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Ovarian cancer (OV) is the most lethal gynecological malignancy in the world. At

present, the effect of m7G modification-related genes on the development of

ovarian cancer remains unclear. We performed consensus clustering of ovarian

cancer samples based on the expression of 24 m7G modification-related genes,

and obtained 2 subtypes. There were some differences in immune cell infiltration

between the two subtypes. Furthermore, enrichment analysis showed that

differential genes were mainly enriched in several pathways and biological

processes, including positive translation regulation and TRAPP complex.

Multivariate cox regression analysis confirmed two genes (DCP2 and NUDT16)

related to prognosis for the construction of risk score prediction models. The risk

map of survival status showed that the high-risk samples had a shorter survival

time (p<0.05). Risk score was an independent prognostic factor for OV and

correlated with immunotherapy response. We also performed network analysis

for DCP2 and NUDT16. We further explored the effects of the genes on cellular

function and prognosis. In conclusion, this study provided a new perspective for

the development mechanism of ovarian cancer.
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1 Introduction

Ovarian cancer (OV) is one of the three most common

malignant tumors in women, and the mortality rate has always

been the first in gynecological malignant tumors, which seriously

threatens women’s health (1, 2). Epithelial ovarian cancer is the

leading cause of death from gynecologic cancers in the United

States, with less than half of patients living more than 5 years after

diagnosis (3). Additional risk factors were high BMI and

occupational risks for ovarian cancer (4). At present, there is an

urgent need to deeply study the pathogenesis of ovarian cancer in

order to generate new effective therapeutic targets and therapies.

In the comprehensive treatment of ovarian cancer, platinum

drugs are the first-line drugs for combined therapy after cytoreductive

surgery, and are currently the standard treatment for ovarian cancer,

but the effect of prolonging the survival of patients is still not very

obvious (5, 6). Because tumor tissues become resistant to cisplatin (7),

and the response rate to cisplatin therapy decreases especially at the

time of recurrence (8). Bevaczumab and poly-ADP ribose polymerase

inhibitors (PARPi) now play a maintenance role in first-line or

platinum-sensitive relapse treatment of ovarian cancer (9, 10). In

the tumor immune microenvironment, TILs are major components

of tumor-infiltrating immune cells, including T cells, B cells, and NK

cells, and have been reported to affect cancer progression and

response to immunotherapy (11). The heterogeneity of tumor

immune microenvironment is an important factor affecting the

response of immunotherapy (12). The emergence of tumor

immunotherapy has brought a new dawn to ovarian cancer

patients. However, the current response rate of immunotherapy is

low, and the application effect in ovarian cancer treatment is limited.

Therefore, it is of great clinical significance to study the regulation

factors of the immune microenvironment of ovarian cancer and

promote the personalized immunotherapy of ovarian cancer.

Several researches have indicated that RNA epigenetic

modifications can affect the progression and metastatic spread of

ovarian cancer, potentially serving as promising targets for cancer

therapy (13, 14). RNA modification is a dynamic and reversible

process regulated by a series of writers, erasers and readers (15).

Among epigenetics, N(7)-methylguanosine (m(7)G), as the

epigenetic modification at the 5’ cap of mRNA, plays essential

roles in regulating mRNA translation and splicing (16, 17). This

essential cap modification stabilizes transcripts, prevents

exonucleolytic degradation, and regulates nearly every stage of the

mRNA life cycle, including transcription elongation, pre-mRNA

splicing, polyadenylation, nuclear export, and translation. In

addition to being part of the cap structure, m7G is also present

inside tRNA and rRNA (18, 19), and internal m7G modifications

affect RNA processing and function and are thought to be involved

in human diseases, including tumors (20). Previous studies have

predicted potential m7G locus associated with ovarian cancer from

a high-throughput computational perspective, and obtained

correlation conclusions (21). A centralized resource m7GHub

V2.0 that supports the sharing, annotation, and customized

analysis of m7G data will significantly facilitate m7G research

across diverse physiological contexts (22). RMBase v3.0 also
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(23). A notable advancement in RMVar 2.0 is the combination of

allele-specific RNA modification analysis to identify RNA

modification-associated variants (24). An important well-studied

regulator of m7G in mammals is methyltransferase-like 1

(METTL1), which binds to its corresponding cofactor WD repeat

domain 4 (WDR4) to install m7G modifications in tRNA, miRNA,

and mRNA (25, 26) while METTL1 is associated with favorable

survival in patients with ovarian serous cystad enocarcinoma (27).

In ovarian cancer, METTL1-mediated tRNA m7G modification

enhances the translation of AKT/mTOR pathway-associated

proteins and promotes cell growth and metabolic reprogramming.

