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Preeclampsia(PE) is closely linked to adverse maternal and fetal outcomes. Given 
the pivotal roles of mitochondria in various human diseases and the limited 
research on their involvement in PE, this study identified biomarkers linked to 
mitochondrial metabolism in PE and their roles in its pathogenesis. Data from 
three datasets were integrated using the ComBat algorithm to mitigate batch 
effects. Differential expression analysis identified genes differentially expressed 
between PE cases and Control group. Cross-referencing these genes with 
mitochondrial  energy  metabolism-related  genes  (MMRGs)  isolated  
mitochondrial energy metabolism-related differentially expressed genes 
(MMRDEGs). GO and KEGG analysis were performed to elucidate the functions 
of the MMRDEGs. A diagnostic model using Random Forest and logistic 
regression was validated by ROC curve analysis. mRNA expressions of OCRL, 
TPI1, GAPDH, and LDHA were quantified via qPCR. Immune characteristics were 
explored, and PPI, mRNA-miRNA, mRNA-TF and mRNA-RBP interaction 
networks were constructed. AlphaFold analyzed protein structures of OCRL, 
TPI1, GAPDH, and LDHA. A total of 1073 DEGs and 24 MMRDEGs were identified. 
OCRL, TPI1, GAPDH, and  LDHA formed the diagnostic model, which were 
predominantly enriched in pyruvate metabolism, glycolysis, and ATP 
metabolism pathways. CIBERSORT highlighted immune cell composition 
variations between PE and Control groups. OCRL, TPI1, GAPDH, and LDHA 
exhibited increased mRNA expression levels in preeclamptic placentas. 
Therefore, MMRDEGs may play a critical role in the mechanism of oxidative 
stress and inflammatory response in PE by mediating metabolic regulation and 
immune modulation, potentially serving as diagnostic biomarkers associated 
with mitochondrial metabolism in preeclampsia. 
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1 Introduction 

Preeclampsia (PE) is a pregnancy-related multisystem syndrome 
that occurs at or after 20 week of gestation, characterized by elevated 
blood pressure (systolic blood pressure ≥140 mmHg and/or diastolic 
blood pressure ≥90 mmHg) and proteinuria (≥300 mg/24h). This 
condition can lead to multiple organ dysfunctions, including 
hematological abnormalities, hepatic impairment, and renal 
insufficiency. In severe cases, it may also compromise pulmonary 
function, retinal health, and the integrity of the central nervous 
system (1–4). PE is one of the leading causes of maternal mortality 
globally, with an estimated prevalence of approximately 10% (5). Its 
pathogenesis is closely associated with placental vascular 
insufficiency, endothelial dysfunction, heightened inflammatory 
responses, immune imbalance, and systemic small-vessel spasms 
(6–8). Currently, the management of PE primarily relies on blood 
pressure control and timely pregnancy termination (9, 10). However, 
the limited availability of preventive and intervention strategies leads 
to a high incidence of iatrogenic preterm birth, thus increasing the 
risk of adverse perinatal outcomes. Therefore, an in-depth 
exploration of the pathogenesis of PE is essential for reducing its 
incidence and improving prognostic outcomes. 

Mitochondria play a pivotal role in cellular bio-oxidation and 
energy metabolism, being involved in a range of physiological 
processes including biosynthesis and signal transduction (11, 12). 
Therefore, mitochondrial dysfunction disrupts these processes, 
resulting in elevated generation of reactive oxygen species (ROS) 
and enhanced apoptosis (13–15). As a critical organ for maternal-

fetal material exchange, synthesis, defense, and immunity, the 
placenta exhibits a high demand for energy, primarily supplied by 
ATP generated by mitochondria (16, 17). If mitochondrial function 
diminished, ATP synthesis will consequently decrease, thereby 
impairing placental function and increasing the risk of 
complications such as preeclampsia (PE), gestational diabetes 
mellitus(GDM), and fetal growth restriction(FGR) (18, 19). 
Numerous studies have demonstrated that elevated levels of 
oxidative stress in patients with PE contribute to the promotion 
of inflammatory responses and mitochondrial dysfunction (20, 21). 
Research further suggests that mitochondrial dysfunction plays a 
critical role in both the onset and progression of PE. For instance, 
Long et al. (22)reported that mitochondrial damage leads to 
trophoblast dysfunction, which in turn contributes to the 
pathogenesis of PE. These findings suggest that targeting 
mitochondrial repair could represent a promising therapeutic 
strategy for managing this condition. In addition, several 
mitochondria-associated genes, such as CPOX, DEGS1, and

SH3BP5, have been validated to possess significant diagnostic 
value for PE (18). Mitochondria harbor an independent genome 
distinct from nuclear DNA (23), and alterations in the expression of 
specific mitochondrial genes have been identified as being closely 
linked to the diagnosis and treatment of PE (24, 25). In recent years, 
accumulating evidence has demonstrated that immune cell 
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infiltration is a critical factor in the pathogenesis of various 
diseases, including PE, preterm birth, GDM, and osteoarthritis 
(26–28). 

Owing to the multifaceted nature of PE, there has been 
relatively limited progress in its prediction and prevention (29). 
Given the pivotal role of mitochondrial energy metabolism in 
various diseases, further exploration into the mechanisms of 
mitochondrial energy metabolism in PE carries significant clinical 
implications. This study is expected to offer a theoretical basis and 
innovative perspectives for the early diagnosis and therapeutic 
intervention of PE. In this study, we aimed to utilize machine 
learning techniques to construct an innovative diagnostic model for 
PE and investigate the association between key differentially 
expressed genes (DEGs) and immune infiltration. Additionally, 
we validated the expression levels of these DEGs in placental 
tissues from PE patients, thereby highlighting their potential 
significance in the pathophysiological mechanisms underlying PE. 
2 Materials and methodologies 

2.1 Sample collection 

In this research, 20 PE placental tissues, among which 12 cases 
with severe features, were collected following cesarean sections, with 
diagnosis conforming to the guidelines established by the Task Force 
on Hypertension in Pregnancy. Correspondingly, control placental 
tissues (n=20), matched for age and body mass index (BMI), were 
also obtained. All placental tissues were sourced from pregnant 
women who delivered at the Affiliated Hospital of Qingdao 
University. Because gestational diabetes mellitus (GDM) is 
associated with an increased incidence of PE (30), exclusion criteria 
for the research were as follows: twin or multiple pregnancies; fetal 
structural abnormalities or chromosomal anomalies; the presence of 
comorbidities or complications including GDM, pre-pregnancy 
diabetes mellitus, chronic hypertension, cardiac, renal, or liver 
diseases, infectious diseases, or autoimmune disorders; history of 
blood transfusion, organ transplantation, or immunotherapy; and 
any history of smoking, alcohol consumption, or substance abuse. 
Basic clinical data were collected for this study, encompassing age, 
BMI, gestational week at delivery, parity, systolic and diastolic blood 
pressure, newborn weight, and one-minute Apgar score. A sample of 
maternal placental tissue, approximately 1 cm in diameter, was 
collected within ten minutes of placental delivery, specifically 
avoiding areas with infarcts or calcification. These samples were 
then placed in freezing tubes containing RNA preservation solution 
and kept at -80°C for subsequent analysis using RT-qPCR. All the 
participants of the study provided a written informed consent. The 
investigation was approved by the Ethics Committee of the Affiliated 
Hospital of Qingdao University (Approval No: QYFY WZLL 28705). 
It was carried out in rigorous adherence to the guidelines established 
by the committee. 
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2.2 Data download 

The expression profile datasets GSE24129 (31), GSE30186 (32), 
GSE54618 (33) and GSE75010 (34) of patients with PE were 
obtained from GEO database (35) utilizing the GEOquery 
package (36). The GSE24129 dataset included 16 placental 
samples, evenly distributed between 8 PE cases and 8 Control 
group. The GSE30186 dataset comprised 12 placental samples, 
with an equal number of PE cases and Control group. The 
GSE54618 dataset consisted of 17 placental samples, including 5 
from PE cases and 12 from Control group. Lastly, the GSE75010 
dataset contained 80 PE cases and 77 Control group. The dataset 
GSE24129 and GSE75010 utilized the GPL6244 [HuGene-1_0-st

v1] Affymetrix Human Gene 1.0 ST Array [transcript (gene) 
version]. For the datasets GSE30186 and GSE54618, the 
associated platform was the GPL10558 Illumina HumanHT-12 
V4.0 expression beadchip. The microarray GPL platform files 
facilitated related annotation for the probe names across these 
datasets. Specific information for each dataset is depicted in 
Supplementary Table 1. Utilizing  “mitochondrial energy 
metabolism” as the search keyword and focusing solely on 
protein-coding genes, we extracted 219 MMRGs from the 
datebase of GeneCards (https://www.genecards.org/),which offers 
extensive data on the human genes (37). Additionally, we derived 
188 MMRGs from the published literature (38). By integrating these 
datasets and removing duplicates, we compiled a consolidated list of 
384 MMRGs. The specific names of these genes are listed in 
Supplementary Table 2. 
2.3 Preprocessing the datasets and 
differential expression analysis 

