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Thymic B cells in aging and
autoimmune disease
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Department of Microbiology, Immunology, & Molecular Genetics, UT Health San Antonio, San
Antonio, TX, United States
Thymic B cells comprise a heterogenous population of cells localized primarily

within the thymic medulla, a region populated by professional antigen-

presenting cells (APCs) including dendritic cells, medullary thymic epithelial

cells (mTECs), and macrophages. Through expression and presentation of self-

antigens, these APCs are responsible for shaping the normal T cell repertoire by

negatively selecting thymocytes recognizing self-antigens. It is now clear that

thymic B cells have the capacity to participate in negative selection and present

cognate antigens distinct from other medullary APCs, thus serving a non-

redundant role in mediating T cell central tolerance. Recent work has linked

thymic B cells with the development of multiple autoimmune diseases, many of

which are increased in prevalence with aging. Here, we will provide a brief

overview of the role of thymic B cell subsets in promoting negative selection and

immune homeostasis, with a primary focus on the impact of aging on their

tolerizing capacity and involvement in autoimmune diseases, highlighting thymic

B cells as a potential novel therapeutic target to improve clinical outcomes in

patients with autoimmune diseases.
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Introduction

Prior to Miller’s landmark discoveries highlighting the importance of the thymus in

establishing protective immunity (1), investigators questioned whether the thymus was

capable of producing antibodies as it had been observed in spleen and bone marrow (2). Early

studies had not demonstrated antibody production from the thymus of immunized mice,

suggesting a lack of antibody-producing plasma cells (3, 4). However, when Marshall and

White introduced antigens directly into the thymus by intrathymic injection, they observed

the accumulation of thymic antibody-secreting plasma cells and germinal centers, providing

evidence of the existence of B cells in the thymus (5). These observations were supported by

later studies describing plasma cells and germinal centers in the thymic medulla of chickens

immunized with synovial fluid and liver and thymic protein extracts (6). The clinical

significance of thymic B cells began to become more apparent with later studies noting the

presence of antibody-producing thymic B cells in patients with the autoimmune disease

myasthenia gravis, a chronic neuromuscular disease characterized by voluntary muscle
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weakness associated with difficulty swallowing, shortness of breath,

ptosis, and impaired speech (7–10). As thymic hyperplasia and

thymoma were known features of the disease, initial investigations

led to the discovery of B cell clones in the thymus that produced

acetylcholine receptor autoantibodies, as well as other striational

autoantibodies with specificity for skeletal muscle (9).

Immunohistochemistry studies revealed that thymic B cells

localized in germinal centers in the thymus of myasthenia gravis

patients, potentially contributing to the medullary hyperplasia seen in

the disease (11). Thymic B cells were further implicated in disease

through studies identifying the presence of B cell markers in

mediastinal lymphomas suggested to be of thymic origin (12).

However, it was unclear whether these B lymphocyte populations

were native to the thymus and expanded during disease, or whether

they infiltrated the thymus from the periphery to trigger

disease onset.

Shortly after these clinical discoveries, it was revealed that

thymic B cells were also present in small numbers (<1%) in the

healthy adult thymus in both mice and humans (13, 14). The

majority of these thymic B cells were found to belong to the B1 cell

subset, which is a lineage of CD5-expressing, innate-like, IgM-

secreting B cells with a distinct origin and functional properties

from that of conventional B cells (14–16). Unlike conventional B

cells, B1 cells are found in the peritoneal cavity but are not widely

detected in the spleen, lymph nodes, or peripheral blood (14).

Notably, B1 cells have been linked with the pathogenesis of multiple

autoimmune diseases including lupus and rheumatoid arthritis (16,

17). Unlike thymic B cells of myasthenia gravis patients, which

localize in organized lymphoid follicles in germinal centers, thymic

B cells of healthy subjects were detected in the perivascular space of

the medulla near Hassall’s corpuscles (18); and early histological

studies noted they were found to associate with rosettes of T cells

(19). Recent spatial imaging studies in the human infant thymus

have further confirmed localization of thymic B cells in the medulla,

forming niches with mTECs near Hassall’s corpuscles, suggesting

they are poised to serve as APCs contributing to T cell tolerance

induction (20, 21).

