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Integration of hepatic lipidomics
and transcriptomics reveals
dysregulation of lipid metabolism
in a golden hamster model of
visceral leishmaniasis
Dongmei Yuan*, Hanxiao Qin and Zeying Yu

Department of Pathogenic Biology, School of Basic Medical Sciences, Chengdu Medical College,
Chengdu, China
Visceral leishmaniasis (VL), the most severe form of leishmaniasis, remains a

significant public health concern that cannot be overlooked in underdeveloped

regions. Studies suggest that lipids play a crucial role in the survival of Leishmania

parasites in mammalian hosts. However, a comprehensive understanding of the

characteristics and underlying mechanisms of lipid metabolism in VL hosts is

lacking. In this study, we conducted lipidomic and transcriptomic analyses of liver

tissues from VL golden hamsters at 12 weeks post-infection (WPI) and performed

integrated analysis. Simultaneously, qPCR validation of several key regulatory

enzymes was performed at the tissue level. The results revealed a decreased

abundance of phospholipids such as phosphatidylethanolamine (PE) and

phosphatidylcholine (PC) and an increased abundance of their metabolites,

including lysophosphatidylcholine (LPC), lysophosphatidylethanolamine (LPE),

lysophosphatidylserine (LPS), and platelet-activating factor (PAF). Conjoint

pathway analysis revealed that glycerophospholipid (GPL) metabolism,

arachidonic acid (AA) metabolism, glycerolipid metabolism, and linolenic acid

metabolism were the pathways with relatively high proportions of common

enrichment. In the GPL metabolism and AA metabolism pathways, the

transcription levels of genes such as phospholipase A2 (PLA2) family enzymes,

cyclooxygenase-2 (Cox-2), arachidonate 5-lipoxygenase (Alox5), and

hematopoietic prostaglandin D synthase (Hpgds), all of which regulate

phospholipid hydrolysis and lipid mediator production, were significantly

increased. Additionally, we found that the expression of lysophosphatidylcholine

acyltransferase 1/2 (Lpcat1/2), the enzyme regulating PC remodeling, was

upregulated and that the levels of saturated PCs (PC30:0, PC32:0, and PC34:0)

were simultaneously significantly increased simultaneously. These findings suggest

that Leishmania infection may regulate PC remodeling in the host liver and

increase membrane phospholipid metabolism, resulting in the production of a

series of lipid mediators that participate in immune regulation; this could have a

significant impact on the survival of Leishmania in the host and on the progression

of the disease.
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1 Introduction

Leishmaniasis is a tropical parasitic disease that can be caused

by more than 20 species of Leishmania parasites and is transmitted

by sand flies. Leishmaniasis continues to be a major health problem

in 4 ecoepidemiological regions of the world: the Americas, East

Africa, North Africa and West and Southeast Asia (1). Visceral

leishmaniasis, which is caused mainly by Leishmania donovani and

Leishmania infantum (2, 3), is the most severe form and is

characterized by irregular bouts of fever, substantial weight loss,

swelling of the spleen and liver and severe anemia. If left untreated,

the fatality rate can reach 100% within 2 years. Currently,

pharmacological treatment options for VL are very limited and

face numerous challenges. Antimonials have been used to treat VL

for more than 80 years. In addition to their severe cardiac toxicity

and unsuitability for oral administration, increasingly severe drug

resistance has been a major factor limiting their therapeutic

effectiveness. Amphotericin B is used as an alternative when

antimonial treatment fails; however, it is highly toxic and has a

narrow therapeutic window, necessitating therapeutic drug

monitoring in clinical practice. Miltefosine, originally an

anticancer drug, is currently the only oral medication for VL, but

it has significant gastrointestinal side effects. There are currently no

drugs that have been specifically developed for treating VL.

Therefore, there is an urgent need to establish safer and more

effective novel therapeutic approaches, and a deeper understanding

of the pathogenic mechanisms of leishmaniasis is needed to identify

new therapeutic targets.

Lipids and their derivatives, many of which are enriched in

blood, serve as membrane components, signaling molecules, and

sources of cellular energy and play crucial roles in microbial

survival. Research has demonstrated that the survival of many

vector-borne pathogens is uniquely dependent on host lipids (4–

8). Exploring lipid regulatory mechanisms will prompt the

development of novel therapeutic strategies (9, 10). The

importance of lipids in the survival of Leishmania parasites in

mammalian hosts is gradually gaining attention. Research has

demonstrated that the invasion of host cells by Leishmania

parasite involves the utilization of host membrane cholesterol (11,

12). Although Leishmania parasites synthesize many of their

necessary lipids de novo, including fatty acids, sphingolipids, and

phospholipids, lipid salvaging mechanisms are still needed to

promote their growth during their intracellular survival stage in

the host. For example, induction of lipid droplet formation within

the cell may aid in high energy utilization (13). After transitioning

from promastigotes to amastigotes, Leishmania likely scavenges and

remodels host lipids into parasite-specific molecules such as the

sphingolipid inositol phosphorylceramide (IPC) (14, 15).

Intracellular amastigotes appear to acquire the majority of their

PC through salvage and remodeling, allowing them to adapt to a

slow-growing state (16). Lipids have also been implicated in

Leishmania immune evasion. Infective parasites express relatively

high levels of polyunsaturated fatty acid metabolites and may

promote the differentiation of macrophages into a less

inflammatory M2 phenotype that produces high levels of
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proresolving bioactive lipids that facilitate parasite survival and

proliferation (17). Our previous study involving serum metabolic

analysis of hamsters with VL revealed that lipid metabolism,

particularly glycerol phospholipid metabolism, was significantly

affected postinfection. This finding suggests that lipids may play

an important role in the Leishmania-host interaction (18).

