dataset. ssGSEA revealed significant dysregulation of

nine immune cell types in PE placentas compared to controls (p

< 0.05; Figure 8A). Activated B cells and Th17 cells were enriched in

PE, while central memory CD8+ T cells, eosinophils, immature

dendritic cells, macrophages, MDSCs, memory B cells, and Th2

cells exhibited reduced infiltration. Correlation network analysis

demonstrated interconnected immune cell dynamics in PE, with

key genes showing cell-type-specific associations (Figure 8B).

Notably, GLUL expression positively correlated with MDSC (r =

0.352, p < 0.001; Figure 8C) and memory B cell abundance (r =

0.333, p < 0.001; Figure 8D). Conversely, RRS1 displayed negative

correlations with macrophages (r = -0.372, p < 0.001; Figure 8E) and

MDSCs (r = -0.337, p < 0.001; Figure 8F), while NCL and RIOK1

inversely associated with macrophage (r = -0.334, p < 0.001;

Figure 8G) and MDSC infiltration (r = -0.301, p = 0.003;

Figure 8H), respectively.
3.9 Experimental validation of key genes
in PE

qRT-PCR validation in placental tissues from 10 PE patients

and 10 gestational age-matched controls (primers listed in Table 3)

confirmed significant dysregulation of ribosome biogenesis-
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associated genes. DDX28 (p < 0.01) and RIOK1 (p < 0.001)

expression was markedly elevated in PE placentas, while GLUL (p

< 0.001) and NCL (p < 0.001) showed significant downregulation

(Figures 9A–D). SUV39H1 and RRS1 exhibited non-significant

expression trends (Figures 9E, F). Clinical assessment revealed

significantly elevated systolic blood pressure in PE cases

compared to gestational age-matched controls (155.1 ± 24.27 vs.

122.6 ± 7.91 mmHg, p < 0.001), with diastolic pressures similarly

increased (92.9 ± 9.73 vs. 74.4 ± 3.69 mmHg, p < 0.001). No

significant differences were observed in maternal age (30.4 ± 5.21 vs.

29.7 ± 4.60 years, p = 0.754), neonatal birth weight (2,724 ± 500.16

vs. 3,014 ± 503.42 g, p = 0.213), or Apgar scores at 1 min (9: 10% vs.

0%, p = 0.305) and 5 min (9: 10% vs. 0%, p = 0.305) (Table 4).
4 Discussion

Conventional PE biomarkers, including PlGF and sFlt-1, exhibit

limited predictive accuracy during early gestation due to insufficient

sensitivity and specificity (6). These markers fail to resolve

molecular heterogeneity across clinical PE subtypes and primarily

reflect angiogenic imbalance while neglecting synergistic

pathogenic mechanisms such as inflammatory and metabolic

dysregulation (35). Emerging evidence indicates that ribosome

biogenesis dysregulation is closely associated with the core PE

pathological features, such as placental malperfusion and aberrant

vascular remodeling, by disrupting nucleolar structural integrity,

inducing oxidative stress, and impairing trophoblast function (36,

37). These evidences collectively suggest that the disruption of

ribosome homeostasis may represent a pivotal molecular hub in

the early PE pathogenesis.

Our analysis reveals that RiboRDEGs are significantly enriched

in rRNAmetabolic processes (including ncRNA processing and 90S

preribosome assembly) and show strong Bayesian network

connectivity to immune pathways (STING/IRF3-mediated

interferon responses). These findings suggest that ribosome

biogenesis defects in PE may drive placental dysfunction through

dual mechanisms: (1) impaired ribosomal stress adaptation via

disrupted rRNA maturation (38), and (2) immune activation

triggered by nucleolar-derived damage-associated molecular

patterns (DAMPs) (39, 40). The co-enrichment of HIF-1 and

AMPK signaling pathways aligns with placental hypoxia-
TABLE 2 Description of RiboRDEGs.