In recent years thymic B cells have indeed emerged as essential

mediators of T cell negative selection, promoting tolerance to both

neo-self antigens introduced in T cell receptor (TCR) transgenic

systems as well as endogenous self-antigens in a polyclonal setting

(22–25). Beyond presentation of B cell receptor (BCR)-captured

antigens, thymic B cells can become licensed through CD40

stimulation to express Aire, a critical transcriptional regulator of

tissue restricted antigen (TRA) gene expression, promoting the

expression of TRAs distinct from those produced by mTECs (22).

However, just as thymic aging is associated with significant declines

in mTEC expression of Aire and Aire-associated TRAs (26–28),

aging imparts significant disruptions in thymic B cell expression of

Aire, which may reduce their tolerizing capacity (29). Supporting

this notion, thymic B cells have been associated with the

pathogenesis of numerous autoimmune diseases which have

increased prevalence with aging, such as late-onset myasthenia

gravis, Sjogren’s syndrome, and systemic lupus erythematosus

(SLE) (30–35). In this review we will focus on aging-associated
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changes in thymic B cell function and their role in the development

of autoimmune diseases from clinical studies and mouse models

of autoimmunity.
Heterogeneity of thymic B cell
populations

Under homeostatic conditions, thymic B cells consist of a

heterogenous population of cells in both mice and humans,

including medullary B cells involved in antigen presentation, as

well as a population of perivascular memory B cells and plasma cells

(PCs), each with diverse functions contributing to immune

homeostasis (18). Thymic PCs specific to common viral antigens

accumulate in human thymus during the first year of life, and

constitutively secrete complement-fixing IgG1 and IgG3 (36).

Localized within the perivascular space, these PCs may serve an

important antimicrobial role in the thymus to protect against

infection-induced pathology.

Under healthy conditions in both mice (25, 37) and in humans

(19, 38), a large percentage of thymic B cells have undergone class-

switching. In C57BL/6 mice, IgM- IgD- isotype-switched thymic B

cells are predominantly composed of IgG2b+, IgA+, IgG2c+, and

IgG1+ B cells (37). Analysis of AID expression and circle transcripts

suggests that class switching occurs intrathymically under steady-

state conditions and is dependent upon TCR/CD40 signaling with

mature thymocytes. Importantly, the BCR repertoire of class-

switched thymic B cells is distinct from that of non-class-

switched B cells and is particularly skewed toward self-antigens

(37). These findings were confirmed in a later study by Lombard et.

al., in which thymic B cell isotype switching was evaluated among a

variety of common mouse strains (C3H, A/J, NZO) and wild-

derived inbred strains (PWK, CAST) (25). Among these strains, the

most common isotype-switched thymic B cells expressed an IgG or

IgA BCR (25). Castaneda and colleagues have also recently noted

the presence of class-switched memory B cells in the murine thymus

that are detectable during the neonatal period, before the emergence

of peripheral class-switched B cells (39). Importantly, thymic

memory B cell differentiation was not driven by foreign antigen

stimulation, but instead depended upon interactions with CD4+ T

cells, supporting a role as local antigen-presenting cells to establish

T cell central tolerance as discussed below. Similarly, thymic B cells

sorted from pediatric patients displayed a mature phenotype and

were enriched for protein autoantigen binding, further implicating a

role of thymic B cells in the presentation of autoantigens to establish

T cell central tolerance (38).

In contrast with splenic B cells, thymic B cells largely display an

activated, mature phenotype and express higher levels of MHC class

II and costimulatory molecules CD80/86, suggesting they are

functionally different from other peripheral B cell populations

and are poised to interact with T cells in the thymus (22, 40, 41).

Thymic B cell CD40-CD40L interactions with T cells appears to be

a particularly strong requirement for their survival and

proliferation, as mice lacking CD40L demonstrate a severe

reduction in the total number of thymic B cells (42, 43). Further,
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1595805
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wedemeyer and Griffith 10.3389/fimmu.2025.1595805
autonomous expression of CD40 by thymic B cells is required to

support their overall population maintenance (43) as well as

promote high efficiency antigen presentation to T cells (41). In

contrast, expression of neither MHC class II nor CD80/86 is

required for thymic B cell maintenance, highlighting the unique

role of CD40 in regulating the thymic B cell population (43).
Role of thymic B cells in mediating
central tolerance

Evidence for the capacity of thymic B cells to mediate clonal

deletion of T cells was first shown in deletion of viral superantigens,

which bind outside the antigen-binding groove of major

histocompatibility complex (MHC) class II molecules, resulting in

excessive stimulation of the host T cells (44). Intrathymically

injecting thymic B cells, but not dendritic cells or splenic B cells,

results in the clonal deletion of Mls-1-specific T cells in neonatal

BALB/c mice, and induced tolerance in a graft vs. host assay, while

injection of dendritic cells promotes anergy of Mls-1-reactive T cells

rather than deletion,suggesting that thymic B cells were the main

mediators of clonal deletion of superantigen-specific T cells (45).