We integrated the GSE24129, GSE30186 and GSE54618 
datasets and then eliminated batch effects by applying the 
ComBat algorithm from the R package (39), followed by 
normalization using the normalize Between Arrays function. 
Thus, the Combined dataset (including 19 PE cases and 26 
Control group) was obtained. Subsequently, we obtained DEGs by 
utilizing R’s limma package to carry out a differential analysis of the 
expression of all genes among the PE and the control cohort 
samples of the combined dataset. To make sure to capture all 
changes in expression levels, whether up-regulated or down-
regulated, we made a screening standard of p < 0.05 plus | logFC 
| > 0 to further study the DEGs (40). The findings of variance 
analysis through the R package ggplot2 map volcano to display. 
Then, we took MMRGs and DEGs intersection to obtain 
the MMRDEGs. 
2.4 GO and KEGG analysis 

The GO (41) approach is frequently employed in large-scale 
functional enrichment investigations for the purpose of categorizing 
genes into groups that are associated with biological process (BP), 
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molecular function (MF), and cellular component (CC). The KEGG 
(42) serves as a crucial repository for genomic information, diseases, 
drug-related data and biological pathways. We conducted GO and 
KEGG annotation analyses of MMRDEGs by employing the R 
package clusterProfiler (43). We set a marked threshold (p < 0.05) 
for pathway selection, ensuring that only statistically significant 
pathways were considered in our analysis. 
2.5 GSEA and GSVA analysis 

GSEA (44) is a widely utilized method for assessing variations in 
pathway activity and biological process involvement across different 
sample groups within an expression dataset. In this research, we 
initially carried out a differential gene expression analysis between 
various groups (PE/Control and High/Low Risk score) within the 
combined dataset. Subsequently, genes were categorized into two 
cohorts based on their logFC values: those with positive and those 
with negative logFC. For the enrichment analysis of these 
categorized genes, we utilized the clusterProfiler package. The 
GSEA configuration for this analysis utilized the following 
specifications: a seed of 2022, 1000 permutations, and a gene set 
size ranging from a minimum of 10 to a maximum of 500 genes. We 
retrieved the gene set “c2.Cp.All.V2022.1.Hs.Symbols.GMT [All 
Canonical Pathways]” containing 3050 entries from the Molecular 
Signatures Database (MSigDB) (45). Pathways which got a 
significant  enrichment  level  (p <  0.05)  were  deemed  
markedly enriched. 

GSVA (46) was designed to assess gene set enrichment within 
microarray and nuclear transcriptome data. This technique enables 
the conversion from diverse samples into a sample-specific gene 
expression matrix and can evaluate the pathway enrichment across 
multiple specimens. In this study, we also employed the gene set 
used earlier when GSEA analysis was performed. GSVA was carried 
out on gene expression matrices derived from distinct groups (PE/ 
Control or High/Low Risk score) within the Combined dataset, 
utilizing this reference gene set. The analysis revealed functional 
disparities in enriched pathways between sample cohorts within the 
Combined dataset. Pathways with a significance level (p < 0.05) 
were further scrutinized; specifically, we selected and examined the 
10 pathways exhibiting both the largest and smallest log fold 
change (logFC). 
2.6 Construct MMRDEGs diagnostic model 

The RandomForest (RF) (47) technique is a collective learning 
approach that integrates numerous decision tree models. It belongs 
to the bagging (bootstrap aggregation) ensemble algorithm, which 
consists of multiple algorithms. RF is a commonly used approach 
for model building. By constructing multiple decision trees, the 
prediction results of each tree in the forest are aggregated using a 
voting method to obtain the final prediction result for a given 
sample. In this study, we utilized the MMRDEGs expression levels 
in the Combined dataset’s expression matrix to build a model using 
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the RandomForest package with parameter set.seed (2023) and 
ntree = 1000. 

I(X = xi) =  −log2p(xi) 

We conducted a logistic regression analysis on MMRDEGs to 
construct a Logistic diagnostic model of the Combined dataset. 
Moreover, we employed the Logistic regression to analyze the 
association of the independent variables and dependent variables, 
when considering dependent variables as binary variables(PE cases 
and Control group). p < 0.05 was a significance level as criteria for 
identifying MMRDEGs and constructing the Logistic diagnostic 
model. The molecular expressions of MMRDEGs incorporated in 
this logistic regression model were visualized through Forest Plot. 

Furthermore, we conducted the Least Absolute Shrinkage and 
Selection Operator (LASSO, the seed number is 2022) by R package 
glmnet (48) to process the MMRDEGs, which were screened out by 
utilizing our logistic regression model, to obtain the Logistic-LASSO 
regression model. LASSO regression analysis reduces overfitting 
incorporating a penalization factor (lambda × absolute value of 
slope), thereby improving its capacity for generalization while 
maintaining interpretability. The results obtained from LASSO 
analysis were depicted through variable trajectory plot techniques 
and diagnostic model plot. 

riskScore  = oCoefficient  (hub genei)*mRNA Expression (hub genei) 
i 

Subsequently, we identified the common MMRDEGs by 
intersecting the MMRDEGs derived from both the RF model and 
the Logistic-LASSO regression model, which were then visualized 
using a Venn diagram. The expression levels of the common 
MMRDEGs in the Combined dataset were combined with the 
coefficients of these genes in the regression model of Logistic-
LASSO to establish an MMRDEGs diagnostic model and to 
calculate corresponding Risk-scores. A Nomogram (49), a visual 
depiction of interrelations among several independent variables on 
a rectangular plane-coordinate system, was constructed based on 
the gene expression levels derived from the MMRDEGs diagnostic 
model generated through Logistic LASSO regression analysis in the 
Combined dataset. To examine the precision and distinguishing 
capability of our MMRDEGs diagnostic models, Decision Curve 
Analysis (DCA) (50), a straightforward approach for appraising 
molecular markers, diagnostic tests and clinical prediction models, 
was performed using the ggDCA R package. 
2.7 Analysis of the infiltration of immune 
cells 

The relative abundance of a variety of immune cell infiltrates 
within every sample was quantified utilizing the single-sample gene-
set enrichment analysis (ssGSEA) algorithm. The method facilitated 
to label various immune cell types. For instance, regulatory T cells, 
CD8+ T cells, dendritic cells and macrophages. We represented the 
relative abundance of each immune cell type across the samples by 
enrichment scores, which were calculated utilizing ssGSEA 
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methodology (51, 52). Using the ssGSEA algorithm from the 
GSVA R package (version 1.46.0), we calculated the enrichment 
scores of groups within high and low risk cohorts according to the 
MMRDEGs diagnostic model from the Combined dataset. These 
scores depicted the extent of immune cell infiltrations in individual 
specimen, thereby illustrating disparities of the abundance of 
immune cell infiltration among the different (High and Low) risk 
cohorts through box plots. Additionally, we examined the 
correlation of immune cell abundances among the high and low 
risk cohorts utilizing scatter plots. The association among immune 
cells and commonly altered MMRDEGs across these groups was 
analyzed using the Spearman statistical method and depicted in 
correlation dot plots, increasing our understandings of the immune 
landscape in relation to preeclampsia risk stratification. 

CIBERSORT (53) is a kind of immune infiltration algorithm, 
that deconvoluted transcriptome expression matrices based on 
linear support vector regression, to assess the abundance and 
composition of immune cells within different samples. For this 
analysis, we input the expression matrix data of samples of the High 
and the Low risk groups defined by the MMRDEGs diagnostic 
model in the Combined dataset to CIBERSORT. Using the feature 
gene matrix of LM22, we refined the results by retaining solely those 
data points with immune cell enrichment scores >0, thus obtaining 
and visualizing the comprehensive findings of the immune cell 
infiltration abundance matrix. Those disparities in immune cell 
infiltration between the high risk and low risk cohorts were depicted 
utilizing stacked bar charts. We employed the Spearman statistical 
method to analyze the correlations among immune cells within the 
Combined dataset and utilized the R package ggplot2 to visualize 
the results. Moreover, the interactions among immune cells and 
commonly altered MMRDEGs were depicted using correlation dot 
plots, providing insights into the immune dynamics associated with 
different risk stratifications in PE. 
2.8 PPI network and mRNA-RBP, mRNA-
TF, mRNA-Drug interaction network 

The protein-protein interaction (PPI) network consists of 
individual proteins that engage with one another. In this study, 
we constructed the common MMRDEGs PPI network(minimum 
required interaction score: low confidence (0.150)) using the 
database of STRING (54). The network was visualized using 
Cytoscape, which allowed us to identify densely interconnected 
clusters within the PPI network. These clusters potentially signify 
molecular assemblies with unique biological roles, offering insights 
into the molecular mechanisms underlying PE. 

ENCORI database (55) (https://starbase.sysu.edu.cn/) facilitates 
the exploration of interactions among various RNA types, including 
microRNAs-ncRNA, microRNAs-mRNA, ncRNA-RNA, and 
RNA-RNA, as well as interactions among RNA-binding proteins 
(RBPs) and ncRNAs or mRNAs. These interactions are curated 
utilizing degradome sequencing data and CLIP-seq, supporting 
comprehensive visual tools of investigating miRNA targets. In our 
study, we utilized the ENCORI database to forecast RBPs 
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interacting with the commonly altered MMRDEGs. We established 
“pancancerNum> 27” as the threshold for selecting significant 
interactions. and the mRNA-RBP interaction network was 
rendered utilizing Cytoscape. 