However, limited research on lipid metabolism and its regulation

by the host has been conducted using systems biology approaches,

and the existing knowledge is insufficient to establish a

comprehensive understanding of the characteristics of lipid

regulation in VL.

Currently, owing to the varying research needs for specific

components and the requirements for accuracy in identifying

various components, metabolomics has branched out into

different branches, including lipidomics, amino acidomics and

more. Lipidomics has already been applied in the study of several

vector-borne parasites and has been instrumental in understanding

host–pathogen interactions (7, 19, 20). A study of the spatial

lipidomics of L. donovani-infected mouse liver revealed that

phospholipids containing AA in hepatic granulomas may serve as

important precursors for downstream oxylipin generation, with

consequences for the regulation of the inflammatory cascade (21).

However, because mice are not an optimal model for studying the

pathogenic mechanisms of VL and because there is a lack of

synchronous gene regulation data related to changes in lipids, the

lipid regulatory mechanisms that occur in VL hosts are currently

not well understood. It is necessary to further apply integrated

multiomics analysis to observe lipid changes in the infectious host.

As an important research strategy in systems biology, multiomics

integration, in contrast to single-omics analysis, can systematically

depict regulatory processes by using data from different omics

methods to validate each other and thereby increase the

credibility of conclusions. This approach is beneficial for studying

the regulatory mechanisms that govern biological processes and

effectively identifying potential therapeutic targets. Given that the

liver is the primary site of lipid synthesis and metabolism and is the

main organ affected by VL, this study employed untargeted

lipidomics and transcriptomics to analyze the liver tissues of

golden hamsters infected with L. infantum. In addition, several

key regulatory enzymes were validated at the transcriptional level.

This research provides new insights into the pathogenesis of VL and

lays a foundation for the discovery of novel therapeutic targets.
2 Materials and methods

2.1 Leishmania strain and infection model

The Leishmania strain (MHOM/CN/2016/SCHCZ) used in this

study was isolated from a patient with Kala-azar in West China

Hospital of Sichuan University and identified as L. infantum in a

previous study (18). This parasite has been conserved in golden

hamsters to maintain its virulence. Prior to conducting the

experiments, the Leishmania strain was isolated and cultivated in

modified M199 liquid medium containing 15% fetal bovine serum
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and 20% sterile defibrinated rabbit blood. The cultivation was

carried out hermetically at 26°C with shaking at 80 rpm. After

logarithmic growth, metacyclic promastigotes were harvested,

concentrated, and resuspended in phosphate-buffered saline (PBS)

at pH 7.4 in preparation for infection of the animals.

Eight-week-old female golden hamsters (Mesocricetus auratus)

were randomly divided into a control group (CG) and an infection

group (IG); each group included 6 hamsters. The hamsters were

reared in a laboratory animal facility and had access to sterile food

and water ad libitum. To minimize stress, they were acclimated for 4

weeks prior to the commencement of the formal experiments.

In accordance with our previously established protocol, each

hamster in the IG was given an intraperitoneal injection of 1 mL of

PBS containing 2.7×107 promastigotes. Each CG hamster received 1

mL of PBS only.
2.2 Sample collection and model
assessment

At 12 WPI, the golden hamsters in the CG and IG groups were

sacrificed, and their liver tissues were isolated. The tissues were

immediately snap-frozen in liquid nitrogen and were then stored at

-80°C until metabolomics detection and RNA extraction. Two hamsters

from each group were used for model assessment, including parasite

burden determination and histopathological observation.

The liver and spleen tissues were weighed, and 50 mg of each

tissue sample was homogenized in 1 mL of PBS using a handheld

tissue grinder. Total DNA was extracted from the homogenate

according to the manufacturer’s instructions for the Biosharp

Genomic DNA Extraction Kit for Animal Samples (Labgic

Technology Co., Ltd., Hefei, China). Each sample of extracted

DNA was then diluted in 80 mL of RNase-free ddH2O. To

establish a standard curve for Leishmania load, the parasites were

serially diluted 10-fold in a dilution series ranging from 106 to 1.

The total DNA in these dilutions was also extracted and stored in 80

mL of RNase-free ddH2O. A TaqMan probe fluorescence real-time

PCR method was employed to quantify the parasite load. The

primer pairs and the PCR conditions used are described in a

previous study (22, 23). qPCR was performed on a Mastercycler

ep realplex 2 instrument (Eppendorf, Germany). Hematoxylin–

eosin (H&E)-stained liver tissue slices were prepared for

pathological observation according to our previously described

method (23).
2.3 Lipid extraction and lipidomics analysis

The detailed process used for sample lipid extraction and the

components of the internal standards are provided in the

Supplementary Material. The lipidomics analysis of liver samples

was conducted at the Beijing Genomics Institute (BGI) using a

Waters 2777c ultra-performance liquid chromatography (UPLC)

system and a Thermo Fisher Q Exactive high-resolution mass

spectrometer (HRMS).
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For detection, the prepared samples were separated on a Waters

2777c UPLC system with a Thermo Fisher Q Exactive HRMS.