In 2015 Yamano et al. demonstrated that thymic B cells, upon

interaction with CD4 single-positive (SP) thymocytes in the context

of CD40 signaling, acquire tolerogenic features, such as expression

of Aire, and induced transcription of unique TRAs expressed in the

brain (Grik2), spermatocytes (Ggn), and lung (Lamp3) that were

weakly expressed in mTECs (22). Notably, mature peripheral B cells

were able to readily acquire this licensing phenotype when exposed

to the thymic microenvironment. They found that the CD4 SP

compartment was significantly larger in B cell-deficient Mb1-Cre

knock-in mice relative to controls, further demonstrating the

importance of thymic B cells in promoting negative selection of

CD4 SP T cells (22).

Following these studies confirming a role for thymic B cells in

promoting T cell tolerance induction, thymic B cell-mediated

negative selection of certain neo-self-antigens was subsequently

found to be dependent upon CD40-dependent Aire-licensing

(22). Yamano et al. utilized an Aire-HCO transgenic model in

which a chimeric influenza hemagglutinin (HA) protein is

expressed by both mTECs and thymic B cells licensed to express

Aire (22). After co-culturing purified thymic B cells, DCs, mTECs,

and peripheral B cells with GFP-expressing HA-specific A5

hybridoma T cells, they found that mTECs strongly stimulated

the A5 cells, while both thymic B cells and DCs both presented HA

with similar efficacy. However, by transplanting Aire-HCO bone

marrow into wild-type (WT) recipients, they found that HA

presentation by thymic B cells remained intact, confirming that

thymic B cells directly present endogenously expressed antigen.

The capacity of thymic B cells to participate in the negative

selection of autoreactive CD4 T cells has been thoroughly

investigated using other neo-antigen systems also. Frommer et al.

utilized a BMOG mouse line crossed with 2D2 mice (which express a

MOGp35-55-specific TCR) to examine the role of B cell-specific

presentation of MOG (Myelin Oligodendrocyte Glycoprotein)
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peptide to T cells via MHC class II (23). They found that the

number of CD4 SP T cells in the thymi and lymph nodes of these

BMOG/2D2 mice was significantly reduced compared to 2D2 control

mice. Importantly, crossing these mice with B cell-deficient JHT

mice revealed that presentation of MOG peptide was unique to

thymic B cells, and not performed by other APCs (including DCs,

macrophages, and mTECs). This negative selection of MOG-

specific T cells was sufficient to prevent the induction of

experimental autoimmune encephalitis (EAE) in BMOG-2D2 mice.

In a subsequent study, Perera et al. crossed 121 BCR knock-in mice

specific for glucose-6-phosphate isomerase (GPI) with KRN TCR

transgenic mice (which recognize GPI282–292 peptide presented by

MHC class II). They observed a three-fold reduction in the number

of CD4 SP T cells and overall reduced thymic cellularity compared

to controls (24), providing further evidence that despite their

relatively low frequency, thymic B cells serve as efficient antigen-

presenting cells for T cell negative selection.

Thymic B cells have also been shown to mediate tolerance to a

group of Aire-independent autoantigens. Afzali et al. recently

demonstrated that B cells endogenously express AQP4, an

autoantigen linked with neuromyelitis optica, in response to

CD40 stimulation (46). These AQP4-expressing thymic B cells

promote efficient negative selection of AQP4-TCR+ CD4 T cells.

Notably, B cell-specific deletion of Aqp4 resulted in a rescue of

AQP4-TCR+ T cells (despite AQP4 expression by mTECs),

highlighting the unique role of thymic B cells in establishing

tolerance to this autoantigen.