Specifically, m7G-modified tRNAs preferentially decode AGA

codon-rich mRNAs (e.g., AKT1, mTOR), thereby enhancing the

expression levels of these oncogenes (26). METTL1 promotes the

processing and maturation of miR-21 precursor through m7G

modification of specific tRNAs, which in turn inhibits the

expression of its target genes (e.g., PTEN), activates the PI3K/

AKT pathway, and ultimately leads to chemoresistance (28). In

addition, previous research has reviewed m7G’s role in tumor

immunity, emphasizing its impact on T cell exhaustion and

macrophage M2 polarization through m7G-dependent mRNA

stability (29). However, it is still unclear whether m7G

modification affects the immune microenvironment and

prognosis of ovarian cancer. We hypothesized that m7G

modification plays an important role in the pathogenesis of

ovarian cancer, and tried to conduct a series of studies.

In this study, based on the expression of 24 m7G-modifification

regulators, we performed consensus clustering on a large number of

ovarian cancer samples in the database, and divided the ovarian

cancer samples into two subtypes. In the tumor microenvironment,

the immune cell composition varies significantly. Enrichment

analysis showed that the differential genes between subtypes were

mainly enriched in pathways such as positive regulation of

translation, TRAPP complex and protease binding. Multivariate

cox regression analysis identified 2 genes DCP2 and NUDT16 to

build predictive models. Risk scores were significantly associated

with prognosis in ovarian cancer. Further analysis showed that 2-

m7G regulators as independent OV prognostic factors. Network

analysis predicted 9 target transcription factors for DCP2 gene and

4 target transcription factors for NUDT16 gene, suggesting a

possible complex functional network of these two genes. In

addition, ovarian cancer risk scores correlated with response to

immunotherapy. Our study suggests that m7G modifies key

regulatory genes that may play an important role in the

pathogenesis of ovarian cancer.
2 Materials and methods

2.1 Datasets

Gene expression profiling data of OV patients were obtained

from 2 independent patient cohorts, including TCGA-OV,

GSE30161, and only OV samples were retained for further
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analysis. The TCGA-OV data were annotated with gene names

using the GENCODE22 annotation file, and the TCGA-OV patient

survival data and clinical data, including survival time, survival

status, age, and tumor stage, were obtained from UCSC xena. In the

end, 352 samples were included in TCGA-OV, 58 samples were

included in GSE30161, TCGA-OV was used for model

construction, and GSE30161 was used for model validation.
2.2 Consensus clustering of m7G-related
genes

M7G-related genes from the existing literature (21) and related

gene sets were obtained from GOMF_M7G_5_PPPN_

DIPHOSPHATASE_ACTIVITY,GOMF_RNA_CAP_BINDING

GOMF_RNA_7_METHYLGUANOSINE_CAP_BINDING. 24

m7G-related genes can be annotated in the final meta dataset:

(DCP2, IFIT5, EIF3D, EIF4G3, NSUN2, GEMIN5, AGO2,

NUDT10, EIF4E, EIF4E2, NCBP2, NUDT11, NUDT3, NCBP1,

METTL1, LARP1, NUDT4, EIF4E3, SNUPN, WDR4, LSM1,

NUDT16, DCPS, CYFIP1),Based on the expression profile data of

the 24 genes, the ConsensusClusterPlus K-means clustering

algorithm was used to cluster TCGA-OV patients to obtain 2

subtypes. The clustering was repeated 1000 times to ensure the

accuracy and stability of the results.
2.3 Identification of differentially expressed
genes between m7G patterns

We used the limma package to identify DEGs between the 2

subtypes, with thresholds set at corrected p<0.05, |logFold Change|>1.

In order to display the enriched pathways between different

subtypes, we performed GO and KEGG enrichment analysis

between each two subtypes, and visualized the top 5 pathways with

the most significant enrichment results. Gene set enrichment analysis

was also performed between subtypes (c2.cp.kegg.v7.5.1.symbols.gmt

and c5.go.v7.5.1.symbols.gmt of the reference gene set MSigDB

database), here we take the top 10 Each pathway is visually

displayed, and the above enrichment analysis process is completed

by the clusterProfiler package.
2.4 Comparison of immune cell infiltration
among m7G patterns

In order to explore the degree of immune cell infiltration

between different subtypes, we used the IOBR package to evaluate

the immune cell infiltration of the TCGA-OV data set with the

ESTIMATE algorithm, the MCPcounter algorithm and

CIBERSORT, and obtained the immune cell infiltration of each

sample in the two algorithms. Among them, the indicators

evaluated by the ESTIMATE algorithm include immune score,
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includes 10 kinds of immune cells such as CD8+ T cells and NK

cells, and the CIBERSORT algorithm includes 22 kinds of immune

cells such as T cells and B cells. Differences in immune cell

infiltration between different subtypes were considered significant

with a p-value less than 0.05.
2.5 Support vector machines and
multivariate cox regression and validation
of the prognostic m7G signatures

We used the support vector machine algorithm of the e1071

package to select the prognosis-related features on the TCGA-OV

expression profiling data of 24 m7G-related genes, and 21 of the 24

genes were screened out and further used the survival package.