Chromatographic separation was performed on a CSH C18 column

(1.7 mm 2.1*100 mm, Waters, USA). The mobile phase in positive

ion mode consisted of mobile phase A (60% acetonitrile in water, 10

mM ammonium formate and 0.1% formic acid) and mobile phase B

(90% isopropanol, 10% acetonitrile, 10 mM ammonium formate

and 0.1% formic acid). In negative ion mode, mobile phase A (60%

acetonitrile in water and 10 mM ammonium formate) and mobile

phase B (90% isopropanol, 10% acetonitrile and 10 mM ammonium

formate) were used. The elution was conducted at 55°C at a flow

velocity of 0.4 mL/min, with a total sample volume of 5 mL. The
gradient conditions were as follows: 40%–43% phase B from 02 min,

43%–50% phase B from 22.1 min, 50%–54% phase B from 2.17 min,

54%–70% phase B from 77.1 min, 70%–99% phase B from 7.113

min, 99%–40% phase B from 1313.1 min, held constant at 99%–

40% phase B over 13.115 min and washed with 40% phase B from

13.115 min. Primary and secondary mass spectrometry data were

acquired. The full scan range was 70–1050 m/z with a resolution of

120,000, the automatic gain control (AGC) target for MS

acquisition was set to 3e6, and the maximum ion injection time

was 100 ms. The top 3 precursors were selected for subsequent MS/

MS fragmentation with a resolution of 30,000, the AGC was 1e5,

and the maximum ion injection time was 50 ms. The stepped

normalized collision energies were set to 15, 30 and 45 eV. The ESI

parameters were as follows: sheath gas flow rate of 40, aux gas flow

rate of 10, spray voltage (|KV|) of 3.80 for positive mode and 3.20

for negative mode, capillary temperature of 320°C, and aux gas

heater temperature of 350°C.
2.4 Extraction of total RNA and RNA
sequencing

The samples were ground in liquid nitrogen, and total RNA was

then extracted using TRIzol reagent (Invitrogen, USA) according to the

manufacturer’s instructions. The extracted RNA samples were treated

with DNase I reagent (Thermo Fisher, USA), and their RNA

concentrations were determined on a NanoDrop spectrophotometer

(Thermo Fisher, USA). The mRNA library preparation was performed

using Optimal Dual-mode mRNA Library Prep Kit (BGI-Shenzhen,

China). Firstly,200ng total RNA was denatured at 65°C to open the

secondary structure, and mRNA was enriched by oligo (dT)-attached

magnetic beads through incubation at 25°C for 5 minutes.

Fragmentation buffer (containing divalent cations) was added to the

mRNA obtained in the previous step, and the mixture was subjected to

a reaction at 94°C for 5 minutes to fragment the mRNA into segments

of 200–300 bp in length. Then, first-strand cDNA was synthesized

using random hexamer primers and 1st Strand Enzyme Mix.

Subsequently, the second-strand cDNA synthesis, end repair, and

dA-tailing were performed using the first-strand cDNA, 2nd Strand

Buffer (dNTP), and the 2nd Strand Enzyme Master Mix. Then, an

adaptor ligation reaction system was prepared to ligate adaptors to the

cDNAs. Finally, the library products were amplified via PCR reaction

and subjected to quality control. The constructed library was tested by
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1595702
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yuan et al. 10.3389/fimmu.2025.1595702
analyzing the distribution of DNA fragments using the Agilent

Bioanalyzer 2100 and by detecting the dsDNA concentration on a

Qubit 2.0 fluorometer (Life Technologies, CA, USA).

Next, single-stranded library products were produced via

denaturation. The reaction system for circularization was set up

in a way that caused uncyclized single-stranded linear DNA

molecules to be digested; thus, only single-stranded cyclized DNA

products were obtained. Library preparation was performed using

an Optimal Dual-mode mRNA Library Prep Kit (BGI, Shenzhen,

China). The final single-strand circularized library was amplified

with phi29 and rolling circle amplification (RCA) to create DNA

nanoballs (DNBs) that carried more than 300 copies of the initial

single-stranded circularized library molecules. The DNBs were

loaded into a patterned nanoarray, and PE 100/150 base reads

were generated on the G400/T7/T10 platform (BGI). The

sequencing data were filtered using SOAPnuke (24) by 1)

removing reads containing sequencing adapters; 2) removing

reads whose low-quality base ratio (base quality less than or equal

to 15) was greater than 20%; and 3) removing reads whose

unknown base (‘N’ base) ratio was greater than 5%. The clean

reads so obtained were stored in FASTQ format and mapped to the

reference Mesocricetus_auratus genomic data (BCM_Maur_2.0,

GCF_017639785.1) via HISAT2 (25). Ericscript (v0.5.5) (26) and

rMATS (V4.1.2) (27) were used to detect fusion genes and

differentially spliced genes (DSGs), respectively. The expression of

individual transcripts was calculated as fragments per kilobase of

transcript per million mapped reads (FPKM) (28).
2.5 Validation of gene expression by RT–
qPCR

The expression of genes of particular interest, including Alox5,

Cox-2, phosphochol ine cyt idylyl transferase (Pcyt1a) ,

phosphoethanolamine cyt idyly l t ransferase 2 (Pcyt2) ,

phosphatidylethanolamine N-methyltransferase (PEMT), Lpcat1

and Lpcat2, were validated in the liver tissue of hamsters at 12

WPI via RT–qPCR tests with SYBR Green. The housekeeping gene

was the ribosomal protein lateral stalk subunit P0 (Rplp0). The

sequences of the primer pairs are provided in Supplementary

Table 1. The qPCR system and amplification conditions were set

according to the instructions of the Biosharp SYBR Green qPCR

Mix (Labgic Technology Co., Ltd., Hefei, China). Relative changes

in expression were calculated via the 2-DDCt method after

calibration with the Rplp0 gene (29).
2.6 Statistical analysis

The lipidomics raw data were input into LipidSearch v.4.1

(Thermo Fisher Scientific, USA) for preprocessing, which

included peak picking, alignment and extraction, retention time

correction, adduct ion merger, missing value filling, background

peak marking, deconvolution, normalization and identification.