Recently, Lombard et al. demonstrated the capacity of thymic B

cells to promote negative selection of CD4 SP T cells in a polyclonal

setting, which is dependent upon AID expression (25) (reviewed in

(47)). Using NOD (non-obese diabetic) mice crossed with AID-/-

mice, which lack class switch recombination in thymic B cells, they

observed that AID deficiency was associated with an accelerated

development of diabetes onset compared to NOD.AID+/+

littermates. They also noted an enlargement of the spleen and

pancreatic lymph nodes with a coinciding increase in the frequency

and number of activated (CD69+) CD4 T cells. Notably, NOD.Rag-/-

mice (lacking B and T cells) receiving total thymocytes from

NOD.AID-/- mice had significantly more insulitis compared to

mice receiving thymocytes from NOD.AID+/+ mice. Further,

through cleaved caspase-3 staining, they observed that fewer CD4

SP thymocytes were found to be undergoing clonal deletion in

NOD.AID-/- mice compared to NOD.AID+/+ controls, suggesting

impaired negative selection in AID-deficient NOD mice. Next, to

determine the role of AID expression by thymic B cells in the

negative selection of a neo-self antigen, they crossed AID-/- mice

with 3A9 TCR transgenic mice, which express a TCR specific for a

peptide from HEL (hen egg lysozyme) protein. They found a 20%

increase in thymic 3A9+ CD4 SP T cells from AID-/- mice compared

to AID+/+ controls, demonstrating an important role for AID

expression by thymic B cells in promoting efficient negative

selection of T cells.

Thymic B cells are also implicated in promoting T cell negative

selection in humans. The infant thymus was found to have

heterogenous populations of CD19+ thymic B cells, including a
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significant (approximately 50%) population of CD21-/low memory B

cells localized in the medulla that express high levels of Aire and

activation markers CD69, CD95, and CD86 (48). Subsequently,

evaluation of the human thymic B cell transcriptome revealed

significant expression of CDH17 and LAMP3—representative TRAs

of the intestinal tract and the lung, respectively—concomitantly with

a lower expression of KLRB1, an Aire-repressed gene, in thymic B

cells (49). Further, RNA seq analysis on sorted human B cells revealed

expression of TRAs associated with autoimmune diseases, such as

LAD1 (linear IgA dermatosis), SCG2 (autoimmune hypophysitis),

ICA1 (type 1 diabetes), ACHE and AKAP12 (myasthenia gravis), and

METRNL (autoimmune hepatitis) (49), implicating a potential role

for thymic B cells in establishment of self-tolerance towards a variety

of peripheral tissues.

In addition to establishing central tolerance through mediating

negative selection of autoreactive thymocytes, thymic B cells have

been suggested to sizably contribute to the maintenance of thymic

regulatory T (Treg) cells (50). Used as a mouse model of lupus and

Sjogren’s syndrome, BAFF-overexpressing mice (BAFF-Tg) have

increased numbers of peripheral Foxp3+ CD4 Tregs with

concomitant expansion of B2 cells, which is associated with the

development of autoimmunity (51). This expansion of peripheral

Tregs was found to be due to increased generation of thymus-

derived Helios+ Foxp3+ Tregs (52). To determine the necessity of B

cells in promoting this expansion of thymic Foxp3+ Tregs, Walters

et al. generated bone marrow chimeras consisting of WT or BAFF-

Tg hosts transplanted with WT or mMT-/- (B cell deficient) bone

marrow (52). In the absence of mature B cells, there was a

significant reduction in the frequency of CD4+ Foxp3+ thymic

Tregs even in the presence of BAFF (52). mMT-/- mice also have

significantly reduced frequency and total number of CD4+ Foxp3+

positive thymic Tregs compared to WT controls (52). Furthermore,

limiting BCR repertoire diversity resulted in a reduction in the

frequency of thymic Tregs, suggesting a diverse BCR repertoire is

required for thymic B cells to fully participate in antigen capture

and subsequent presentation to nascent T cells (52). An association

between thymic B cells and thymic Treg generation was further

confirmed using a mMT-/- Foxp3-GFP reporter system (40). Lu et al.

demonstrated co-localization of thymic B cells with thymic Tregs in

the medulla through immunofluorescence microscopy, suggesting

potential T cell divergence to the Treg lineage via direct contact with

thymic B cells. Notably, T cells co-cultured with thymic B cells were

able to develop into Foxp3+ Tregs, and this development was

blocked upon MHC class II blockade (40). Advancing the notion

that thymic B cells are involved in generation of thymic Tregs,

Martinez et al. demonstrated the contribution of low-grade “sterile”

inflammation via type III interferon signaling in promoting the

activation of thymic B cells and class switch recombination leading

to the generation of thymic Tregs (53).