Multivariate cox analysis was used to construct predictive models

and survival analysis was performed using the survival package. At

the same time, we validated the model in the GSE30161 dataset, and

in a survival analysis p less than 0.05 was considered a significant

difference in survival. In addition to this, we integrated risk scores and

clinical features for univariate and multivariate cox analyses to

validate that risk scores are predictive markers independent of

other clinical features, and constructed nomograms using the rms

package based on clinical features associated with prognosis, to make

a more accurate prediction of patient prognosis, and the results of

nomogram prediction are verified by calibration curve, ROC curve

and decision curve analysis to ensure that the nomogram is accurate

in predicting the 1-year, 3-year and 5-year survival rate of patients.
2.6 Construction of regulatory network

First, we use the starBase database to predict potential miRNAs

targeting hub genes (take the interactions that also exist in the

TargetScan database), and identify the gene-miRNA regulatory

network. Then, the online tool of ChEA3 was used to identify

gene-transcription factor interaction pairs (the interaction

relationship with an interaction score greater than 800),which was

used to establish an upstream regulatory network. Additionally, the

Comparative Toxicogenomics database was queried for compounds

with potential relationships to core genes. Finally, the visualization

of the core gene regulatory network is implemented based on the

igraph package.
2.7 Prediction of immunotherapy response

We obtained the risk score for each sample based on the

predic t ion model in the IMvigor210 and GSE78220

immunotherapy response datasets, performed survival analysis for

high and low risk groups, and compared the response to

immunotherapy between high and low risk groups.
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2.8 Statistical analysis

Statistical analysis was performed by R (version 4.1.1). The

Wilcoxon rank-sum test was used for comparison between the two

groups, and the Kruskal-Wallis test was used for multiple

comparisons. The cut-off point for each subgroup was determined

by the survminer package in R. Kaplan-Meier curves for OS analysis

are presented between different subgroups, followed by log-rank

tests. Multivariate Cox regression analysis was used to assess the

association between OS, clinicopathological characteristics and risk

scores and was presented by the forestplot package. p-values were

corrected by Bonferroni. Two-sided p<0.05 was considered

statistically significant.
2.9 Cell lines and culture

A2780 cells were derived from the National Experimental Cell

Resource Sharing Platform (Beijing, China), and 3AO cells were

purchased from the Cell Bank of the Chinese Academy of Sciences

(Shanghai, China). A2780 cells were cultured in DMEM

supplemented with 10% FBS, and 3AO were maintained in RPMI

1640 supplemented with 10% FBS.
2.10 Antibodies and reagents

DCP2, abs118391, Absin, 1:1000(WB), 1:75 (IHC);

NUDT16:12889-1-AP, Proteintech, 1:1000 (WB), 1:50 (IHC), and

b-actin from abclonal, 1:4000 (WB).
2.11 Tissue microarray

To explore the expressions of DCP2 and NUDT16 in Ovarian

cancer tissues and paired migration tissues, tissue microarray

containing 48 OC tissues and 48 migration tissues were obtained

from the surgical operations of A Department of Gynecology

Oncology, National Cancer Center/National Clinical Research

Center for Cancer/Cancer Hospital. All included patients received

operation between January 2010 and October 2019. Eliminating 11

ineffective OC tissues, a total of 81 OC cases included in these

two studies.
2.12 CCK8 (cell proliferation and cell
activity detection)

In this study, CCK8 experiments were carried out in 96-well

plates. Before each test, CCK8 and culture medium were mixed at

1:10,100 and were added to each well with 50m. After incubation at

37°C for one hour, the absorbance of each hole at 450 nm was

measured. When detecting cell proliferation, the number of

inoculated cells is 1.5 per well×103 cells, a total of 5 plates, were

tested at the same time every day for 5 consecutive days, and finally
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the cell proliferation curve was drawn. When testing cell activity,

the number of inoculated cells is 1 per well×104 cells were treated

according to the experimental requirements, and then tested after

24 hours to calculate the changes in cell activity.
2.13 Plate cloning experiment

In this study, the plate cloning experiment was completed in a

six-well plate, and the number of A2780 and 3AO cells was 1.5 per

well×103 cells were incubated in 37°C incubator for 9–12 days after

inoculation, until visible monoclone was formed. When collecting,

wash with PBS, fix with methanol for 15 minutes, discard and dye

with crystal violet.
2.14 Western blotting

Western blot was performed according to the standard protocol.