The preprocessed data were then transferred to metaX (30).
Frontiers in Immunology 04
Probabilistic quotient normalization (PQN) and quality control-

based robust LOESS signal correction (QC-RLSC) were performed,

and ion peaks with coefficients of variation (CV) > 30% in the QC

samples were eliminated. The detected ions were subsequently

identified through comparison with standard substances and

further annotated by combining references from databases,

including the BGI Library, the LipidSearch Library (Thermo

Fisher, USA), LIPID MAPS and the Human Metabolome

Database (HMDB).

Univariate and multivariate methods were used to identify

lipids that showed differential abundance and to identify

differentially expressed genes (DEGs). Unsupervised multivariate

statistical method principal component analysis (PCA) was

performed to observe intergroup separation and outliers from the

original data. To reduce confounding biological/technical variability

and improve the statistical power for detecting subtle shifts in the

content of specific lipids, further orthogonal partial least squares

discriminant analysis (OPLS-DA) was conducted to dissect

differences between the CG and IG. Simultaneously, to evaluate

the discriminative capacity of individual metabolites in classifying

sample groups, variable importance in projection (VIP) scores were

calculated on the basis of the OPLS-DA. Combined with univariate

analysis, the lipids that showed differential abundances were

identified using the following criteria simultaneously: fold

change≥1.2 or ≤0.83, FDR adjusted p value of t test ≤0.05, and

VIP of OPLS-DA≥1.0. The analyses were performed via the R

package ‘MetaboAnalyst R’ (31), which includes PCA and OPLS-

DA for each group. A chain saturation analysis of the

glycerophospholipid metabolites of interest was performed. In

this analysis, the contents of the each individual species of

glycerophospholipid with the same number of unsaturated bonds

were summed, and the differences in content between the IG and

the CG were statistically analyzed.

The DEGs were determined via the R package ‘DESeq2’ (32)

and selected based on the following criteria: |log2FC|≥1 and FDR

adjusted p value of t test ≤0.01. Pathway alignment and analysis

were performed on the Dr. Tom platform (BGI, China). The

metabolic pathways related to differentially abundant lipids and

DEGs were searched in the KEGG database. Statistical analyses

were performed via R-lang version 4.4.2. The Pearson’s r

coefficients between each pair of differentially abundant lipids and

DEGs were calculated. The top 60 pairs with high r coefficients and

significant FDR-adjusted p values were collected. The joint

lipidomics and transcriptomics analysis was performed through

the integration of KEGG enrichment and pathway information.
3 Results

3.1 Detection in the infection model

Histopathological results revealed that the livers of golden

hamsters infected for 12 weeks presented some sporadic

granulomas, and the spleens presented hyperplasia of the white

pulp, with amastigotes detectable inside (Figure 1A). Parasite load
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quantification via qPCR also indicated successful infection in the

hamster (Figure 1B). The calculated parasite density was 10.90 ±

1.13 ×106/g for the liver and 30.6± ×106 for the spleen. The parasite

load standard curve is shown in Supplementary Figure 1. Combined

with previous research on infection stages in the hamster model, 12

WPI corresponds to the mid-stage or mid-to-late stage of infection.
3.2 Lipid detection and analysis

3.2.1 Lipidomics data quality control and global
analysis

Lipid detection and analysis were conducted on a total of 12 liver

samples from the IG and the CG of Syrian hamsters. High overlap

was observed in the response intensity and retention time of the

chromatographic peaks in the quality control (QC) samples under

both positive and negative ion modes. Principal component analysis

(PCA) of the whole samples revealed tight clustering of the QC

samples (Supplementary Figure 2A). These results indicated small

systematic errors and good quality of the data obtained through the

LC–MS system. After data preprocessing and metabolite

identification, a total of 656 lipid molecules were identified.

3.2.2 Differentially abundant lipid screening and
analysis

In the OPLS-DA, 200 response permutation tests were

conducted on the OPLS-DA model, and the results indicated that

the model performed well, with no observed overfitting

(Supplementary Figure 3). The model parameter values were as
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follows: R2 = 0.987 and Q2 = 0.955. Through PCA and OPLS-DA

(Supplementary Figure 2), significant separation was observed

between the IG and the CG, with clear clustering of samples

within each group. Based on the screening criteria and the lipid

molecule identification level (compounds in class D, whose lipid

structures were not accurately identified, were removed), a total of

237 differentially abundant lipids were screened (Supplementary

File 1); among these, 122 increased in abundance and 115 decreased

after infection (Figure 2A).