Recent fate mapping studies have demonstrated that thymic B

cells also function in concert with specialized mimetic subsets of

TEC, such as microfoldTEC, to promote their maturation and

enable antigen transfer to thymic APCs (54). In turn, these

interactions promote secretion of TNF superfamily member

APRIL from nearby CX3CR1+ thymic APCs, promoting
Frontiers in Immunology 04
differentiation of thymic B cells into class-switched IgA+ plasma

cells, revealing a novel cross-talk mechanism that may further drive

the tolerogenic and/or antimicrobial functions of this

specialized population.

Thus, growing evidence suggests that thymic B cells help

mediate T cell central tolerance by promoting clonal deletion of

autoreactive thymocytes, by diverting potentially autoreactive

thymocytes to a regulatory T cell lineage, and by promoting the

tolerizing functions of mTECs.
Impact of aging on thymic B cell
function

Aging of the adaptive immune system leads to both impaired

responses to new infections and vaccinations, as well as a

dysregulation of self-tolerance leading to autoimmunity and

inflammatory disease (55). Within the B cell compartment, aging

is associated with an expansion of a population of unique CD11c+,

T-bet+ peripheral B cells, designated ABCs (age-associated B cells),

within the spleen and bone marrow (56–59). Outside the expansion

seen during aging, proliferation of ABCs has also been observed in

both mice and in humans during chronic viral infection and in

autoimmune conditions including SLE (60, 61). ABCs, unlike other

memory B cells, do not respond to BCR or CD40 stimulation but

instead respond to TLR9 and TLR7, secreting cytokines such as IL-4

and IL-10 as well as autoantibodies (56, 62). Expression of T-bet, a

transcription factor expressed by T cells to promote Th1

differentiation, is required for the production of autoantibodies by

ABCs as well as IgG2a class switching (62). Patients with lupus were

found to have a population of ABCs capable of differentiating into

plasma cells that produced autoantibodies (63). In addition to their

direct role in autoantibody production contributing to

autoimmunity, a subset of aged B1 B cells were reported to

accumulate in adipose tissue of mice in the context of sepsis,

which is associated with increased pro-inflammatory

macrophages and compromised lipolysis (64). Conversely, mMT-/-

mice were found to have improved adipocyte metabolism and

reduced NLRP3 inflammasome activity by pro-inflammatory

macrophages, highlighting the interactions between aged B cells

and macrophages driving impaired lipid metabolism in WAT

driving inflammation during sepsis (64).

In the thymus there is an increased relative frequency of CD19+

B cells in C57BL/6 mice during aging, despite decreased B cell

potential of early thymic progenitors (ETPs) in adult mice relative

to neonates (29, 65). We estimate that the frequency of thymic B

cells increases nearly sixfold, from 0.2% to 1.2% of all thymocytes by

one year of age in mice, while in humans, the relative frequency of

thymic B cells is estimated to be higher, increasing from <5% in

infants to 5-15% in adults (36). Despite an increased frequency, the

total number of thymic B cells in aged mice remains unchanged,

due to age-associated declines in overall thymus cellularity (29, 66).

Beyond changes in their relative frequency, we reported that aged

thymic B cells display phenotypic changes in mice (summarized in

Figure 1), including loss of Aire expression and decreased
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expression of tissue-restricted antigens, including Titin (Ttn), an

important antigen linked with development of late-onset

myasthenia gravis (29, 67). Aged thymic B cells were also found

to have increased IgG2a frequency and decreased IgG2b frequency

(29), which is consistent with increased ABC frequency and T-bet

expression with age (58, 68). Interestingly, aged thymic B cells were

found to have reduced expression of RANK, but not CD40, which is

required for licensing of Aire expression in young thymic B cells

and for overall maintenance of the thymic B cell pool (22, 43). In

contrast, while peripheral ABCs are characterized by increased

CD11c expression (57), thymic B cells from aged mice were

found to have no significant increase in CD11c expression (29),

suggesting phenotypic differences between aged thymic B cells and

peripheral ABCs. While decreased expression of Aire by aged

thymic B cells is speculated to diminish their capacity to mediate

negative selection leading to the development of autoimmunity

(29), further studies will be required to mechanistically link aging

thymic B cell phenotypic alterations with loss of self-tolerance.