Briefly, cells were harvested and lysed in RIPA buffer (1% NP-40,

0.1% sodium dodecyl sulfate (SDS), 50 mM Tris–HCl pH 7.4, 150

mM NaCl, 0.5% sodium deoxycholate, 1 mM (EDTA), 1×proteinase

inhibitor cocktail (Roche)) for 30 min on ice. The proteins were

resolved on 10% SDS-PAGE and transferred onto PVDF membranes

(Millipore). The membranes were blocked with 5% milk powder

solution, then incubated with specific antibodies at 4°C overnight.

Following incubation with secondary antibodies, immunoblots were

visualized using the ImageQuant LAS-4000 System (GE). Antibodies

for western blotting are listed in ‘Antibodies and reagents’.
2.15 Immunohistochemistry assay

Tissue microarrays were stained with anti-DCP2(abs118391,

Absin) and anti-NUDT16(12889-1-AP, Protientech) antibodies.

The representative images of IHC staining were captured by

Aperio ScanScope (Leica, Nussloch, Germany).
2.16 Statistics

Statistical analysis was done in the R software (version 3.5.2).

Correlations between sample groups and clinical variables were

assessed using the Student’s t-test for continuous variables.

Significance was set as *p<0.05, **p<0.01, ***p<0.001.
3 Results

3.1 Consensus clustering of m7G genes in
two clusters with different immune pattern
of OV

In the TCGA-OV dataset, the correlation analysis of 24 m7G-

related genes showed that there was a close correlation between
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these genes (Figure 1A) (p<0.05). Consensus cluster analysis

divided the 352 samples into 2 subtypes (Figure 1B). CDF curve

of Figure 1C shows the cumulative distribution function when K

takes different values. It is used to judge the value of K, and CDF

reaches the approximate maximum value. During this time, the

cluster analysis results are the most reliable, usually taking the value

of K with a small decline slope of CDF. Relative change in area

under CDF curve was exhibited in Figure 1D. The principal

component analysis (PCA) showed that the 2 subtypes could be
Frontiers in Immunology 05
clearly distinguished (Figure 1E), indicating there are significant

differences in the expression profiles between different subtypes. At

the same time, the expression values of 24 genes were significantly

different between the two subtypes, indicating that our typing

results have good stability and accuracy (Figure 2A). The results

of CIBERSORT showed that the infiltration degree of 22 types of

immune cells was different between different samples (Figure 2B),

and there was a significant correlation between Macrophages_M0

and most other immune cells in the 22 types of immune cells
FIGURE 1

Cluster analysis of m7G-related genes. (A) Correlation analysis between the 24 m7G-related genes in the TCGA-OV dataset. (B-D) Consensus cluster
analysis divided 352 samples into 2 subtypes. (E) Principal component analysis (PCA) of 2 subtypes. (F) Heatmap of expression profiles of 24 genes
between 2 subtypes.
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(Figure 2C), indicating that these cells were in the synergy of OV

patients. and the content of most immune cells differed significantly

among the different subtypes (Figure 2D). At the same time, the

results of MCPcounter showed (Figure 2E) that Myeloid dendritic

cells were significantly different among different subtypes (p <0.05),

indicating that Myeloid dendritic cells between subtypes had

significantly different contents.
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3.2 The interaction and correlation among
the m7G regulators in two patterns

We performed enrichment analysis between subtype 1 and subtype

2, and the GO enrichment analysis results showed that the differential

genes between subtypes were mainly enriched in different biological

process (BP), cellular component (CC), and molecular function (MF).
FIGURE 2

The relationship between 2 clusters and immune infiltrations. (A) The expression differences of 24 m7G-related genes in different subtypes. (B) Degree of
22 immune cells infiltration in different samples in CIBERSORT results. (C) Correlation of 22 immune cells. (D) Content of immune cells in different
subtypes. (E) MCPcounter results of immune cells between different subtypes. *p<0.05, **p<0.01, ***p<0.001; ns means no significance.
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In Figure 3A, they showed enrichment in cytoskeleton-dependent

intracellular transport (red circle, p <0.05). In Figure 3B, there is

no significant difference in CC. In Figure 3C, they were enriched in

protease binding. KEGG enrichment analysis results (Figure 3D)

showed that the differential genes between subtypes were mainly

enriched in MAPK signaling pathway, non-homologous end-

joining and Rap1 signaling pathway. GSEA results (Figures 3E, F)

showed that the differential genes between subtypes were mainly

enriched in GOMF_STRUCTURAL_MOLECULE_ACTIVITY,

EGG_TIGHT_JUNCTION and other pathways.
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3.3 Prognostic analysis of risk model and
m7G genes