HTFtarget database (56) (http://bioinfo.life.hust.edu.cn/ 
hTFtarget) integrates human transcription factors (TFs) and their 
corresponding control targets data. The CHIPBase database 
(https://rna.sysu.edu.cn/chipbase/) predicted transcriptional 
regulatory relationships among millions of TFs and genes. 
Utilizing both HTFtarget databases and CHIPBase, the TFs that 
link to common MMRDEGs were identified. We applied the 
screening criteria of having an upstream and downstream sample 
count greater than zero. Subsequently, the mRNA-TF interactive 
network was rendered visually utilizing Cytoscape software. 
2.9 RT-qPCR 

Placental tissues were lysed using FreeZol reagent (Vazyme, R711) 
following the manufacturer’s instructions. RNA concentration and 
purity were measured using a spectrophotometer. The isolated RNA 
was reverse transcribed into cDNA with a reverse transcription kit 
(Agbio, AG11705). Real-time polymerase chain reaction (qPCR) was 
then performed using the SYBR Green Pre-Mix Pro Taq HS qPCR Kit 
(Agbio, AG11701). Relative gene expression levels were normalized to 
b-actin and calculated using the 2^(-DDCt) method. The Supplementary 
Table 3 lists the primer sequences of mRNAs and internal control. 
2.10 Statistical analysis 

The entirety of data manipulation and statistical evaluation in 
this investigation was executed utilizing R software (Release 4.1.2). 
The independent Student’s t-test was used to compare continuous 
variables (fit normal distribution). We employed the Mann-

Whitney U test (Wilcoxon rank sum test) for variables lacking 
normally distributed. Use Spearman correlation analysis to 
computer the findings unless otherwise specified. The p-values for 
statistical tests are two-tailed, and a threshold of 0.05 is deemed 
indicative of statistically meaningful results. 
3 Results 

3.1 Dataset processing 

According to the technical roadmap of this experiment 
(Figure 1), we first combined the three datasets (GSE24129, 
GSE30186, and GSE54618), then batched the data using the 
ComBat function from R’s sva package, and then utilized the 
Normalize Between Arrays function of the limma package to 
perform standardization procedures. The dataset of 19 PE cases 
and 26 Control group, that was combined, was obtained. 

The before and after data processing boxplots and PCA plots of 
the combined dataset, according to the sample source, were showed 
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in the Supplementary Figures 1A–D, respectively. The findings 
demonstrated that the expression profiles of samples from the 
Combined dataset exhibited a high degree of consistency, 
indicating successful removal of batch effects through data 
processing. The Combined dataset utilized for subsequent analyses 
represented the batch effect-corrected and normalized data. 

We further utilized the limma package to standardize the 
GSE75010 dataset and compared the pre- and post-processing 
states of the dataset using boxplots (Supplementary Figures 1E, F). 
The boxplot analysis demonstrated that the expression levels of 
samples in the GSE75010 dataset became significantly more 
consistent after data processing. 
3.2 Combined dataset differential 
expression analysis of PE and control 
groups 

The placenta serves as a critical organ facilitating material 
transport between mother and fetus, performing multiple 
functions during pregnancy such as immune protection, 
endocrine regulation, and serving as a conduit for nutrient and 
oxygen delivery. Its condition is closely associated with the health of 
both mother and child during gestation. Torbergsen T et al. first 
described a high incidence of preeclampsia in a family with 
mitochondrial  disorder  (57).  Recent  research  into  the  
mechanisms underlying preeclampsia has revealed mitochondrial 
dysfunction in both patients with preeclampsia and animal 
models (58). 

We utilized limma package to explore the Combined dataset of 
PE cases and Control group. And we got 1073 differentially 
expressed genes using the threshold of | logFC | > 0 and p < 0.05, 
including 603 highly expressed genes in PE cases(the Control group 
of samples low expressed, logFC is positive, raised genes), and 470 
genes low expressed in PE cases(the Control group of samples 
increased, logFC is negative, cut genes). And then, we presented the 
outcomes of differential expression analysis between the two groups 
in the Combined dataset using the volcano plot (Figure 2A). We 
then intersected these 1073 differently expressed genes (DEGs) with 
384 mitochondrial energy metabolism-related genes (MMRGs). 
And then, 24 mitochondrial energy metabolism-related 
differentially expressed genes (MMRDEGs) were identified. The 
24 MMRDEGs were ACSL3, ALDH16A1, ALDH1A3, ALDH4A1, 
ATG7, BTD, FBXL4, FOXO1, GAPDH, GLS, HK2, KCNJ2, LDHA, 
MFN2, NDUFS6, OCRL, PC, PGK1, PPARG, RARS2, SOD1, TPI1, 
VDAC1, XBP1 (Figure 2B). 

We also generated a comparative map to analyze the differential 
expression of 24 MMRDEGs between the two cohorts (Figure 2C). 
The analysis suggested that 16 MMRDEGs exhibited significant 
differences, with ALDH16A1, ALDH4A1, ATG7, GLS and SOD1 
significantly down-regulated while ALDH1A3, BTD, FOXO1, 
GAPDH, HK2, KCNJ2, LDHA, OCRL, PGK1, TPI1, and VDAC1 
significantly up-regulated. 

Then, we drew a simple numerical heat map derived from the 
expression matrix of these 16 MMRDEGs above (Figure 2D), and 
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the visualization revealed substantial disparities in the expression 
patterns of the 16 MMRDEGs between the two sample groups. 
Additionally, we annotated the positions of these 16 MMRDEGs 
and draw a chromosome localization map (Figure 2E) by employing 
the RCircos package, from which the specific distribution of the 16 
MMRDEGs on each chromosome can be obtained. 
 

3.3 The GO and the KEGG analysis of 
MMRDEGs 

The biological processes (BP), molecular functions (MF), 
cellular components (CC), relationships between biological 
pathways, pathway enrichment analysis using the Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and gene function 
enrichment analysis based on Gene Oncology (GO) were carried 
out to analyze the 16 MMRDEGs. Pathways that below the P 
threshold of 0.05, were considered to be statistically significant. 
Frontiers in Immunology 06
The outcomes showed that the 16 MMRDEGs main enriched in 
those BPs, such as pyruvate metabolic process, glycolytic process, 
ATP generation from ADP, generation of precursor metabolites 
and energy, ATP metabolic process. And in the CCs of the 
mitochondrial matrix. It was enriched in acting on the aldehyde 
or oxo group of donors, oxidoreductase activity, NAD or NADP as 
acceptor, aldehyde dehydrogenase (NAD+) activity, aldehyde 
dehydrogenase [NAD(P)+] activity, protein phosphatase binding, 
oxidoreductase activity, acting on the CH-NH group of donors, 
NAD or NADP as acceptor and other MFs (Figure 3A). It was also 
enriched in Glycolysis/Gluconeogenesis, HIF-1 signaling pathway, 
Carbon metabolism, Alanine, aspartate, glutamate metabolism, 
Inositol phosphate metabolism (Figure 3B) and  other KEGG

pathways (Supplementary Table 4). In addition, the enrichment 
consequences of the BP pathways (Figure 3C), CC pathways 
(Figure 3D), MF pathways (Figure 3E), and KEGG pathways 
(Figure 3F) of GO analysis were presented utilizing ring 
network diagrams. 
FIGURE 1 

Technology roadmap. PE, Preeclampsia; GSEA, Gene Set Enrichment Analysis; GSVA, Gene Set Variation Analysis; MMRGs, Mitochondrial energy 
metabolism-related genes; MMRDEGs, Mitochondrial energy metabolism related differentially expressed genes; GO, Gene Ontology; KEGG, Kyoto 
Encyclopedia of Genes and Genomes; LASSO, Least absolute shrinkage and selection operator; RBP, RNA binding protein; TF, Transcription factors; 
ssGSEA, single-sample gene-set enrichment analysis. 
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We  uti l ized  the  Pathview  R  package  for  pathway  
mapping to illustrate the KEGG enrichment results of Glycolysis/ 
Gluconeogenesis (Supplementary Figure 2A), Carbon metabolism 
(Supplementary Figure 2B), Alanine, aspartate and glutamate 
metabolism (Supplementary Figure 2C), Inositol phosphate 
metabolism (Supplementary Figure 2D), and HIF-1 signaling 
pathway (Supplementary Figure 2E). 
3.4 GSEA enrichment analysis and GSVA 
analysis of the control and the PE groups 
based on the Combined dataset 

To appraise the influence of gene expression levels of genes 
from PE and Control groups of Combined dataset on PE, we 
examined the relationships between the expression levels of all 
genes in different groups (PE/Control) of the Combined dataset and 
the BPs, CCs, and MFs they played, by employing the Gene Set 
Enrichment Analysis (GSEA). p < 0.05 was set as the significant 
enrichment criterion. The results demonstrated a significant 
enrichment of genes from different (PE/Control) groups in the 
Combined dataset, specifically in the vascular smooth muscle 
contraction pathway (Figure 4B), IL9 signaling pathway 
(Figure 4C), Notch signaling pathway (Figure 4D), IL2 signaling 
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pathway (Figure 4E), IL6/7 signaling pathway (Figure 4F), cell 
surface interactions at the vascular wall (Figure 4G), and other 
pathways (Supplementary Table 5). In addition, the outcomes of 
GSEA analyzing genes between distinct cohorts (PE/Control) of the 
Combined dataset were depicted by mountain plot (Figure 4A). 