Recent histological and transcriptomic studies have also

confirmed age-associated changes in thymic B cell subset

frequency and phenotype in the human thymus. Investigating

phenotypic changes in human thymic B cell populations across

the lifespan, Nunez et al. demonstrated there was a nearly 10-fold

reduction in the expression of MHC class II inadult thymic B cells

compared to infant thymic B cells, as well as a significant reduction

in the levels of co-stimulatory molecules CD80, CD83, and CD86
Frontiers in Immunology 05
with aging (36). In addition, expression of the chemokine receptor

CXCR3 was significantly increased in thymic B cells from older

adults, suggesting these B cells acquire a memory phenotype.

CD27+ class-switched memory B cells steadily increase in

frequency after the first year of life, consistent with the

accumulation of memory B cells throughout aging (49). In

agreement with these observations, Park et al. observed an

increase in the frequency of thymic memory B and T cells in

adult thymus relative to infant thymus during aging (69). Thus,

aging induces significant alterations in the thymic B cell repertoire

of both mice and humans, which may significantly impact their

tolerogenic function. We will next discuss the association of thymic

B cells with various autoimmune conditions, many of which are

increased in frequency with aging.
Contribution of thymic B cells to
autoimmunity

Thymic B cells have been associated with numerous

autoimmune diseases, while the exact role these cells play in the

prevention and/or progression of these conditions has been

incompletely understood. B cell-targeting therapies are

increasingly being tested in Phase 1/2 clinical trials to treat

numerous refractory autoimmune diseases, including systemic

lupus erythematosus (SLE), multiple sclerosis, and myasthenia
FIGURE 1

Summary of phenotypic alterations associated with aging in thymic B cells. Thymic B cells acquire distinct phenotypic changes with aging that may
contribute to age-associated declines in function. Aged thymic B cells have increased expression of memory markers (such as CD27 and CXCR3)
and significantly reduced expression of MHC class II and costimulatory molecules CD80/CD83/CD86. IgG2a class-switching is increased and IgG2b
class-switching is decreased with age, which is associated with increased expression of T-bet and increased frequency of the age-associated B cell
(ABC) phenotype. Notably, expression of the ABC marker CD11c is not increased with age in thymic B cells. Aged thymic B cells have decreased
expression of receptor activator of NF-kB (RANK), which promotes mTEC maturation and is a positive regulator of Aire expression. Despite
maintained CD40 expression, which is required for thymic B cell Aire licensing, Aire expression declines significantly, with the largest reductions
occurring in IgG class-switched B cells. Expression of Aire-dependent and Aire-independent tissue-restricted antigens are also decreased with aging,
including Titin (Ttn), which is associated with the development of late-onset myasthenia gravis. Taken together, these alterations may impair
antigen-presenting capacity in thymic B cells, resulting in age-associated declines in T cell central tolerance induction. Figure was generated in
BioRender.com.
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gravis (70, 71). These approaches include anti-CD19 monoclonal

antibody (Rituximab) treatment, chimeric antigen receptor (CAR)-

T cell therapy, and anti-BAFF monoclonal antibody (Belimumab)

therapies (72–76). While these therapies are expected to target

activation of peripheral CD19-expressing B cells, the potential

impact of these treatments on thymic B cell function should also

be considered. In this section we will present an overview of what is

currently known about the contribution of thymic B cells to

autoimmunity from both human clinical studies and animal

models of disease.
Myasthenia gravis

In 1936, American surgeon Alfred Blalock pioneered treatment

for myasthenia gravis by removing a thymic tumor (77). Blalock

hypothesized that thymic pathology played a role in contributing to

the disease, and promoted thymectomy as a treatment for

myasthenia gravis even in the absence of a thymic tumor

(nonthymomatous myasthenia gravis). Support for thymectomy

as a treatment for myasthenia gravis has been further boosted by

recent clinical trials demonstrating improvements in myasthenia

gravis symptoms (78, 79). Anti-acetylcholine receptor (AChR)

autoantibody-producing B cells have since been discovered in the

thymus of myasthenia gravis patients, suggesting their involvement

in disease pathogenesis (8, 30, 80). Histological studies have noted

significantthymic architectural disruption in myasthenia gravis

patients characterized by deformation of the medullary epithelial

compartment and expansion of interlobular and perivascular spaces

containing numerous secondary follicles with IgM- and IgD-

expressing B cells (81). Thymic B cells are expanded in

myasthenia gravis patients relative to healthy subjects, and

phenotyping studies have confirmed they possess an activated

phenotype (30, 31). Isolated thymic lymphocytes from

myasthenia gravis patients were found to be capable of

spontaneously secreting IgG, IgM, and IgA, supporting a role for

B cell activation in the progression of disease (82).