First, we obtained 13 genes associated with prognosis through

the support vector machine algorithm (Figures 4A, B), and then,

based on these 13 genes, we performed multivariate cox regression

analysis, and identified 2 genes for constructing the prediction

model (Figure 4C) to get the risk score of each sample in TCGA-

OV. Finally, according to the median of the risk score, the samples

are divided into high and low risk groups. The survival analysis
FIGURE 3

Pathway enrichment analysis of 2 clusters. (A-C) GO enrichment analysis between subtype 1 and subtype 2. (D) KEGG enrichment analysis. (E, F) Results
of GSEA concerning GO and KEGG pathways.
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shows that the survival difference between the high and low risk

groups is significant (Figure 4E). The difference in survival between

high- and low-risk group samples in the validation set GSE30161

was also significant (Figure 4F). Figure 4G indicated the accuracy of

risk score in differentiate high-risk and low-risk patients. Figure 4H
Frontiers in Immunology 08
showed that dead samples had a shorter survival time compared to

live samples. At the same time, the expression values of the two

genes that constructed the prediction model were also significantly

different in the high- and low-risk groups (Figure 5D). Single-gene

survival analysis was performed in GSE30161 (Figures 5A, C)
FIGURE 4

Screening key genes and construction of risk score model by 2 key genes. (A, B) Support vector machine algorithm obtained 13 genes associated
with prognosis. (C) 2 genes for construction of prediction model. (D) Heatmap of expression profiles of 2 genes for construction of prediction model
in high and low risk groups. (E) Survival difference between high and low risk group samples in TCGA-OV. (F) Survival difference between high and
low risk group samples in GSE30161 database. (G, H) Evaluation of the accuracy of risk score.
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(genes DCP2 and NUDT16) and TCGA-OV (Figures 5B, D) (genes

DCP2 and NUDT16) based on the expression levels of the two

genes, respectively. The results showed that, the single-gene survival

analysis of the two genes was significantly different between the high

and low expression groups, further indicating that these two genes

were significantly related to the prognosis of OV.
3.4 Assessment of two m7G-related genes
as independent OV prognostic factors

To perform an in-depth analysis of the prognostic value of the

risk score, we performed a prognostic analysis of scores and other

clinical characteristics in the TCGA-OV cohort, and univariate cox

regression analysis showed (Figure 6A) that both age and risk score

were significantly associated with prognosis (p<0.05). Further

multivariate cox regression analysis confirmed (Figure 6B) that

age and risk score were still significantly associated with prognosis

(p<0.05). Therefore, we constructed a nomogram (Figure 6D) based

on these 2 clinical features to predict the 1-, 3-, and 5-year survival

rates of patients, and verified the accuracy of the nomogram in

predicting prognosis through calibration curves and ROC curves.

The calibration curve results show (Figure 6C) that the predicted

values of 1 year, 3 years and 5 years have little deviation from the

diagonal line in the figure. The ROC curve results show that in the

nomogram’s 1 year (Figure 6F) and 5-year (Figure 6G) ROC curve,

AUC values were higher, and the 1-year (Figure 6H), 3-year

(Figure 6I) and 5-year (Figure 6J) decision curve analysis of the
Frontiers in Immunology 09
nomogram showed that the nomogram can predict the prognosis of

patients very well. The above three test methods all show that the

nomogram has good accuracy in predicting the prognosis

of patients.
3.5 Network analysis and immunotherapy
response prediction

We performed network analysis for the two genes for which the

predictive model was constructed. First, a compound network of

genes was constructed (Figure 7A). Here, 8 targeting compounds

were predicted for the DCP2 gene, and 8 targeting compounds were

predicted for the NUDT16 gene. Then the miRNA network of the

genes was constructed (Figure 7B), 77 targeted miRNAs were

predicted for DCP2 gene, and 1 targeted miRNA was predicted

for NUDT16 gene. Finally, the transcription factor network of the

gene was constructed (Figure 7C). Nine targeted transcription

factors were predicted for DCP2 gene, and four targeted

transcription factors were predicted for NUDT16 gene. The

immunotherapy response of the high and low score groups was

also further investigated based on the GSE78220 and IMvigor210

datasets, and we found that the survival of the high and low score

groups was significantly different in GSE78220 (Figure 7D) and

IMvigor210 (Figure 7E). There was a correlation between

immunotherapy responses and survivals (Figures 7F, G), i.e., the

higher the survival of the sample, the worse its response

to immunotherapy.
FIGURE 5

The effects on prognosis of 2 key genes. (A-D) Survival analysis based on high and low expression of DCP2 and NUDT16 in GSE30161 (A, C) and
TCGA-OV (B, D).
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FIGURE 6