ID Description log2FC AveExpr t adj.P.Val B

GLUL Glutamate-Ammonia Ligase -0.37296 11.51056 -5.9997 3.05E-07 9.640216

DDX28 DEAD-Box Helicase 28 -0.10067 8.489916 -2.97947 0.014957 -2.47268

NCL Nucleolin -0.13118 11.62773 -3.11307 0.010559 -2.08675

RIOK1 RIO Kinase 1 0.173268 9.869928 5.106692 1.42E-05 5.379976

SUV39H1 SUV39H1 Histone Lysine Methyltransferase 0.293488 8.689993 6.640665 1.39E-08 12.98921

RRS1 Ribosome Biogenesis Regulator 1 Homolog 0.144664 9.323376 3.859158 0.001257 0.344918
RiboRDEGs, ribosome biogenesis-related differentially expressed genes.
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reperfusion injury in PE, where hypoxia-inducible factors may

suppress rRNA transcription while energy stress activates AMPK-

mediated ribophagy to eliminate defective ribosomes (41, 42).

Additionally, KEGG pathway analysis demonstrates concurrent

proteasome activation, likely representing a compensatory

mechanism to remove misfolded ribosomal proteins generated

during biogenesis stress, a process previously linked to PE-

associated oxidative injury (40, 43). These findings collectively

position ribosome biogenesis as a nexus integrating metabolic

stress, proteostatic imbalance, and sterile inflammation in
Frontiers in Immunology 12
PE pathogenesis. The identified RiboDEGs emerge as key

molecular mediators linking nucleolar dysfunction to clinical

disease manifestations.

Analysis of the combined dataset revealed distinct immune

dysregulation in PE placentas, characterized by Th17 polarization,

MDSC depletion, and impaired macrophage infiltration, which is

consistent with the Th17/Th2 imbalance feature of PE (44). These

immunological alterations might represent secondary outcome of

ribosome biogenesis stress and the release of DAMPs due to nuclear

instability. These DAMPs engage cytoplasmic sensors (e.g., RIG-I,
FIGURE 6

SHAP-based interpretation of key feature genes in the RF predictive model. (A) Feature importance bar plot ranked by mean absolute SHAP values.
(B) Beeswarm plot showing SHAP value directionality (x-axis) versus gene expression (color scale: red = high, blue = low). (C–E). Interaction
scatterplots: x-axis = gene expression, y-axis = SHAP value, color = interacting gene expression. (F) Waterfall plot for a PE case (predicted risk =
0.864). (G) Control case waterfall plot (risk = 0.131). Arrows indicate SHAP contributions (red: risk increase; blue: decrease).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1595222
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1595222
MDA5) and toll-like receptors (TLRs) on placental immune cells,

driving NF-kb-dependent pro-inflammatory cytokines (IL-6, IL-

17), while suppressing anti-inflammatory mediators (IL-10, TGF-

b). This imbalance establishes a self-sustaining inert inflammatory
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cycle and activates the toll-like receptor (TLR)-mediated

inflammatory cascade reaction (39, 44). Notably, GLUL

expression positively correlated with MDSC and memory B cell

abundance, suggesting glutamine synthetase activity may modulate
FIGURE 7

Diagnostic validation and functional interaction networks of key genes. (A–F). Violin plots of key gene expression in PE (red) vs. controls (blue): GLUL (A),
DDX28 (B), NCL (C), RIOK1 (D), SUV39H1 (E), RRS1 (F). G-L. ROC curves for training cohort: GLUL (G), DDX28 (H), NCL (I), RIOK1 (J), SUV39H1 (K), RRS1
(L). (M–R). Validation cohort ROC curves: GLUL (M), DDX28 (N), NCL (O), RIOK1 (P), SUV39H1 (Q), RRS1 (R). An AUC of 0.5–0.7 indicates low diagnostic
utility, while an AUC of 0.7–0.9 suggests moderate diagnostic value. (S) PPI network (nodes: key genes and functionally associated partners; edges:
physical interactions (red), co-expression (purple), geneticlnteractions (green); thickness: interaction confidence). ***p < 0.001; **p < 0.01.
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immunosuppressive niches, potentially through mTORC1-

dependent metabolic reprogramming of myeloid cells (45).