While nearly 90% of myasthenia gravis patients have

autoantibodies targeting AChR and/or the muscle-specific

tyrosine kinase (MuSK), other autoantibodies targeting striated

muscles, particularly the sarcomere protein Titin, have been

detected in some myasthenia gravis patients. Anti-Titin

autoantibodies have been detected in a significant (80%) number

of patients with thymomatous myasthenia gravis, while they are

present only in a minority of myasthenia gravis patients without

thymoma (83). The presence of anti-Titin autoantibodies is a

distinctive feature of late-onset (>50 years) myasthenia gravis,

with nearly 50% of patients diagnosed with late-onset myasthenia

gravis having detectable anti-Titin autoantibodies, while anti-Titin

autoantibodies are rare in patients with early-onset disease (84).

Anti-Titin autoantibodies have also been detected in a majority of

late-onset myasthenia gravis patients with myopathy, suggesting

aging-associated perturbations contribute to this increased

susceptibility (85). We have previously reported a decrease in
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thymic B cell expression of Ttn with aging in mice (29). Whether

this decreased expression promotes a breakdown in T cell tolerance

against Titin and increased susceptibility to myasthenia gravis

warrants further investigation. Thus, thymic B cells play a

prominent role in mediating both early-onset and late-onset

myasthenia gravis pathogenesis through potentially distinct

mechanisms, making them a promising therapeutic target for

disease intervention.
Neuromyelitis optica

Neuromyelitis optica is an autoimmune disease affecting the

central nervous system driven primarily by autoantibodies against

the water channel protein AQP4. Astrocytes primarily express the

M23 isoform (86), which is a prime target against anti-AQP4

autoantibodies. Because these anti-AQP4 antibodies are class-

switched, this suggests they occur following a germinal center

(GC) reaction, which requires an antigen-specific T follicular

helper cell response. Afzali et al. recently hypothesized that B cells

play an important role in preventing T cell- B cell mediated GC

reactions that result in autoantibody production (46). They noted

that while both mTECs and thymic B cells endogenously express

AQP4, anti-CD40 and IL-21 stimulation promoted the expression

of AQP4 in thymic B cells. Through genetic ablation of Aqp4 in B

cells, they found that thymic B cells were a significant contributor to

the negative selection of AQP4-specific T cells (46). In contrast,

genetic ablation of Aqp4 in TECs did not affect total numbers of

AQP4-specific T cells. In a model of experimental autoimmune

encephalitis (EAE), they noted that B cell-specific Aqp4 knock-out

mice were significantly more susceptible to clinical disease induced

by immunization with AQP4p41 peptide compared to mTEC-

specific Aqp4 knock-out mice. These results suggest that even

though mTECs endogenously express AQP4, thymic B cell- T cell

interactions are critical for shaping tolerance against AQP4-reactive

T cells to prevent GC reactions leading to autoantibody production.
Systemic lupus erythematosus

While peripheral B cells are well-established as drivers of lupus

pathogenesis via promoting antibody production, T cell activation,

and cytokine secretion (87), thymic B cells may also play a

significant role in SLE pathogenesis. Previous histological studies

noted that in comparison to healthy patients and patients with

myasthenia gravis, thymic samples from patients with SLE were

found to have distinct architectural adaptations, including the

presence of epithelial aggregates in the medulla, cortical thinning,

GC formation, and increased plasma cells (88, 89). There are limited

human studies investigating the role of thymic pathology in the

development of SLE, but a variety of environmental and genetic

mouse models suggest an association between thymic B cells and

SLE incidence. Increased thymic B cell frequency has been observed

in MRL/lpr lupus-prone mice, along with increased frequencies and
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total numbers of CD4 SP and CD8 SP T cells, suggesting reduced

negative selection (90). Likewise, lupus-prone NZBWF1/J (BWF1)