A volcano plot showing the content of differentially abundant

lipids in the IG and CG, based on lipid subclass, is shown in

Figure 2B. The analysis of each differentially abundant lipid content

is presented in the form of bubble charts (Figure 2C). The data in the

two charts show that most lipid subclasses, including LPS, LPE,

LPC, phosphatidylethanol (Pets), PAF, (O-acyl)-1-hydroxy

fatty acid (OHAMA), FA, cyclic phosphatidic acid (cape),

monogylcosylceramide (CerG2), diglycosylceramide (Cerge), and

ceramide (Cer), increased in abundance after infection. The other

lipid subclasses, including PC, PE, and cholesteryl ester (ChE),

decreased significantly in abundance after infection. The detailed

values of fold changes for differentially abundant lipids were provided

in the Supplementary File 1. From the table of 237 differentially

abundant metabolites, it was observed that each subclass of

glycerophospholipids, including PC, PE, PS, and PI, comprised a

large number of distinct lipid molecules with different carbon chain

lengths and numbers of double bonds. Although the abundance of

the PC and PE subclasses decreased, the trends in the variation in the

amounts of different lipid molecules within the same subclass were

not inconsistent after infection (Figure 2C). These findings suggest
FIGURE 1

H&E-stained pathological slices of tissues and parasite load detection at 12 WPI. (A) The yellow pentagons indicate the granulomatous regions, and
the arrows indicate the amastigote-like spots. The infiltration of inflammatory cells resulted in the formation of granulomas. (B) Leishmania load in
the liver and spleen at 12 WPI (2 hamsters in the infection group and 2 in the control group were sacrificed at each time point, and each sample was
analyzed in triplicate).
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that Leishmania infection may result in changes in the structures of

host lipid molecules. Further analysis of the chain saturation of

glycerophospholipids revealed that the levels of saturated PCs (the

number of unsaturated bonds was 0) were significantly increased

after infection (Figure 2E). These findings suggest that PC remodeling

may have occurred in the infected hamsters.

To gain a deeper understanding of the functions of differentially

abundant lipids as well as of the primary biochemical metabolic
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pathways and signal transduction pathways in which they are

involved, the results of KEGG pathway enrichment analysis

involving the differentially abundant lipids are shown in

Figure 2D. The differentially abundant lipids were predominantly

enriched in glycerophospholipid metabolism, inositol phosphate

metabolism, arachidonic acid metabolism and glycerolipid

metabolism, indicating that these lipid metabolism pathways were

significantly altered after infection.
FIGURE 2

Screening and analysis of differentially abundant lipids. (A) Volcano plot of differentially abundant lipid metabolites. The green dots indicate
metabolites with significantly decreased abundance, and the red dots indicate metabolites with significantly increased abundance. (B) Volcano plot
showing differences in lipid content at the subclass level. (C) Bubble chart showing all analyses of differentially abundant lipid content. Each dot
represents a differentially abundant lipid. The colors of the dots correspond to different lipid subclasses. The metabolites to the left of the dashed
line (FC=1) are decreased in content, and those to the right are increased. (D) Bubble chart showing enrichment analysis of pathways related to the
differentially abundant lipids. The deeper the color is, the smaller the p value is. (E) Analysis of saturated PC (the number of unsaturated bonds was 0)
content. *Indicates a significant difference between two groups (P < 0.05). The bars show total intensities of the groups, while the dots on the lower
part stand for individual PCs.
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3.3 Transcriptome detection and screening
for lipid-related differentially expressed
genes

Six samples were sequenced on the DENSE platform; these

included the infection groups IG1, IG2, and IG3, as well as the

control groups CG1, CG2, and CG3. The average rate of alignment

of the samples to the reference genome was 93.48%, and a total of

17,691 genes were detected. To assess the overall similarity of gene

expression between samples, the Pearson correlation coefficients

between the gene expression levels in each pair of samples were

calculated (Supplementary Figure 4). The correlation coefficients

were greater (coefficient >0.8) among samples within the IG, and

the CG presented a similar pattern, reflecting significant differences

in gene expression between the infected and control groups. The

raw sequencing data contain some reads with low quality, adapter

contamination, and excessively high proportions of unknown bases

(N). These reads were removed prior to data analysis to ensure the

reliability of the results. The quality statistics of the filtered reads

can be found in Supplementary Tables 2, 3. Both the Q20 and Q30

values (Q20 and Q30 represent the percentages of bases with base

quality scores ≥ 20 and ≥ 30, respectively) of the clean reads were

greater than 90%, suggesting that the quality of the sequencing was

high. The total mapping genome ratio of each sample was greater

than 80%. The transcriptome data can be subjected to further

differential and functional analysis.

A total of 2,608 differentially expressed transcripts were

identified after application of the screening criteria. Among them,

1,881 genes were upregulated, and 727 genes were downregulated

(Figures 3A, B). We performed Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analysis of the annotated

DEGs, defining the pathways with FDR-adjusted p values ≤0.05 as

significantly enriched in the DEGs. We then classified and

summarized these enriched pathways. As shown in Figure 3C, the

pathways with annotation information for the DEGs can be broadly

categorized into five types according to the biological activities they

encompass; these are cellular processes, cell environmental

information processing (such as signal transduction), genetic

information processing, metabolism, and various systemic

processes within the organism. Of these five types, the pathways

involved in various systemic processes, particularly those related to

the immune system, were the most enriched. Given that this

research focused on the impact of Leishmania infection on host

lipid metabolism, we selected the 100 DEGs enriched in the lipid

metabolism category for further joint analysis with the lipidomics

data (Supplementary File 2).
3.4 Joint analysis of differentially abundant
lipid metabolites and genes

3.4.1 Spearman correlation analysis
A correlation heatmap of the screened DEG–differentially

abundant lipid pairs is shown in Figure 4A. Dark red indicates

strongly positively correlated DEG–differentially abundant lipid
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pairs, whereas dark blue represents strongly negatively correlated

differentially abundant lipid pairs. The significantly correlated

DEG–differentially abundant lipid pairs included PC (35:6),

which was correlated with the expression of the genes Cyp2c26

and Dhrs11, DG (17:0/18:1), which correlated with the expression

of Dgat2 and Glyctk, SM (d44:6), which correlated with the

expression of Smpd3 and Ugt2b7, and Cer (d18:1/24:2), which

correlated with the expression of Soat1, phospholipase B1 (Plb1),

Cerk and Fads2. Based on the functional information regarding

both lipid molecules and gene transcripts, these highly correlated

DEG-differentially abundant lipid pairs are involved in the

metabolism of PC, PE, DG, SM, and Cer in hamsters.