Conversely, RRS1 and NCL showed negative associations with

macrophages and MDSCs, implicating their roles in restraining

pro-inflammatory polarization, possibly via ER stress pathways that
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regulate phagocytic clearance of ribosomal debris (40). The

coordinated depletion of tolerogenic MDSCs and macrophages

further exacerbates vascular dysfunction, creating a feedforward

loop between ribosomal stress, oxidative injury, and immune-

mediated endothelial damage (46).
FIGURE 8

Immune infiltration landscape and key gene correlations in PE. (A) Boxplots comparing immune cell enrichment scores between PE (red) and
controls (blue). (B) Correlation network of immune cells and key genes. (C–H). Scatterplots of key gene-immune cell correlations: GLUL-MDSC (C),
GLUL-Memory B cell (D), RRS1-Macrophage (E), RRS1-MDSC (F), NCL-Macrophage (G), RIOK1-MDSC (H). *p < 0.05; **p < 0.01; ***p < 0.001. red
indicates a positive correlation and blue indicates a negative correlation. 0.3≤|r|<0.5: weakly correlated.
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To elucidate the predictive potential of RiboRDEGs in PE risk, we

pioneered an explainable machine learning (XML) approach that

integrates ribosome biogenesis biology with advanced computational

modeling to address the critical need for mechanistically interpretable

biomarkers in PE risk prediction. By implementing a multi-algorithm

framework encompassing 113 model combinations, we developed a

RF model that achieves exceptional diagnostic accuracy while

maintaining biological interpretability, representing a significant

advance over conventional ‘black-box’ approaches (47). The SHAP

interpretability analysis revealed SUV39H1 as the dominant risk

contributor (mean |SHAP|=0.0944), with GLUL and RRS1

exhibiting counteractive protective/risk effects, demonstrating how

XML disentangles complex gene interactions that collectively drive

PE pathogenesis (48). This approach successfully identified six

ribosome biogenesis-related biomarkers (GLUL, DDX28, NCL,

RIOK1, SUV39H1 and RRS1) and mapped their nonlinear

synergies, such as the risk-amplifying SUV39H1-RRS1 interaction

and protective GLUL-NCL axis. This findings provide unprecedented
TABLE 3 Primer sequences for qRT-PCR.

Gene Primer sequences (5′-3′)

GLUL
AAGAGTTGCCTGAGTGGAATTTC (forward)
AGCTTGTTAGGGTCCTTACGG (reverse)

DDX28
TGCGAAAGCTCTCGTCTAAGG (forward)
CCTCCTGTAGTGCGTGCAG (reverse)

NCL
GCACCTGGAAAACGAAAGAAGG (forward)
GAAAGCCGTAGTCGGTTCTGT (reverse)

RIOK1
GGCTCGGGAGTTGTACCTG (forward)
CCACGGACTGAGACACGTC (reverse)

SUV39H1
CCTGCCCTCGGTATCTCTAAG (forward)
ATATCCACGCCATTTCACCAG (reverse)

RRS1
GTTACCTCCCGTTTCCCACTT (forward)

CATCACCGATTGGTCATCTCTTG (reverse)

GAPDH
TGTGGGCATCAATGGATTTGG (forward)
ACACCATGTATTCCGGGTCAAT (reverse)
qRT−PCR, quantitative real−time PCR.
FIGURE 9

Validation of key gene expression in PE placental tissues. (A–F) mRNA expression levels of GLUL (A), DDX28 (B), NCL (C), RIOK1 (D), SUV39H1 (E),
and RRS1 (F) in control (blue) versus PE (red) groups. ns, not significant; **p < 0.01; ***p < 0.001.
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insights into how ribosomal stress pathways coalesce to induce

placental dysfunction.

The clinical validity of our model was comprehensively

demonstrated through two complementary approaches: decision

curve analysis confirmed substantial net benefit across clinically

relevant risk thresholds, and protein-protein interaction networks

revealed these biomarkers functionally coordinate ribosome

biogenesis through both physical binding and co-expression

relationships. While individual genes showed moderate diagnostic

power, their ensemble performance underscores the necessity of

multi-gene panels for capturing PE’s molecular heterogeneity — an

optimization of current single-biomarker approaches such as the

sFlt-1/PlGF ratio (6). Our XML-driven strategy bridges the critical

gap between computational prediction and biological mechanism,

offering both a clinically deployable risk assessment tool and a

systems-level understanding of ribosomal dysregulation in PE

pathogenesis (49).