To investigate the distinctions between disease and controls 
from the Combined dataset, we then performed Gene Set Variation 
Analysis (GSVA). From the pathways with p < 0.05, we identified 10 
pathways with the highest and lowest logFC for further examination 
(Supplementary Table 6), respectively. 

The results of GSVA analysis on all the genes of the Combined 
dataset revealed significant differences among PE and Control 
groups. Specifically, IKEDA Mir133 targets DN, hyaluronan 
biosynthesis and export, RHOT1 GTPASE cycle, neurofascin 
interactions, Irinotecan pathway, Aflatoxin B1 metabolism, 
Sulindac metabolic pathway, weber methylated LCN in SPERM 
DN, Tomlins metastasis upregulation of steroid biosynthesis. 
Additionally, activated NTRK2 signals through FYN and PI3K 
pathways were observed along with NTRK2 activation of RAC1. 
Furthermore, HIF1A and PPARG were found to regulate glycolysis. 
Calvet Rinotecan sensitive vs resistant upregulation was also 
identified as well as Korkola choriocarcinoma involvement. Lastly 
erythrocytes demonstrated oxygen uptake and carbon dioxide 
release while Tesar Alk targeted human es 4D and 5D DN along 
FIGURE 2 

Differential expression analysis and correlation analysis of MMRDEGs. (A) Volcano plot presentation of the results of differential analysis between PE 
cases and Control group in Combined datasets. (B) Venn diagram of DEGs between PE cases and Control group and MMRGs in Combined datasets. 
(C) Group comparison plot of MMRDEGs between PE cases and Control group in Combined datasets. (D) Simplified numerical heatmap of 
MMRDEGs in Combined datasets. (E) Chromosomal mapping of MMRDEGs. The symbol ns was equivalent to p ≥ 0.05, which was not statistically 
significant. The symbol * is equivalent to p < 0.05, which is statistically significant; The symbol ** is equivalent to p < 0.01, which is highly statistically 
significant; The symbol *** is equivalent to p < 0.001 and highly statistically significant. PE, Preeclampsia; DEGs, differentially expressed genes; 
MMRGs, Mitochondrial energy metabolism related genes; MMRDEGs, Mitochondrial energy metabolism related differentially expressed genes. 
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with JAK targeting mouse es D4 DN. Utilizing the outcomes 
derived from GSVA, we carried out a differential expression 
analysis of 20 pathways among PE and control cohorts of the 
Combined dataset. Subsequently, we created a heatmap illustrating 
the particular differential analysis outcomes (Supplementary 
Figure 3A) employing the R package. Furthermore, we assessed 
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the extent of group divergence for these 20 pathways across various 
cohorts from the Combined dataset, utilizing the Mann-Whitney U 
test, and we use a group comparison plot to illustrate the outcomes 
(Supplementary Figure 3B). The findings demonstrated marked 
differences in pathway expression among disease control cohorts 
within the Combined dataset. 
FIGURE 3 

Functional enrichment analysis (GO) and pathway enrichment (KEGG) analysis of MMRDEGs. (A) Bar graph showing the GO enrichment analysis 
results of MMRDEGs. (B) Bubble plot display of KEGG pathway enrichment analysis results of MMRDEGs. (C–F) Loop network diagram of BP pathway 
(C), CC pathway (D), MF pathway (E) and KEGG pathway (F) in MMRDEGs enrichment analysis results. In the bar graph (A), the abscissa is the GO 
terms, and the height of the bar indicates the Padj value of GO terms. In the network diagram (C–F), blue dots represent specific genes, and orange 
dots represent specific pathways. MMRDEGs, Mitochondrial energy metabolism related differentially expressed genes; GO, Gene Ontology; BP, 
biological process; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; The screening criterion for 
GO/KEGG enrichment items was p < 0.05. 
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3.5 Construction of MMRDEGs diagnostic 
model 

Based on the Combined dataset, we examined the expression 
levels of the 16 MMRDEGs using Random Forest algorithm (RF) to 
evaluate the values in diagnosis of the 16 MMRDEGs (Figure 5A). 
IncNodePurity (Increase in NodePurity) indicates the enhancement 
in node purity. The higher the node purity, the less impurities it 
contains (that is, the smaller the Gini coefficient). We applied an 
IncNodePurity threshold of > 0.5 to filter the specific analysis 
Frontiers in Immunology 09
outcomes. The findings (Figure 5B) revealed that 7 diagnostic 
markers were obtained by RF algorithm. They are: OCRL, 
GAPDH, TPI1, LDHA, SOD1, HK2 and PGK1. 

Logistic regression was performed utilizing the expression levels 
of 16 MMRDEGs in the Combined dataset, with the screening 
criterion of p< 0.05 (Figure 5C). The Logistic regression model 
included a total of 8 MMRDEGs (ALDH16A1, ATG7, BTD, 
GAPDH, HK2, LDHA, OCRL and TPI1), and the diagnostic 
model was developed by the expression relative quantities of the 8 
genes in the combined dataset (the expression levels were evaluated 
FIGURE 4 

GSEA enrichment analysis between PE cases and Control group in Combined dataset. (A) Six main biological characteristics of GSEA enrichment 
analysis of genes between different groups (PE/Control) of Combined dataset. (B–G) Genes in Combined dataset were significantly enriched in 
KEGG vascular smooth muscle contraction (B), IL9 signaling pathway (C), KEGG NOTCH signaling pathway (D), IL2 signaling pathway (E), IL6/7 
pathway (F), Cell surface interactions at the vascular wall (G). PE, Preeclampsia; GSEA, Gene Set Enrichment Analysis. The significant enrichment 
screening criterion for GSEA enrichment analysis was p < 0.05. 
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FIGURE 5 

Construction of MMRDEGs diagnostic model. (A) Plot of model training error of RF algorithm. (B) IncNodePurity presentation of MMRDEGs in the RF 
model (in descending order of IncNodePurity). (C) Forest Plot of Logistic regression model for MMRDEGs. (D) Diagnostic model plot of LASSO 
regression model. (E) Variable trajectory plot of LASSO regression model. (F) Venn diagram of MMRDEGs in LASSO regression model and MMRDEGs 
in RF model. (G) The mRNA expressions of OCRL, GAPDH, TPI1 and LDHA of placental tissues in the PE cases and Control group. The symbol ** is 
equivalent to p < 0.01, which is highly statistically significant; The symbol **** is equivalent to p < 0.0001 and is highly statistically significant. PE, 
Preeclampsia; MMRDEGs, Mitochondrial energy metabolism related differentially expressed genes; LASSO, Least Absolute Shrinkage and Selection 
Operator; Common MMRDEGs, Common Mitochondrial energy metabolism related differentially expressed genes. 
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by Least Absolute Shrinkage and Selection Operator (LASSO) 
analysis). And the findings of the LASSO analysis were illustrated 
via the LASSO regression model diagram (Figure 5D) and the 
LASSO variable trajectory plot (Figure 5E). The findings indicated 
that the diagnostic model comprised 6 MMRDEGs, which were: 
ALDH16A1, ATG7, GAPDH, LDHA, OCRL and TPI1. 

Then we interposed the MMRDEGs from the RF model and the 
MMRDEGs from the Logistic-LASSO regression model (Figure 5F), 
and 4 Common MMRDEGs (p < 0.05) were obtained, which were 
OCRL, GAPDH, TPI1 and LDHA. 

Next, we examined the differential expression of the 4 Common 
MMRDEGs in the placental tissues of preeclamptic and normal 
mothers using RT-qPCR. The demographic characteristics of the 
PE patients are presented in Supplementary Table 7. The findings 
indicated that the mRNA expressions of the 4 common genes were 
notably elevated in the placental tissues of the PE cases relative to 
the Control group (p < 0.05, Figure 5G). These four Common 
MMRDEGs (OCRL, GAPDH, TPI1, and LDHA) were identified for 
the first time in a study of PE. This novel discovery offers fresh 
insights into the role of mitochondrial metabolism in preeclampsia 
and may establish a foundation for the development of future 
biomarkers and therapeutic targets. 

And then, utilizing the expression level of the four Common 
MMRDEGs in Combined dataset and corresponding coefficients 
established by applying LASSO analysis, we obtained the 
MMRDEGs diagnostic model of 4 Common MMRDEGs. 

Risk Score  = 41:58006654 + OCRL* − 3:921473316 + GAPDH* 

− 2:021501079 + TPI1* − 0:275314264 + LDHA* 

− 0:08998086 

The diagnostic model for MMRDEGs included four Common 
MMRDEGs. We used combined logistic regression analysis to 
process the dataset’s expression levels to construct a logistic 
regression model for MMRDEGs. Additionally, we generated a 
nomogram depicting the impact of these four common MMRDEGs 
on the logistic regression model (Figure 6A). Our findings revealed 
that among all variables, OCRL exhibited notably superior 
effectiveness within the MMRDEGs logistic regression model. 

The diagnostic model’s clinical value was appraised through 
decision curve analysis (DCA), and the findings were presented in 
Figure 6B. In the DCA graph, a model’s line consistently surpasses 
those of “All negative” and “All positive” within a specific range, 
greater net benefits can be obtained, indicating a stronger model 
performance. Our findings demonstrate that our constructed model 
exhibits considerable accuracy in diagnosing PE. 