3.4.2 Joint functional analysis based on pathways
By annotating both DEGs and differentially abundant lipids to

KEGG pathways simultaneously, we can integrate pathway data

comprehensively and intuitively and thereby create a complete

gene–metabolite regulatory network diagram. Pathway

enrichment analysis was conducted on the DEGs and the

differentially abundant lipids to calculate the enrichment levels of

genes and lipids in various pathways. As shown in the pathway

enrichment bubble chart (Figure 4B), the pathways with a relatively

high enrichment ratio included GPL metabolism, AA metabolism,

glycerolipid metabolism, and linolenic acid metabolism. These

results suggested that these pathways were significantly regulated

in the liver of hamsters infected with Leishmania at 12 WPI.

To observe the patterns of expression of key genes related to

lipid biosynthesis and metabolism pathways, metabolic pathway

maps for AA and GPL, which are associated both with DEGs and

with differentially abundant metabolites, were generated, as shown

in Figure 5, and heatmaps were generated (Figure 6A). According to

the heatmap, most of the genes were upregulated at 12 WPI. The

expression of enzymes belonging to the phospholipase A2 (PLA2)

family, including Pla2g2a, Pla2g4a, Pla2g15, and Pla2g5, was

significantly increased. PLA2 represents a superfamily of enzymes

that catalyze the hydrolysis of membrane phospholipids. Regulatory

enzymes related to phospholipid remodeling, namely, Lpcat1,

Lpcat2, and Mboat1, are also upregulated upon infection. In

addition, enzymes related to PA synthesis , including

phospholipase D family member 3 (Pld3), Pld4, Dgki, Dgkk, and

Dgkg, were upregulated after infection. Overall, in the GPL

metabolic pathway, hydrolytic metabolism and phospholipid

remodeling are significantly regulated after infection. In AA

metabolism, the expression of the cytochrome P450 family

(Cyp2c, Cyp2b, Cyp2u, Cyp2e, Cyp4a, and Cyp2j), Cox-2, Alox5,

Hpgds, and Ark1c3 was significantly regulated, indicating that AA

metabolism in the livers of the infected hamsters was

significantly increased.

3.4.3 Validation of metabolism-related genes via
qPCR

Finally, the expression levels of the related genes Alox5, Cox-2,

Pcyt1a, Pcyt2, PEMT, Lpcat1, and Lpcat2, whose gene products are

involved in AA metabolism and in the synthesis of PC and PE, were

verified via qPCR. As shown in Figure 6B, in the infection group,
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1595702
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yuan et al. 10.3389/fimmu.2025.1595702
the expression of Alox5 and Cox-2 was upregulated significantly,

and the regulatory enzymes Lpcat1 and Lpcat2, which are involved

in PC remodeling, were also significantly upregulated. However, the

expression of the rate-limiting enzymes Pcyt1a and Pcyt2, which

participate in de novo PC and PE synthesis, and that of the

regulatory enzyme PEMT, which is necessary for PE-to-PC

transformation, were downregulated. The results suggest that the

cyclooxygenase pathway and the lipoxygenase pathway of AA were

activated in the livers of the infected animals and that PC

remodeling might have occurred.
4 Discussion

Previous serum metabolomic studies of VL golden hamsters

have indicated that lipid metabolism, as indicated by the host’s
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serum metabolic profile, is very significantly affected after infection,

suggesting that lipid metabolism is closely associated with the

progression of VL (18). In this study, through joint enriched

pathway analysis of differentially abundant lipid metabolites and

differentially expressed genes, we found that GPL metabolism, AA

metabolism, linolenic acid metabolism, unsaturated fatty acid

synthesis, and sterol synthesis are the pathways with the highest

enrichment ratios in VL golden hamsters, consistent with our

previous findings. Pathway analysis solely on the basis of

transcriptome data on lipid metabolism also revealed that the

DEGs in VL golden hamsters are enriched in steroid hormone

synthesis, AA metabolism, and GPL metabolism.

In this study, the abundance of arachidonic acid, also known as

FA (20:4), increased significantly in the livers of the IG.