While our explainable machine learning framework provides

novel insights into ribosome biogenesis biomarkers for PE risk

prediction, several limitations warrant consideration. First, the

retrospective design and reliance on public placental transcriptomic

datasets may introduce selection bias, as these lack detailed clinical

subtyping (e.g., early- vs. late-onset PE) and longitudinal samples to

track biomarker dynamics across gestation. Second, the modest

clinical validation cohort limits statistical power to detect subtle

expression differences, potentially explaining non-significant qRT-

PCR trends for SUV39H1 and RRS1. Third, while the model shows

promising cross-cohort performance, its generalizability requires

testing in multi-ethnic populations and early-pregnancy blood

samples, given the inaccessibility of placental biopsies for prenatal

screening. Additionally, the exclusive focus on transcriptional

regulation overlooks post-translational modifications (e.g.,
Frontiers in Immunology 16
phosphorylation) and epigenetic mechanisms modulating ribosome

biogenesis. Furthermore, SHAP-derived gene interactions remain

hypothetical without experimental confirmation through CRISPR-

based functional validation in trophoblast models. To address these

gaps, future studies need to further validate the mechanistic

contribution of key biomarkers through functional experiments

(such as CRISPR gene editing and ribosome dynamic analysis) and

build a multi-omics integration framework — using single-cell

transcriptomes to analyze the specific regulatory network of

placental trophoblast/immune cell subsets and combining spatial

transcriptomes to map the spatial distribution of ribosomal stress

signals in the microenvironment. The effect of post-translational

modifications (such as phosphorylation) on ribosome assembly was

quantitatively analyzed by the proteome, and the synergistic

regulatory pattern of DNA methylation/histone modification was

characterized by the epigenome. Multi-dimensional data

(metabolome, cell free RNA) of prenatal longitudinal blood

samples were further integrated to establish a dynamic risk

prediction model based on machine learning. This systematic

biological strategy from molecular mechanism to clinical phenotype

will reveal the cross-scale regulation of PE development driven by the

imbalance of ribosome quality control and then promote the

transformation process of biomarkers into clinical diagnostic tools.
5 Conclusion

This study establishes dysregulation of ribosome biogenesis as

one of the pivotal molecular mechanisms underlying the

pathogenesis of PE and leveraging XML to identify clinically

actionable biomarkers. Through multi-cohort transcriptomic

integration, we identified 25 RiboRDEGs, with six hub genes

(GLUL, DDX28, NCL, RIOK1, SUV39H1, RRS1) forming the core

of a high-performance predictive model (AUC >0.9). SHAP

interpretability analysis revealed SUV39H1 as the dominant risk

contributor, while GLUL and NCL exhibited protective effects,

highlighting bidirectional regulatory dynamics in placental stress

adaptation. Functional enrichment and Bayesian network analyses

linked these genes to rRNA processing, nucleolar stress, and

immune dysregulation, with immune microenvironment profiling

demonstrating significant correlations between RiboRDEGs and

altered placental immune cell populations (e.g., MDSCs,

macrophages). Experimental validation confirmed dysregulation

of key genes. Despite these advances, our study has limitations

including retrospective design, potential selection bias in public

datasets, and modest validation cohort size. Future work requires

CRISPR-based functional validation of key biomarkers and multi-

omics integration (single-cell/spatial transcriptomics, proteomics,

epigenomics) to map the mechanism of ribosome biogenesis.

Development of blood-based machine learning models

incorporating longitudinal metabolomic/cfRNA data could enable

dynamic risk prediction. Elucidating post-translational

modifications (e.g., phosphorylation) and epigenetic regulation of

ribosome biogenesis will clarify cross-scale mechanisms underlying
TABLE 4 Clinical information of the patients.

Category PE
(n = 10)

Control
(n = 10)

p-value

Gestational age at
delivery (weeks)

36.1 ± 1.66 36.1 ± 1.66 1.000

Age (years) 30.4 ± 5.21 29.7 ± 4.60 0.754

Systolic blood
pressure (mmHg)

155.1 ± 24.27 122.6 ± 7.91 < 0.001

Diastolic blood
pressure (mmHg)

92.9 ± 9.73 74.4 ± 3.69 < 0.001

Neonatal birth weight (g) 2724 ± 500.16 3014 ± 503.42 0.213

1 min Apgar (score) 0.305

10 9 (90%) 10 (100%)

9 1 (10%) 0 (0%)

5 min Apgar (score) 0.305

10 9 (90%) 10 (100%)

9 1 (10%) 0 (0%)
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PE pathogenesis. These efforts will bridge ribosome biogenesis

insights to clinical translation, advancing early diagnosis and

targeted therapies for PE.
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