To further substantiate the value of the MMRDEGs diagnostic 
model, we drew ROC curves utilizing the Risk Scores of the 
diagnostic model of MMRDEGs and the information for 
grouping (PE/Control) of the Combined dataset and displayed 
the outcomes (Figure 6C). The MMRDEGs diagnostic model 
exhibited substantial precision in the diagnosis of the two groups 
(PE/Control) (AUC = 0.970, CI=0.930-1.000, Figure 6C). 

We further validated the diagnostic performance of the 
MMRDEGs diagnostic model using the GSE75010 dataset. 
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Specifically, we calculated the risk scores by applying the formula 
derived from the MMRDEGs diagnostic model and the gene 
expression profiles in GSE75010. Subsequently, we incorporated 
the grouping information to construct the ROC curve. The results 
indicated that the MMRDEGs diagnostic model exhibited 
satisfactory accuracy in distinguishing the PE and Control groups 
within the GSE75010 dataset (AUC = 0.877, CI 0.823
0.932, Figure 6D). 

We also performed functional similarity analysis for four 
Common MMRDEGs and displayed them using a boxplot. We 
calculated the semantic similarity of sets of GO terms, GO terms, 
gene products and gene clusters through the R package GOSemSim. 
Similarity analysis was performed only on genes that were 
annotated to pathways in MF, BP, and CC. Finally, functional 
similarity analysis results between four Common MMRDEGs were 
obtained and visualized by Boxplot (Figure 6E). The findings 
indicated that LDHA exhibited the greatest functional similarity 
score in comparison to other Common MMRDEGs (the X-axis of D 
graph is the similarity score, with higher values indicating increased 
functional similarity to other genes). 
3.6 GSEA and GSVA based on Combined 
dataset between the Low and the High-
Risk cohorts 

Initially, we categorized those disease samples from the 
Combined dataset into the Low-Risk Score group and the High-

Risk Score group utilizing the median Risk-Score of the previous 
MMRDEGs diagnostic model and performed a differential analysis 
between the two groups utilizing the limma package (Figure 7A). 
Based on the results of the differential analysis, we conducted GSEA 
to explore the relationship among the MFs, the CCs, the BPs and the 
expression of all genes involved between the different groups (Low/ 
High Risk-Score group) in the Combined dataset, using the 
threshold of p < 0.05 for enrichment selection. The findings 
demonstrated a significant enrichment of genes linked to the 
citric acid TCA cycle and respiratory electron transport 
(Figure 7C), IL5 signaling pathway (Figure 7D), IL7 signaling 
pathway (Figure 7E), IL6 signaling pathway (Figure 7F), energy 
metabolism (Figure 7G), electron transport chain Oxphos system in 
mitochondria (Figure 7H) as well as other pathways, indicating 
their association with High and Low Risk cohorts (Supplementary 
Table 8). Furthermore, the GSEA outcomes of genes among the 
High Risk-Score cohort and the Low Risk-Score cohort in the 
Combined dataset were presented by mountain plot (Figure 7B). 

To investigate the disparities among the High Risk-Score cohort 
and the Low Risk-Score cohort in the Combined dataset, we 
subsequently conducted GSVA. From the pathways with a p <

0.05, we identified 10 pathways with the highest and lowest logFC 
for further analysis (refer to Supplementary Table 9 for detailed 
information), respectively. The GSVA results of all genes revealed 
significant differences in 20 pathways among the High and Low 
Risk-Score cohorts in the Combined dataset. These pathways 
include defective CSF2RB causes SMDP5, IPS LCP with 
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H3K4ME3 and H3K27ME3, Korkola choriocarcinoma DN, FGFR3B 
ligand binding and activation, Aml methylation Cluster 7 DN, 
Turashvili breast carcinoma Ductal vs Lobular DN, FTO obesity 
variant mechanism, miscellaneous substrates, PEPI pathway, ES 
LCP with H3K4ME3 and H3K27ME3 angiogenic targets of VHL 
HIF2A up regulation Biocarta Myosin pathway OPN targets Cluster 
3 Myc targets DN  CTNNB1  pathway  and  proliferation  
mesothelioma survival up schavolt targets of TP53 and TP63 
MAPK11 targets Pujana breast cancer with BRCA1 mutated DN 
regulation of PTEN localization. According to the GSVA outcomes, 
we analyzed the differential expression of 20 pathways among the 
Low-Risk cohort and the High-Risk cohort in the Combined 
dataset ,  and  the  specific  differential  analysis  findings  
(Supplementary Figure 4A) was showed as a heatmap by the R 
package. Furthermore, we employed the Mann-Whitney U test to 
examine the group distinction level of 20 pathways between diverse 
cohorts in the Combined dataset and displayed the findings by 
group comparison plot (Supplementary Figure 4B). The findings 
suggested that all the expressions of the 20 pathways were markedly 
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different among the Low-Risk cohort and High-Risk cohort in the 
Combined dataset (p<0.05). 
3.7 Analysis of differences in ssGSEA 
immune characteristics among the Low 
and High-Risk groups in the Combined 
dataset 

We categorized PE samples in the Combined dataset into the 
Low Risk-Score and the High Risk-Score cohorts by the median 
Risk-Score of the MMRDEGs diagnostic model. 

To study the difference of immune infiltration between the Low/ 
High Risk-Score groups of the Combined dataset, we applied 
ssGSEA algorithm to computer the abundance of 28 immune cell 
infiltration in the two risk-score sample groups. And then, we used 
Mann-Whitney U test to analyze the differences of the two 
abundances of the Low and High Risk-Score groups, using group 
comparison plot to exhibit the results (Figure 8A). The findings 
FIGURE 6 

Validation of the MMRDEGs diagnostic model. (A) Nomogram of Common MMRDEGs in MMRDEGs Logistic regression model. (B) Decision curve in 
Logistic regression model of MMRDEGs. (C) ROC curve of MMRDEGs diagnostic model in Combined dataset. (D) ROC curve of MMRDEGs 
diagnostic model in GSE75010. (E) Functional similarity analysis results among Common MMRDEGs. ROC, receiver operating characteristic curve; 
AUC, Area Under the Curve, MMRDEGs, Mitochondrial energy metabolism related differentially expressed genes; Common MMRDEGs, Common 
Mitochondrial energy metabolism related differentially expressed genes; DCA, Decision Curve Analysis. The closer the AUC in the ROC curve is to 1, 
the better the diagnostic effect is. When AUC was between 0.5 and 0.7, the accuracy was low. When AUC was 0.7-0.9, it had a certain accuracy. 
AUC > 0.9 had high accuracy. 
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suggested that there were two immune cells, namely Neutrophil and 
Plasmacytoid Dendritic cell, showing statistically differences in the 
abundance between the Low and High Risk-Score groups (p < 0.05). 

We plotted the correlation scatter plots showing the 
relationship among Neutrophil and Plasmacytoid Dendritic cells 
in the Low-Risk cohort (Figure 8B) and the High-Risk cohort 
(Figure 8C) from the Combined dataset. The outcomes showed 
that, in the Low Risk-Score group, there was a marked inverse 
association among Neutrophil and Plasmacytoid Dendritic cells 
(Figure 8B, R = -0.709, p = 0.028). However, there was no 
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association between the two immune cells in the High Risk-Score 
group (Figure 8C). 

We used Spearman’s statistical algorithm to calculate the 
association between the infiltrating abundances of the Neutrophil, 
Plasmacytoid Dendritic cells in the Low and High Risk-Score 
cohorts, and the expression of the four Common MMRDEGs in 
the Combined dataset data group (Figures 8D, E). The findings 
suggested that Neutrophil was positively correlated with the four 
Common MMRDEGs in the Low Risk-Score cohort of the 
Combined dataset (Figure 8D), moreover Neutrophil and OCRL 
FIGURE 7 

GSEA enrichment analysis between high and low risk-score groups of Combined dataset. (A) Volcano plot of gene difference analysis between High 
and Low Risk-score groups in Combined dataset. (B) Mountain plot display of six main biological characteristics of GSEA enrichment analysis results. 
C-H. Genes significantly enriched in the citric acid TCA cycle and respiratory electron transport between the High and Low Risk-score groups of 
Combined dataset (C), IL7 signaling pathway (D), IL5 signaling pathway (E), IL6 pathway (F), energy metabolism (G), electron transport chain Oxphos 
system in mitochondria (H). PE, Preeclampsia; GSEA, Gene Set Enrichment Analysis. The significant enrichment screening criterion for GSEA 
enrichment analysis was p < 0.05. 
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FIGURE 8 

Differential analysis of ssGSEA immune characteristics between high and low risk-score groups in Combined dataset data. (A) The group comparison 
of ssGSEA immune infiltration analysis between the Low/High Risk-score groups of Combined dataset data. (B, C) Scatter plot of correlation 
between Neutrophil and Plasmacytoid dendritic cell of cell infiltration abundance in the Low Risk-score group (B) and High Risk-score group (C) of 
Combined dataset. (D, E) Dot plot of correlation between immune cells and Common MMRDEGs in the Low Risk-score group (D) and High Risk-
score group (E) of Combined dataset. ssGSEA, single-sample gene-set enrichment Analysis; Common MMRDEGs, Common Mitochondrial energy 
metabolism related differentially expressed genes; PE, preeclampsia. The symbol ns is equivalent to p ≥ 0.05 and not statistically significant; The 
symbol * is equivalent to p < 0.05, which is statistically significant; The symbol ** is equivalent to p < 0.01, which is highly statistically significant; The 
absolute value of the correlation coefficient in the scatter plot of correlation was more than 0.8, indicating a strong correlation. Moderate 
correlation was defined as an absolute value between 0.5 and 0.8. 0.3-0.5 is weak correlation; Values below 0.3 are considered weak or 
uncorrelated. 
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had the strongest association. In the High Risk-Score cohort of the 
Combined dataset data, Plasmacytoid Dendritic cells had the 
strongest correlation with OCRL (Figure 8E). 
3.8 Cell-type Identification by Estimating 
Relative Subsets of RNA Transcripts 
(CIBERSORT) immunosignature 
comparative analysis among Low Risk-
Score and High Risk-Score groups from 
the Combined dataset 

The CIBERSORT method was utilized to estimate the 
abundance of 22 immune cell infiltrations in both the Low and 
High Score cohorts. A stacked bar chart was employed to 
graphically depict the distribution of immune cells across the 
dataset samples (Supplementary Figure 5A). There were 22 
immune cells with non-zero infiltration abundances within the 
Combined dataset according to the results. 