Construction and validation of nomogram based on the risk score and clinical characteristics. (A) One-way cox regression prognostic analysis of the
scores with other clinical characteristics in TCGA-OV. (B) Multi-factor cox regression analysis. (C) The accuracy of nomograms to predict prognosis
was validated by calibration curves and ROC curves. (D) Construction of nomograms based on these 2 clinical characteristics (age and risk score) to
predict patient survival at 1, 3 and 5 years. (E-G) The ROC curve results showed that the ROC curve AUC values were higher at 1 year (E), 3 years
(F) and 5 years (G). (H-J) For the column line graph and the decision curve analysis at 1 year (H), 3 years (I) and 5 years (J). The column line graph
showed that the column line graph could predict the prognosis of patients very well.
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3.6 Functional verification of 2 key genes
and external verification of their impact on
prognosis

To verify the authenticity of the above bioinformatics analysis, we

performed some experimental validation. Two key genes were
Frontiers in Immunology 11
knocked down using siRNA: DCP2 and NUDT16, and the protein-

level knockdown efficiency was determined by western blotting

experiments (Figure 8A). Furthermore, we confirmed that PI3K-

Akt-mTOR signaling was activated in OV patient samples with

higher DCP2 expression and lower NUDT16 expression and

western blotting were performed to verify the expression of key
FIGURE 7

Network analysis and immunotherapy response prediction. (A) Compound network of the genes. (B) The miRNA network for 2 genes. (C) A transcription
factor network of the genes was constructed. (D, E) The survival rate in GSE78220 (D) and IMvigor210 (E). (F, G) The correlation between sample survival
rate and response to immunotherapy.
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proteins of the pathway when knocking down two genes, and the

results were basically consistent with what we expected (Figure 9).

The proliferation of cells after SI knockdown of DCP2 and NUDT16

at 0-24-48-72–96 hours was detected using CCK8 method and

plotted as a line graph, which showed that the cell proliferation

was reduced after knockdown of DCP2 and enhanced after

knockdown of NUDT16 (Figure 8B). The flat panel cloning

method visually shows that the number of clonogenic cells from

ovarian cancer cells knocked down by DCP2 is smaller than that of

the control group, while the clonogenic ability of cells knocked down

by NUDT16 is diminished (Figures 8C, D). We performed relevant

transwell assays to verify the migratory invasion ability of these two

genes after knockdown, and the migratory invasion ability became

poor after knockdown of DCP2, while the migratory invasion ability

was improved after knockdown of NUDT16 (Figure 8E). Two tissue

microarrays from surgical patients with good clinical prognostic

information were immunohistochemically stained for two key

genes, respectively, showing high and low gene expression. We

scored the primary and metastatic foci separately in tissue

microarrays and analyzed the relationship between these two genes

and metastases at the clinical sample level with positive statistical

results (Figures 8F, G).The k-m curves obtained from the analysis of

immunohistochemical staining of tissue microarrays and clinical

prognostic information showed that high expression of DCP2 was

associated with poor prognosis, while high expression of NUDT16

improved the survival of ovarian cancer patients(Figures 8H, I).
4 Discussion

Ovarian cancer is the most lethal gynecological malignancy in the

world. Existing therapies cannot significantly improve the long-term

prognosis of ovarian cancer. Sometimes, the number of negative

clinical trials of platinum-resistant EOC may be frustrating (30–35).

Immunotherapy may represent an important therapeutic approach

in platinum resistant Ovarian cancer (36). Hence, the validation of

predictive to identify the subset of patients who may benefit from

immune modulation is an important translational endpoint in

ongoing trials. Immune checkpoint therapy represented by PD-1/

PD-L1 has achieved significant efficacy in tumors such as melanoma

and non-small cell lung cancer, but its response rate in ovarian cancer

clinical trials is less than 10% (37, 38), suggesting that the

immunosuppressive microenvironment of ovarian cancer is

complex. Specific m7G-locus signatures are associated with ovarian

cancer (39), so we studied the immune microenvironment of ovarian

cancer based on the expression of m7G regulators. Consensus

clustering analysis obtained two subtypes, and the immune cell

composition between subtypes, including Myeloid dendritic cells,

with significantly different contents, suggest that m7G modification

may affect the immune microenvironment of ovarian cancer.