Concurrently, the transcription levels of enzymes belonging to the

phospholipase A2 (PLA2) family, including Pla2g2a, Pla2g4a, and
FIGURE 3

Transcriptome analysis and screening for lipid-related DEGs. (A) The number of differentially expressed transcripts. (B) Volcano plot of differentially
expressed transcripts. (C) Statistical chart of KEGG pathway classification of DEGs. The DEGs enriched in the lipid metabolism category were
selected for further analysis.
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others, also markedly increased. Furthermore, the levels of LPC,

LPE, and LPS, which are products of the hydrolysis of membrane

phospholipids, were significantly elevated. Arachidonic acid, a

polyunsaturated w-6 fatty acid, is derived from membrane

phospholipids through a reaction that is catalyzed by

phospholipases, and the PLA2 family of enzymes are the specific

hydrolases that are responsible for membrane phospholipid

hydrolysis. These results indicate that membrane phospholipid

hydrolysis activity in liver tissue increased significantly at 12

WPI. AA is general ly acted upon by cyclooxygenase,

lipoxygenase, and cytochrome P450 oxidase (CYP epoxygenase);

these reactions produce a variety of metabolites, including
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prostaglandins (PGs), hydroxyeicosatetraenoic acids (HETEs),

leukotrienes (LTs), and epoxyeicosatrienoic acids (EETs) (33–36).

These lipid metabolites, also known as eicosanoids, are widely

involved in physiological processes and pathological responses,

including immune regulation, anti-inflammatory effects, and

intracellular and extracellular signal transduction (37). In this

study, the key regulatory enzymes in the AA metabolic pathway,

including members of the cytochrome P450 family (Cyp2c, Cyp2b,

Cyp2u, Cyp2e, Cyp4a, and Cyp2j), Cox-2, Alox5, Hpgds, Plb1, and

aldo-keto reductase family 1 member C3 (Akr1c3), were found to be

significantly regulated. The transcription of Cox-2, Alox5, Hpgds,

and Plb1 was significantly upregulated, indicating that AA
FIGURE 4

Joint analysis of DEGs and differentially abundant lipids. (A) Pearson correlation heatmap of the top 60 DEG–differentially abundant lipid pairs with
high r coefficients and significant FDR-adjusted p values. The numbers in the grid represent the correlation coefficient r; * indicates the DEG-
differentially abundant lipid pairs with the top 60 r values. (B) Coannotated pathway enrichment analysis of DEGs and differentially abundant lipids.
The circles represent DEGs, and the triangles represent differentially abundant lipids. The deeper the color is, the smaller the p value is.
FIGURE 5

Metabolic pathways of AA and GPL involving both DEGs and differentially abundant lipids. The boxes represent lipid metabolites, and the gene
names are italicized. Red italics indicate upregulated DEGs postinfection, and green italics indicate downregulated DEGs. The dark-colored boxes
represent the lipid metabolites detected in this study.
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metabolism in the liver is markedly activated after infection. It has

previously been reported that the activities of cyclooxygenase and

arachidonate 5-lipoxygenase are increased in mouse peritoneal

macrophages and splenocytes after L. donovani infection, leading

to a significant increase in the amount of AA metabolites present

(38, 39). These findings suggest that Leishmania infection affects

cellular immune function and the inflammatory response to

infection. Prostaglandin E2 (PGE2), which is metabolized by Cox-

2, functions extensively as a lipid mediator, particularly in immune

responses (40, 41); it can impair the microbicidal capacity of

macrophages (42) and prevent inflammation-induced tissue

damage during hepatic inflammation through effective

suppression of Th1 (43). Reports have indicated that Leishmania

infection increases Cox-2 expression and PGE2 synthesis in human

monocytes and BALB/c mouse macrophages (44). In addition,

inhibition of PGE2 synthesis in macrophages restrains the

progression of VL (13, 45). These findings reveal that during VL,

the induction of PGE2 in host macrophages by L. donovani

infection is vital for parasite survival. In addition, according to

our previous studies conducted in the golden hamster infection

model (23), 12 WPI corresponds to the middle or late middle stages

of VL progression. The increase in AA metabolism at 12 WPI

indicated the presence of a certain degree of inflammatory response

in the host at that time, suggesting that chronic inflammation may

persist throughout the prolonged latent period of VL. This chronic

inflammation induced by lipid dysregulation could also be linked to

the appearance of granulomas and fibrosis in visceral tissues (21,

46). Drawing from related studies on eicosanoids (47, 48), it

is speculated that the observed effects may be a result of the

balanced control of proinflammatory and anti-inflammatory

cascade reactions under host–amastigote interactions. Further

comprehensive detection and analysis of host lipid mediators will

be necessary.

Regarding the GPL metabolic pathway, we found that the

overall upregulated expression of genes belonging to the PLA2
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family led to extensive hydrolysis of the membrane phospholipids

PC, PE, and PS, resulting in a significant increase in the abundance

of their metabolites LPC, LPE, and LPS. Additionally, the

expression of Lpcat1 and Lpcat2 increased after infection. Lpcat1,

an important enzyme that is widely found in animals and plants, is

involved in lipid metabolism and has both acetyltransferase

and acyltransferase activities; it catalyzes the deacylation-

reacylation of phosphatidylcholine (PC) to generate saturated

phosphatidylcholine and is a key enzyme in PC remodeling.