We used Spearman’s statistical algorithm to assess the 
relationships among  the 22 immune cells  (Supplementary 
Figure 5B), and the findings suggested that the number of 
positive and negative associations between the 22 immune cells 
was basically equal, among which Mast cells activated and B cells 
memory had the strongest correlation. 

We subsequently computed the association among immune 
cells and the four Common MMRDEGs using Spearman’s statistical 
algorithm (Supplementary Figure 5C). The results showed that T 
cells CD4 memory activated, Dendritic cells resting, and T cells 
gamma delta were moderately positively correlated with the four 
Common MMRDEGs in the Combined dataset. Among all the 
associations examined, the most pronounced relationship was 
detected among naïve B cells and GAPDH. 
3.9 PPI network and mRNA-RBP, mRNA-
Drug and mRNA-TF interaction network 
were constructed 

Since these four Common MMRDEGs (OCRL, GAPDH, TPI1, 
LDHA) are the most potentially valuable biomarker genes identified 
during model construction, they are suspected to play a crucial role 
in related disease processes. Therefore, conducting an in-depth 
study on their interactions can aid in understanding their 
biological mechanisms and clinical applications. Therefore, we 
utilized the STRING database (PPI network, minimum required 
interaction score: low confidence (0.150)) to perform the PPI 
analysis of the 4 Common MMRDEGs (treated as hub genes) and 
visualized by Cytoscape software (Figure 9A). 

And then, we utilized the ENCORI database to forecast RNA 
binding proteins (RBPs) that interacted with four Common 
MMRDEGs and subsequently visualized the mRNA-RBP 
interaction network by Cytoscape software (Figure 9B). The 
mRNA-RBP interaction network, in which green quadrilateral 
blocks presenting RBPs and the blue quadrilateral blocks 
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presenting mRNAs, was composed of 4 Common MMRDEGs 
(OCRL, GAPDH, TPI1 and LDHA) and 51 RBP molecules, which 
constituted 58 pairs of mRNA-RBP interaction relationships. The 
specific mRNA-RBP interaction relationships are depicted in 
Supplementary Table 10. 

We utilized the CHIPBase database (version 3.0) and hTFtarget 
database to identify transcription factors (TFs) that bound to the four 
Common MMRDEGs. Then we screened by “Number of samples 
found (downstream)>0” and “Number of samples found (upstream) 
>0”, and  finally got 3 Common MMRDEGs (OCRL, GAPDH, TPI1) 
and 39 pairs of interaction data of 29 TFs were graphically represented 
utilizing Cytoscape software (Figure 9C). In the mRNA-TF interaction 
network, those blue quadrilateral blocks represent mRNAs, and the 
green quadrilateral blocks are TFs. The detailed mRNA-TF 
interactions are depicted in the Supplementary Table 11. 

We employed the Comparative Toxicogenomics Database 
(CTD) to identify small molecule compounds or potential drugs 
that interact with four commonly observed MMRDEGs. The 
selection criterion for mRNA-Drugs interaction pairs was set as 
“Reference Count” > 1. To render the mRNA-Drug interaction 
network (Figure 9D), we employed Cytoscape software. Within the 
mRNA-Drugs interaction network, the blue quadrilateral blocks 
signify mRNAs, while the green quadrilateral blocks denote drugs. 
Our analysis revealed that our mRNA-Drugs interaction network 
consisted of three common MMRDEGs (OCRL, LDHA, and TPI1) 
and twenty-four drug molecules, forming thirty mRNA-Drugs 
interaction associations. Detailed information regarding these 
specific interactions can be found in Supplementary Table 12. 

The AlphaFold Protein Structure Database (https:// 
www.alphafold.ebi.ac.uk/) encompasses approximately 350,000 
protein structure predictions generated by the AlphaFold AI 
system. This comprehensive database includes predictions for 
humans and 20 widely studied model organisms in biological 
research, such as E. coli, Drosophila, zebrafish, and mice. 
Remarkably, AlphaFold has successfully predicted the structures 
of 98.5% of human proteins within the human proteome. By 
combining AlphaFold’s structural prediction, we can more 
comprehensively construct and understand complex interaction 
networks, revealing the important roles of these genes in cellular 
metabolic regulation. This, in turn, provides a molecular basis for 
exploring the mechanisms of related diseases. To investigate the 
protein structures of four common MMRDEGs, we leveraged the 
resources provided by the AlphaFold website and presented our 
findings in Figures 10A–D. 
4 Discussion 

PE is a prevalent and severe complication of pregnancy, posing 
a substantial threat to both maternal and infant health. Its prognosis 
is intricately linked to maternal and infant outcomes. The primary 
clinical manifestations include hypertension, proteinuria, as well as 
liver and kidney impairment (59). Currently, the precise 
pathogenesis of PE remains incompletely elucidated. Study 
indicates that mitochondrial dysfunction is a pivotal factor in the 
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development and progression of PE, with marked mitochondrial 
abnormalities being detected in PE patient (22, 60). The level of 
oxidative stress in patients with PE is significantly elevated. The 
excessive production of oxygen free radicals can induce damage to 
placental trophoblast cells (58, 61), while mitochondrial 
dysfunction further exacerbates oxidative stress, creating a vicious 
cycle that worsens the progression of PE (58). Mitochondria are the 
primary organelles responsible for cellular energy production. 
Impairment in mitochondrial function leads to a decrease in 
energy supply, which may contribute to elevated blood pressure, 
proteinuria, and multi-organ dysfunction among patients 
diagnosed with PE (62, 63). In addition, the immune response in 
patients with PE is markedly enhanced (8, 64). Another study 
suggests that immune system dysregulation may be closely 
associated with mitochondrial dysfunction (65), thus implying 
that immune dysregulation could contribute to the development 
of PE. Moreover, studies have further demonstrated that PE 
patients face a significantly elevated risk of developing 
hypertension and cardiovascular disease later in life (66, 67). PE 
can also result in FGRs, intrauterine distress, preterm delivery, and 
even intrauterine death due to its impact on maternal-fetal blood 
supply and oxygen delivery (68, 69). Therefore, the early diagnosis 
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of PE is essential for enabling timely intervention and effectively 
reducing maternal and infant risks (70, 71). Currently, clinical 
screening primarily relies on the measurement of blood pressure 
and proteinuria (72), along with evaluations of edema, liver and 
kidney function (73, 74). However, these methods have limitations 
in terms of sensitivity and specificity. 

Through integrative analysis of the GSE24129, GSE30186, and 
GSE54618 datasets, we identified 1,073 DEGs between PE cases and 
Control group. Subsequent comparative intersection analysis with 
MMRGs revealed 24 MMRDEGs. Notably, 16 of these MMRDEGs 
demonstrated significant differential expression patterns between 
PE cases and Control group. These DEGs may be associated with 
the development of PE, especially those MMRDEGs, which may 
affect cellular energy production and metabolic processes and play 
important roles in PE. Mitochondrial energy metabolism is a 
common metabolic pathway in tumor cells, and MMRDEGs may 
include key genes for hypoxia, oxidative stress and programmed cell 
death. Aberrant expression of these genes may lead to impaired 
chorionic trophoblast cell function, which in turn affects the 
development and prognosis of PE. 