In addition to the inflammatory microenvironment, immune

escape and immunosuppressive microenvironment are also a major

feature of tumors (40). Combination of ESTIMATE, MCPcounter

and CIBERSORT algorithms evaluated the immune cell infiltration
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between different m7G subtypes, covering 22 types of immune cells,

as well as immunity scores, stroma scores, and tumor purity, which

provided a multifaceted perspective for the analysis of the tumor

immune microenvironment. To survive and proliferate in primary

and distant organs, tumors must evade immune surveillance and

avoid killing by cytotoxic lymphocytes. Tumors do this by

remodeling the immune microenvironment into an immune

tolerance microenvironment (41). Tumor cells achieve this immune

evasion by down-regulating antigen presentation, up-regulating

immunosuppressive ligands, and secreting immunosuppressive

factors (42). We found that m7G risk scores were also associated

with immunotherapy response rates, suggesting that m7g

modification may be an effective therapeutic target for improving

immunotherapy response rates in ovarian cancer.

Further analysis showed that two m7g regulator genes, DCP2

and NUDT16, could be used to construct a prognostic risk model of

ovarian cancer, and that risk scores were significantly associated

with ovarian cancer prognosis. The risk score constructed based on

DCP2 and NUDT16 is an independent prognostic factor for

ovarian cancer, suggesting the important functions of these two

genes in ovarian cancer, which undoubtedly deserves further study.

The potential for biomarkers DCP2 and NUDT16 in guiding

therapy would strengthen the clinical relevance.

DCP2 is a major messenger RNA decarboxylase in eukaryotic

cells, and eukaryotic messenger RNAs contain a 5’ cap that

functions to protect mRNA from rapid extranuclear degradation.

The precise control of the mRNA decapping pathway by DCP2 is

very important for the regulation of intracellular mRNA levels (43).

Other research shows that miR-4293 regulating WFDC21P through

downregulate DCP-2 while miR-4293 promotes tumor cell

proliferation and metastasis but suppresses apoptosis (44).

However, there is no research reports on the specific function of

DCP2 in ovarian cancer. In this study, we found through CCK8 and

plate cloning experiments that DCP2 promotes ovarian cancer cell

proliferation, and through transwell experiments, we found that

DCP2 promotes ovarian cancer cell metastasis. We also found that

high expression of DCP2 in ovarian cancer tissue is associated with

poor patient prognosis.

Furthermore, we investigated the function of NUDT16 and its

association with ovarian cancer prognosis. NUDT16 is a member of

the nucleoside diphosphate linker X (Nudix) hydrolase family.

Nudix protein is characterized by containing a highly conserved

23 amino acid structure, and NUDT16 is necessary for the stability

of some gene expression (45). Studies have shown that NUDT16

plays a certain role in DNA damage-related diseases, such as

polyglutamine (polyQ) diseases, including Huntington’s disease

(HD) (46). Similarly, we found that NUDT16 exhibited opposite

functions from DCP2 in CCK8, plate cloning, and transwell

experiments. We also found that high expression of NUDT16 in

ovarian cancer tissue is associated with improved patient prognosis.

These suggest that high expression of NUDT16 may be a protective

factor for ovarian cancer.

Additionally, we explored the mechanisms underlying the

research findings. We performed GSEA analysis and found that
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FIGURE 8

Functional verification of 2 key genes and external verification of their impact on prognosis. (A) Western blotting detected the siRNA’s efficiency of
the two m7G genes (DCP2 and NUDT16) at the protein level. (B) CCK8 method was used to detect the cell proliferation after siRNA knockdown of
DCP2 and NUDT16. (C, D) The plate cloning method directly observed the formation of cell clones. (E) Results of the transwell experiment.
(F, G) The high and low expression of the two genes in the tissue microarray immunohistochemistry of ovarian cancer patients were performed
respectively, Scale bar, 50mm, and the expression of the two genes in the primary and metastatic foci were analyzed. (H, I) Two genes in tissue
microarray data were analyzed for survival. ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05.
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the PI3K-Akt-mTOR signaling was activated in OV patient samples

with higher DCP2 expression and lower NUDT16 expression. In

cisplatin-resistant ovarian cancer cells, m7G modification

significantly enhances translation of EGFR pathway genes and

activates PI3K/AKT/mTOR signaling, which reduces apoptosis

sensitivity (47). It was reported that the UBE2S gene could inhibit

autophagy by activating the PI3K/AKT/mTOR signaling pathway

to induce cisplatin resistance in OV (48). Then, we used Western

Blotting to verify the expression of key proteins of the pathway

when knocking down DCP2 or NUDT16 (Supplementary Figure 1).

These results imply that DCP2 and NUDT16 may regulate the

malignant progression of ovarian cancer through the PI3K-Akt-

mTOR signaling pathway, which may have the potential to develop

them as drug targets.