Furthermore, its increased expression is closely associated with

the onset and progression of cancer (49, 50). One study confirmed

that PC32:0, PC28:0, and PC30:0 are products regulated by Lpcat1

and that Lpcat1 can shape plasma membrane composition by

increasing saturated PC content, thereby triggering oncogenic

signal transduction (51). However, no relevant reports on

Leishmania have been published. In this study, the content of the

saturated PCs PC30:0, PC32:0, and PC34:0 in the livers of VL

hamsters increased significantly. Considering that the increased

production of PC may be attributed to de novo synthesis of PC and

conversion from PE pathways, the key regulated genes were also

verified via qPCR. The results revealed that there were no significant

differences in the expression of the rate-limiting enzymes for the de

novo synthesis of PC, namely, Pcyt1 and Pcyt2, or in the expression

of PEMT, which converts PE to PC, whereas the expression of

Lpcat1 and Lpcat2 increased. Therefore, the increased PC content

was likely due to PC remodeling mediated by Lpcat1 through the

generation of saturated PCs. Other studies have reported that,

unlike promastigotes, which rely on de novo synthesis to produce

the majority of their lipids for fast replication, intracellular

amastigotes acquire sufficient PC through the uptake and

remodeling of host lipids, consistent with their slow-growing,

metabolically quiescent state (16, 52, 53). The results of this study

support this viewpoint. However, the mechanisms by which

amastigotes take up and remodel host lipids and the role of

saturated PCs in VL still merit further exploration.
FIGURE 6

Heatmap of changes in the level of expression of DEGs involved in AA and GPL metabolism and validation of crucial gene expression by qPCR. (A)
Genes are represented by rows. (B) Validation of crucial genes (Alox5, Cox-2, Pcyt1a, Pcyt2, PEMT, Lpcat1, and Lpcat2) related to AA metabolism and
to the synthesis of PCs and PEs. Rplp0 was used as an endogenous control. *Indicates a significant difference between two comparative parameters
(P < 0.05), and **indicates a significant difference between two comparative parameters (P < 0.01).
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In this study, the levels of lysophospholipids, including LPC,

LPE, and LPS, were found to increase significantly after infection. In

addition to their conversion to saturated phospholipids by

lysophospholipid acyltransferases, as mentioned above,

lysophospholipids also represent an important class of lipid

signaling mediators with multiple activities (54). Among them,

LPC primarily exerts its effects through the G2A receptor, and the

LPC-G2A receptor is recognized as a sensor of oxidative stress and

functions as an immunocyte blocker (55, 56). LPC exacerbates

Trypanosoma cruzi infection in mouse bone marrow-derived

macrophages by inhibiting the production of IL-12 and NO (57),

two other major mediators of Leishmania clearance. Moreover, in

vitro studies of L. major have confirmed that LPC can promote the

proliferation of intracellular Leishmania parasites by maintaining

the activity of indoleamine 2,3-dioxygenase (IDO) and arginase 1

(58). Therefore, the significant increase in lysophospholipids may

affect the infectious status of Leishmania in vivo by affecting

immune regulation, but this requires further verification.

We also observed a significant increase in PAF levels after

infection. PAF is a lipid mediator with diverse biological activities,

and it has been implicated as a proinflammatory molecule in

various diseases and infections (59–61). A report on an animal

model of Leishmania confirmed that endogenous PAF in the host

can regulate the ability of macrophages to control Leishmania

infection and that it may induce increased NO production

mediated by prostaglandins (62). Another study of the

mechanism of miltefosine also demonstrated that PAF receptors

play a significant role in the leishmanicidal activity of miltefosine

(63). The transcriptome results obtained in the current study show

that both acetylhydrolase (PAFAH/Pla2g7), which regulates PAF

metabolism, and cytosolic phospholipase A2 (Pla2g4a), which is

involved in the remodeling pathway, were significantly upregulated

after infection. These findings suggest that the metabolic activity of

PAF in the host liver was markedly enhanced after infection with

Leishmania. PAF may play a role in controlling Leishmania

infection through its involvement in immune regulation (64, 65).

In addition, the content of ChE in the liver decreased after infection.

ChE can be catabolized into cholesterol. We found that the enzymes

cholesteryl ester hydrolase (Lipa) and sterol O-acyltransferase

(Soat1), which regulate ChE metabolism, were upregulated after

infection. This finding indicates that there was increased conversion

of ChE to cholesterol. Studies have shown that although cholesterol

plays crucial roles in the invasion, intracellular survival, and

immune evasion processes of Leishmania, microorganisms

themselves cannot synthesize cholesterol (11, 66, 67). In this

study, the level of Cer also increased, and the expression of the

enzyme Smpd3, which is responsible for regulating sphingomyelin

hydrolysis, increased. L. donovani promotes the hydrolysis of

sphingomyelin and the subsequent production of ceramide in

host cells, and this facilitates the internalization of the parasite (68).

In summary, on the basis of our combined lipidomics and

transcriptomics analysis, we propose that Leishmania infection may

regulate the remodeling of PCs in the host liver, concurrently

enhancing membrane phospholipid metabolism and AA

metabolism and thereby generating a series of lipid mediators
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that participate in inflammation-mediated immune regulation.

This could affect the survival of the parasite in the host and the

progression of VL. The novel insights into host lipid alterations and

their regulatory enzymes obtained in this study have expanded our

understanding of host-Leishmania interactions while shedding light

on promising avenues for further mechanistic investigations into

key lipid regulatory processes. These include the relationship

between AA metabolism-derived lipid mediators and host

immune modulation as well as the role of PC remodeling in

Leishmania survival, areas of investigation that hold significant

potential for our understanding of the pathogenesis of VL and the

development of innovative treatment strategies. However,

considering the relatively limited sample size in this study,

especially in the transcriptome analysis, it will be necessary to

expand the sample size in further research to obtain more reliable

conclusions. Moreover, further experimental validation of the

ability of cells and animals to target important pathways and

regulatory enzymes is imperative. In further research, it will also

be necessary to incorporate oxidative lipid profiling data and to

delve more deeply into the tissue microenvironment. This will

provide a clearer understanding of the roles played by lipids and

their derivatives in the Leishmania-host interaction.
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