In this investigation, our findings revealed that ATG7 
expression was markedly decreased in PE cases. ATG7 is an 
FIGURE 9 

Construct PPI network and mRNA-RBP, mRNA-TF, mRNA-Drug interaction network. (A) Protein interaction network of Common MMRDEGs (PPI 
network). (B) mRNA-RBP network of Common MMRDEGs, blue quadrangle blocks are mRNA; Green quadrilateral blocks are RBP. (C) mRNA-TF 
network of Common MMRDEGs, and the blue quadrangle blocks in the mRNA-TF interaction network are mRNA; Green quadrangle-shaped blocks 
are TFs. (D) mRNA-Drug network of Common MMRDEGs, and the blue quadrangle blocks in the mRNA-Drug interaction network are mRNA; Green 
quadrangular blocks are drugs. PE, Preeclampsia; RBP, RNA binding protein; TFs, Transcription factors; Common MMRDEGs, Common Mitochondrial 
energy metabolism related differentially expressed genes. 
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important component of early autophagy that encodes the E1 
ubiquitin-activating enzyme, and its absence can lead to defective 
autophagy in the uterine vascular microenvironment, which in turn 
reduces uterine vascular permeability (75, 76). Decreased ATG7 
expression was found to inhibit primary cilia formation and 
trophoblast invasion, which in turn led to poor pregnancy 
outcomes (77). However, we must also acknowledge the dual role 
of autophagy in both physiological and pathological states, as 
excessive inhibition of autophagy may similarly have negative 
impacts on placental function. Alzubaidi et al. discovered that 
ATG7 was elevated expressed in placental tissues of PE patients 
(78). This contradiction indicates that our current understanding of 
the relationship between ATG7 and PE is potentially inadequate. 
Therefore, it is crucial to clarify the role of ATG7 in various 
environments. Future research, particularly longitudinal studies, 
will be essential to elucidate the precise role of ATG7 in the 
pathogenesis of PE. The main function of SOD1 is to reduce free 
radical damage to cells through redox reactions. Studies showed 
that Oxidative stress inhibited SOD1 expression in placental tissue, 
which was significantly decreased in L-NAME-induced 
preeclamptic mice (79, 80) and it align closely with the 
conclusions drawn in our study. FOXO1 is a member of the 
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FOXO family and is intimately linked to cellular autophagy (81). 
It was confirmed that FOXO1 was highly expressed in placental 
tissues of PE patients, which is consistent with our findings (78). 

Functional correlation analysis was performed to explore the 16 
MMRDEGs, we acquired a series of crucial insights regarding the PE 
pathogenesis. Firstly, GO analysis findings indicated that these 16 
genes were primarily enriched in pyruvate metabolism, glycolysis, 
and ATP metabolism. Furthermore, KEGG analysis demonstrated 
that these genes are linked to processes such as glycolysis/glycolysis, 
HIF-1 signaling pathway, carbon metabolism, inositol phosphate 
metabolism, alanine, aspartate and glutamate metabolism. It has 
been established that placental mitochondrial dysfunction is 
prevalent in preeclampsia, while the inability to upregulate 
glycolysis is significantly correlated with increased disease severity 
(82). Pyruvate, a key product of glycolysis, plays an essential role in 
the production of reducing equivalents within mitochondria, ATP 
synthesis, and biosynthesis pathways such as glucose, fatty acids, and 
amino acids. Pyruvate metabolism is crucial for maintaining carbon 
homeostasis, and its dysregulation has been linked to various diseases, 
including diabetes, cancer, Embryogenesis, and cardiovascular 
disorders (83, 84). HK-2 exhibits phosphotransferase activity, 
alcohol-group receptor activity, and fructokinase activity. Relevant 
FIGURE 10 

Protein structures of common MMRDEGs. The protein structures of LDHA (A), GAPDH (B), OCRL (C), and TPI1 (D) are shown. The AlphaFold website 
produced a confidence score per residue (pLDDT) between 0 and 100. Some regions below 50 pLDDT may be isolated unstructured regions, and 
when pLDDT < 50 (red area), the model confidence is very low; When 50 < pLDDT < 70 (yellow area), the model confidence is low; When 70 < 
pLDDT < 90 (light blue area), the model confidence was normal. When 90 < pLDDT (blue area), the model confidence is very high. Common 
MMRDEGs, Common Mitochondrial energy metabolism related differentially expressed genes. 
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pathways include glycolysis and GDP-glucose biosynthesis II. Studies 
demonstrated that HK-2 is involved in glycolytic flux and 
mitochondrial activity during maladaptive inflammation in brain 
diseases. Additionally, HK-2 may exert therapeutic effects in 
osteoarthritis by modulating glucose metabolism (85–87). PGK-1, a 
glycolytic enzyme, is associated with glycolysis and gluconeogenesis 
pathways. Studies have shown that PGK-1 plays a significant role in 
neurodegenerative diseases (88, 89). Various studies have investigated 
the pivotal role of hypoxia-inducible factor-1 (HIF-1) in metabolic 
reprogramming across multiple pathways, including glycolysis, 
glycogen synthesis, lipid metabolism, the electron transport chain 
(ETC), the tricarboxylic acid (TCA) cycle, glutamine and serine 
metabolism, ROS production, as well as mitochondrial biogenesis 
and autophagy (90, 91). Abnormal expression of DNA and histone 
proteins represents a key characteristic of tumor cells. Their 
nucleotide metabolism and epigenetic regulation rely on the one-
carbon metabolic pathway to preserve genomic stability and integrity 
(92). Given the further potential regulatory functions of 
mitochondria in abnormal energy metabolism, it offers a novel 
perspective for investigating the mechanism of preeclampsia. 
Finally, GSEA and GSVA analyses demonstrated a significant 
enrichment of genes from different (PE/Control) groups in the 
Combined dataset, specifically in the vascular smooth muscle 
contraction pathway, IL9 signaling pathway, Notch signaling 
pathway, IL2 signaling pathway, IL6/7 signaling pathway, cell 
surface interactions at the vascular wall. These gene clusters are 
critically involved in hypertension pathogenesis, immune regulation, 
inflammatory responses, and redox homeostasis maintenance 
through interconnected molecular pathways (93–96). These 
findings offer valuable insights and directions for further 
exploration of the pathogenesis of PE. 

In the study, we constructed a diagnostic model containing four 
Common MMRDEGs (OCRL, GAPDH, TPI1, LDHA), and verified 
that the model had high accuracy (AUC = 0.970) by ROC curve. 
Additionally, an external validation dataset was employed to assess 
the applicability of the model, and the results showed that the model 
achieved satisfactory accuracy for diagnosing PE. These four 
Common MMRDEGs not only showed significant differential 
expression, but also functional similarity among them. OCRL 
encodes an inositol polyphosphate 5-phosphatase that acts on 
phosphoinositide, which is a minor component of cell 
membranes but is a key regulator of intracellular transport (97, 
98). OCRL catalyzes the production of the second messenger 
inositol triphosphate (IP3) and diacylglycerol (DAG) via 
phosphatidylinositol metabolism, thereby activating calcium 
release from intracellular stores. Deficiency in OCRL1 results in 
mitochondrial calcium overload, ultimately causing mitochondrial 
dysfunction and apoptosis in T cells (99). Study shows that DAG 
mediates diabetic hyperglycemia and its associated complications 
via the DAG-PKC signaling pathway (100). In addition, research 
has demonstrated that the uterine artery endothelium exhibits an 
adaptive increase in Ca2+/IP3 exchange during pregnancy, 
however, a capacity that is notably diminished in preeclampsia 
(101). Recent studies have shown that OCRL plays an important 
role in cell metabolism, oxidative stress and inflammatory response, 
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which provides new perspectives for understanding its specific 
effects in PE (99, 102, 103). Drugs that regulate the expression or 
function of OCRL may help restore the normal metabolic state of 
the placenta and reduce oxidative stress and inflammation, thereby 
improving the prognosis of PE. 

As a glycolytic enzyme, the main function of GAPDH is to catalyze 
the  conversion  of  glyceraldehyde-3-phosphate  to  1,3
bisphosphoglycerate, concomitantly generating ATP. Therefore, 
GAPDH is a critical energy source for cellular metabolism (104). In 
addition, GAPDH has a variety of non-glycolytic functions. For 
instance, regulation of RNA export, DNA repair, autophagy and cell 
death (105). Dimethyl fumarate exerts its anti-inflammatory effects by 
inhibiting glycolysis in immune cells through inhibit the catalytic 
activity of GAPDH (106). Further functional validation and 
mechanism research may provide new targets and help for the early 
diagnosis and treatment of PE. TPI1 regulates the interconversion 
between glyceraldehyde-3-phosphate and dihydroxyacetone 
phosphate during glycolysis and gluconeogenesis, therefore, it is 
essential in the modulation of energy metabolism. TPI1 can 
function as an inhibitor to modulate NK cytotoxicity via the SHP-1
ERK-STAT3 pathway (107). And the Erk signaling pathway has a 
direct impact on trophoblast proliferation (108). In addition, an 
increasing number of studies indicated that this gene influences 
glycolysis in target cells via different pathways, such as the 
METTL5/cMyc/TPI1 pathway, thereby affecting the onset and 
prognosis of various diseases, including lung cancer, liver cancer, 
and myopia (109–111). LDHA is widely present in the cytoplasm and 
can also be expressed in mitochondria and nucleus, which participate 
in and regulate cellular energy metabolism and have an important 
impact on cellular function (112). LDHA depletion leads to a 
reduction in ATP production, consequently diminishing PI3K
AKT-Foxo1 signaling and impairing the redox responses of effector 
T cells (113). Yang M et al. showed that glucose transporter 1 plays a 
critical role in glucose uptake and subsequent metabolic utilization. 
Knockdown of GLUT1 reduced glucose uptake and suppressed lactate 
production by modulating the mRNA expression of LDHA, resulting  
in impairment of blastocyst implantation, trophoblast invasion, and 
placental development (114). Furthermore, we validated their 
expression in placental tissues using RT-qPCR assay. The before 
mentioned metabolic and immune disorders were found to be 
consistent with the impaired mitochondrial function, reduced ATP 
synthesis, and abnormal immune cell function observed in the 
placenta of patients with PE. These findings present a novel 
perspective on potential early diagnostic biomarkers for PE. The 
diagnostic model combined the expression levels of these genes and 
successfully differentiated between PE and Control group samples, 
suggesting their potential utility as diagnostic indicators for 
pregnancy-related hypertensive conditions. 