This is the first study to identify DCP2 and NUDT16 as

potential biomarkers for in guiding OV therapy. However, there

are still some limitations in this study, such as the absence of animal

experiments. We will continue to investigate the impact of these two

genes on immune cell infiltration in the microenvironment, the

correlation between these two genes and m7G, and the lack of in-

depth exploration of related mechanisms. In addition, our current

data establish correlations but do not establish causality or define

the precise signaling nodes through which these genes exert their

effects. Future investigations should systematically dissect how these
Frontiers in Immunology 14
genes modulate the recruitment, activation, or polarization of

specific immune cell subsets (e.g., T lymphocytes, macrophages,

dendritic cells) within diverse tissue microenvironments. This could

involve employing advanced techniques such as single-cell RNA

sequencing, immunohistochemistry, and cytokine profiling to map

cell-cell communication networks and signaling cascades driven by

the genes of interest.
5 Conclusion

We discovered for the first time that m7G-related genes play a

role in the immune microenvironment of ovarian cancer, which

may regulate immune cell infiltration and immune function in

ovarian cancer tissue in a synergistic manner. m7G modification

affects the cellular composition of the immune microenvironment

in ovarian cancer, and two key m7G modification-regulated genes,

DCP2 and NUDT16, promotes the proliferation and metastases of

ovarian cancer cells, and its high expression is associated with poor

prognosis. The prognostic risk model of m7G has excellent

predictive performance. And the biological mechanism of their

specific functions about m7G in ovarian cancer needs further study.

Our work provides new ideas for the mechanism of ovarian cancer

and immunotherapy.
FIGURE 9

GSEA analysis results and Western Blotting experimental verification. (A, B) The activated PI3K-Akt-mTOR signaling pathway in OV patient samples
with higher DCP2 expression and lower NUDT16 expression through TCGA database. (C) Western blotting detected the expression of key proteins of
the PI3K-Akt-mTOR signaling pathway at the protein level, after siRNA knockdown of DCP2 and NUDT16.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1595618
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1595618
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Ethics statement

The studies on humans were approved by the Ethics Committee

of the National Cancer Center/Cancer Hospital, Chinese Academy

of Medical Sciences, and Peking Union Medical College (Approval

No. NCC5066). All human tissue samples were collected with

informed consent, and all samples were de-identified

before analysis.
Author contributions

KW: Conceptualization, Resources, Visualization, Writing –

original draft. YW: Data curation, Formal Analysis, Funding

acquisition, Writing – original draft. MA: Investigation, Writing –

original draft. WM: Project administration, Writing – original draft.

HL: Methodology, Writing – original draft. YS: Software, Supervision,

Validation, Writing – review & editing. BL: Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This work was supported
Frontiers in Immunology 15
by the Beijing Natural Science Foundation (J00009) and National

Natural Science Foundation of China (82272726).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.

1595618/full#supplementary-material
References
1. Kuroki L, Guntupalli SR. Treatment of epithelial ovarian cancer. BMJ. (2020) 371:
m3773. doi: 10.1136/bmj.m3773

2. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J
Clin. (2023) 73:17–48. doi: 10.3322/caac.21763

3. Armstrong DK, Alvarez RD, Backes FJ, Bakkum-Gamez JN, Barroilhet L,
Behbakht K, et al. NCCN guidelines(R) insights: ovarian cancer, version 3.2022. J
Natl Compr Canc Netw. (2022) 20:972–80. doi: 10.6004/jnccn.2022.0047

4. Li T, Zhang H, Lian M, He Q, Lv M, Zhai L, et al. Global status and attributable
risk factors of breast, cervical, ovarian, and uterine cancers from 1990 to 2021. J
Hematol Oncol. (2025) 18:5. doi: 10.1186/s13045-025-01660-y

5. Pujade-Lauraine E, Banerjee S, Pignata S. Management of platinum-resistant,
relapsed epithelial ovarian cancer and new drug perspectives. J Clin Oncol. (2019)
37:2437–48. doi: 10.1200/jco.19.00194

6. Somasagara RR, Spencer SM, Tripathi K, Clark DW, Mani C, Madeira da Silva L,
et al. RAD6 promotes DNA repair and stem cell signaling in ovarian cancer and is a
promising therapeutic target to prevent and treat acquired chemoresistance. Oncogene.
(2017) 36:6680–90. doi: 10.1038/onc.2017.279

7. Alkema NG, Wisman GB, van der Zee AG, van Vugt MA, de Jong S. Studying
platinum sensitivity and resistance in high-grade serous ovarian cancer: Different
models for different questions. Drug Resist Update. (2016) 24:55–69. doi: 10.1016/
j.drup.2015.11.005

8. Baert T, Ferrero A, Sehouli J, O'Donnell DM, González-Martıń A, Joly F, et al. The
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