GSEA and GSVA analyses revealed multiple pathways that 
exhibited marked differences among the Low and High-risk groups 
in the Combined dataset, encompassing various biological processes 
such as redox reactions, immune responses, and cell cycle regulation. 
Significantly enriched or altered genes in these pathways may have 
different impacts on Low and High-risk cohorts, leading to significant 
differences in immune status and cellular function between patients at 
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different risk levels. This provides new insights for understanding risk 
assessment in PE patients and potential targets for future therapeutic 
strategies. Additionally, it confirmed the biological validity of the 
MMRDEGs correlation diagnosis model. 

Existing research indicates that PE is a complex pregnancy-
related disease involving multiple pathological mechanisms, 
including abnormal immune system responses. There is an 
increase in biomarkers indicating activation of the terminal 
complement pathway (115, 116). Deer et al. emphasized that 
immune cells such as regulatory T cells, macrophages, natural 
killer cells, and neutrophils are known to play major causal roles 
in the pathology of preeclampsia in their review (117). Aneman 
et al. further explored the distinct manifestations of the innate 
immune system in early and late stages of PE, positing that 
understanding immune cells holds the key to unveiling the 
pathogenesis of PE (118). In addition, Nieves et al. explored the 
impact of autoimmune diseases and infections on PE, highlighting 
that these factors can significantly exacerbate the condition (119). 
Lastly, Luo et al. uncovered immune interference at the maternal-

fetal interface in PE via single-cell analysis and discussed HLA-F

mediated immune tolerance (120). Our study employed the ssGSEA 
and CIBERSORT algorithms to analyze immune cell infiltration 
characteristics between High-Risk and Low-Risk groups. Our study 
suggests that differential expression of neutrophils and 
plasmacytoid dendritic cells between these two groups, with 
neutrophils showing a positive correlation with four common 
MMRDEGs in the Low-Risk group. And among the 22 types of 
immune cells with non-zero infiltration abundance, Mast cells and 
B memory cells exhibited the strongest correlation. 

Neutrophils constitute a critical component of the innate 
immune system. They are recruited to sites of infection or 
damaged tissues via a series of coordinated processes, including 
rolling, adhesion, spreading, intravascular crawling, transepithelial 
migration, and chemotaxis-driven tissue infiltration. These 
functions depend on cytoskeletal reorganization and energy 
metabolism. Studies indicated that neutrophils possess the ability 
to adapt to various metabolic pathways, such as metabolic pathways 
involving glucose, lipids, and amino acids, during inflammation or 
in response to different disease states (121, 122). Notably, 
mitochondria serve as crucial sites for the metabolic processing of 
these nutrients. Neutrophil extracellular traps (NETs), induced by 
oxidative stress, represent a critical immune defense mechanism 
against external bacterial infections (123). Moreover, NETs enhance 
mitochondrial stability through the TLR4/PGC1a pathway (122). 
Elevated neutrophil levels have been documented in the peripheral 
blood and subcutaneous fat micro vessels of patients with PE 
(124, 125). Furthermore, studies have demonstrated that the 
activity of neutrophils is influenced by the alteration in the 
plasma expression levels of MMP-1 and PAF in patients with PE 
(124, 126). One experimental study indicated that neutrophils 
cultured in placental conditioned medium derived from women 
with PE exhibited significantly greater adherence to endothelial cells 
compared to those cultured in placental conditioned medium from 
controls, suggesting that factors influencing neutrophil quantity and 
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function may originate from placental sources (124). These studies 
were consistent with the results of our study. 

Dendritic cells (DCs) are professional antigen-presenting cells, 
and plasmacytoid dendritic cells (pDCs) are one subset of DCs. 
pDCs can secrete substantial amounts of IFN-a and IFN-b, as well 
as IL-6, IL-8, IL-12, and tumor necrosis factors (TNFs), via the 
activation of the Toll-like receptor (TLR) 7/9-MyD88-IRF7 
pathway (127). During pregnancy, the primary role of DCs is to 
present paternal/fetal antigens to regulatory T cells, thereby 
maintaining immune tolerance at the maternal-fetal interface 
(128). Studies have demonstrated that the levels of pDCs in the 
serum of PE patients are significantly decreased compared to those 
of normal patients (129). In addition, research has shown that DCs 
display diminished responsiveness to stimulation by various TLRs 
ligands in PE patients compared to those in healthy pregnancy 
(130). Moreover, the expression level of TLR3 at the maternal-fetal 
interface in PE is significantly elevated (131). The upregulated 
expression of TLR3 may function as a protective mechanism to 
counteract the impaired responsiveness of DCs to the stimulation 
by various TLR ligands. These findings suggest that DC-mediated 
inflammation is involved in local regulation at the maternal-fetal 
interface and may plays a crucial role in the pathogenesis and 
progression of PE. Our immune infiltration analysis demonstrated a 
significant inverse correlation between neutrophils and pDCs 
within the low-risk group. Conversely, no such significant 
correlation was detected in the high-risk group. These results 
suggest that there is complex immune regulation mediated by 
neutrophils and pDCs in PE patients, which may play a critical 
role in its progression. 

Immunological alterations constitute a critical component of 
the etiology of PE, characterized by the presence of autoantibodies, 
including agonistic autoantibodies against the angiotensin II type 1 
receptor (AT1) and so on (132). Salby et al. identified the 
proportion of the B cell is elevated in PE patients, because of a 
significantly diminished expression of programmed cell death 
protein 1 (PD-1) on CD27+CD24hiCD38hi regulatory B cells 
(133). Experimental investigations have confirmed that B2 cells 
activated by placental ischemia can induce hypertension, activate 
circulating NK cells, and promote the production of AT1 agonistic 
autoantibodies in normally pregnant rats (132). Mast cells are 
typically activated in response to pathogen invasion, tissue injury, 
or infection firstly and can release cytokines to regulate the local 
inflammatory immune reaction (134). Previous studies have shown 
that mast cell-derived exosomal miR-181a-5p regulates the viability, 
migration, and invasion of HTR-8/SVneo cells through the YY1/ 
MMP-9 pathway (135). And relevant studies have indicated that the 
average histamine concentration and mast cell density are higher in 
PE patients (136). Our analysis of the immune infiltration in non
zero abundance immune cells showed that Mast cells activated and 
B cells memory had the strongest correlation. Further supporting of 
the observation was that Mast cells regulate B cell function through 
secreted cytokines in diseases such as allergic rhinitis and 
pulmonary hypertension (137, 138). In addition, antibodies 
generated by the B cell lineage and cytokines such as interleukin-
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10 (IL-10) can substantially modulate the function of mast cells. 
This modulation can, in turn, promote or restrict the development 
of regulatory B cells via multiple mechanisms (134). This finding 
unveils the connection between mitochondrial metabolism and 
immune cell function, presenting a novel research avenue for 
future immunotherapy and targeted interventions targeting PE, 
offering a fresh perspective for its early diagnosis and intervention. 

Finally, as the four Common MMRDEGs are the most 
potentially valuable biomarkers screened by the model 
constructed and they may play key roles in the pathogenesis of 
PE, we constructed the PPI, mRNA-Drug, mRNA-RBP and 
mRNA-TF interaction networks with the four common genes. 
We identified 51 RBPs genes that could be therapeutic targets for 
PE by analyzing gene nodes in the network. Then, we utilized the 
CTD database to forecast potential therapeutic agents or small 
molecule compounds for PE treatment, identifying 24 drug 
molecules. Furthermore, we displayed the protein structures of 
four common MMRDEGs by leveraging the resources of 
AlphaFold. The results provided molecular basis for exploring the 
mechanism of PE. However, the potential mechanism and role 
required more investigation. 

However, there are several important limitations to this study 
that should be considered when interpreting the results. Firstly, the 
relatively small sample size of the combined dataset (45 total: 19 
preeclampsia cases and 26 controls) may limit the generalizability of 
transcriptomics and machine learning approaches. Therefore, we 
validated the mRNA-level expression differences of MMRDEGs 
using RT-qPCR and conducted the external validation of an 
independent dataset. Additionally, the significant difference in 
gestational weeks at delivery between the PE group and the 
Control group, while clinically relevant to PE management, could 
introduce confounding factors into gene expression analysis. Future 
studies should focus on large-scale, multi-center cohorts to enhance 
the robustness and reliability of the findings and their clinical 
applicability. Furthermore, protein-level validation of these 
biomarkers and functional investigations using cell lines and 
animal models are essential to confirm their roles in the 
pathogenesis of PE and assess their potential as therapeutic targets. 
5 Conclusion 

In this paper, we comprehensively explored the pathogenesis of 
preeclampsia, constructed a scoring model, analyzed the 
relationship between MMRDEGs and immune micro-infiltration, 
and predicted potential therapeutic targets and drug molecules for 
PE by GO, KEGG, GSEA, and GSVA. Nevertheless, the specific 
pathogenesis and molecular targets still need to be further verified. 
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