mice, which develop spontaneous autoimmunity resembling SLE,

have a greater than 20-fold increase in B cell frequency and a 6-fold

increase in absolute B cell numbers in the thymus compared with

age-matched control mice (32). Further, thymic B cells in BWF1

mice proliferated and clustered in structures resembling ectopic

GCs. Similarly, using the pristane-induced model of lupus, Tang

et al. found a substantial increase in the frequency of thymic B cells,

suggesting genetic as well as pharmacological models of SLE are

linked with an accumulation of thymic B cells (33). Thus, it is

possible that the thymus, by housing its own population of B cells

and plasma cells that accumulates with aging, can become a

specialized niche that promotes autoreactive humoral responses

associated with SLE (32).
Type 1 diabetes

T1D development is associated with a breakdown in T cell

central tolerance leading to destruction of the insulin-producing

pancreatic beta cells. Previous studies with non-obese diabetic

(NOD) mice noted a gradual accumulation of thymic B cells and

concomitant loss of mTECs throughout progression of disease (91,

92). Following up on these initial findings, thymic B cells were

found to develop abnormally during the late insulitic-prediabetic

phase in NODmice, suggesting a potential contribution of thymic B

cells to defects in T cell central tolerance (93) (reviewed in (94)).

Ectopic germinal centers and increased numbers of class-switched

IgD+ and IgE+ B cells have been detected in the thymi of NODmice

compared to controls (93). However, absolute numbers of insulin-

reactive B cells in the thymus are similar between NOD mice and

C57BL/6 control mice, suggesting that the number of insulin-

reactive thymic B cells does not correlate with T1D susceptibility.

In contrast, NOD mice demonstrated binding of mouse

immunoglobulins to mTECs, which was associated with increased

apoptosis of insulin-expressing mTECs (93). NOD thymocytes

cultured in the presence of whole insulin or proinsulin peptide

with bone marrow-derived DCs were found to be significantly more

responsive relative to thymocytes from B cell-deficient NOD-

mMT-/- mice. Overall, these results suggest that autoreactive

thymic B cells target insulin-expressing mTECs, which allows

escape of insulin-reactive T cells driving T1D susceptibility (93).

A recent study from Lombard et al. provides further

mechanistic insight linking thymic B cells with T1D pathogenesis

(25). The authors noted decreased expression of the costimulatory

molecule CD80 in thymic B cells, but not other thymic APCs, in

NOD mice relative to C57BL/6 mice. This decreased costimulatory

molecule expression resulted in inefficient thymic B cell activation

and differentiation into isotype-switched B cells which are

associated with promoting T cell central tolerance (25). Further

suggesting impaired negative selection, the authors noted a greater

frequency and total number of CD4 SP T cells in NODmice relative

to controls (25). To investigate the importance of thymic B cell class
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were generated, and were found to have accelerated onset of

diabetes relative to NOD.AID+/+ mice with a concomitant

increase in autoreactive CD4 T cells. These results, which support

a role for AID expression in regulating B cell class switch

recombination and subsequent T cell negative selection, are in

agreement with previous clinical studies which linked AID

mutations with peripheral organ autoimmunity including diabetes

in patients with hyper-IgM syndrome (95). Therefore, thymic B cell

expression of AID plays a nonredundant role in inducing CD4+ T

cell tolerance controlling autoimmune disease susceptibility.
Sjogren’s syndrome

Two mouse models of Sjogren’s syndrome, an autoimmune

disease characterized by autoantibody-mediated inflammation of

the salivary and lacrimal glands driven by B cell hyperactivity, have

been noted to have distinct thymic pathology (96). IQI/Jic mice

spontaneously develop focal lymphocytic inflammation after 6

months of age in the lacrimal and salivary glands with a

coinciding increase in thymic B cells in aged females (34, 35).

The Aly/aly mouse carries the homozygous autosomal recessive

alymphoplasia (aly) gene mutation and is marked by a systemic

absence of lymph nodes and Peyer’s patches as well as disorganized

spleen and thymic architecture characterized by a sparse medulla

and enlarged cortex with a reduction in mTECs leading to disrupted

cortical-medullary boundaries (97, 98). Several clinical case reports

have noted the development of thymic B cell mucosa-associated

lymphoid tissue (MALT) lymphomas arising in patients with pre-

existing Sjogren’s syndrome (99–101) and/or salivary B cell MALT

lymphoma (102), suggesting thymic B cells may be a driver of these

pathologies. Histological analysis of thymic B cell MALT

lymphomas revealed dense B lymphocyte infiltration into the

Hassall’s corpuscles forming lymphoepithelial lesions resembling

myoepithelial sialadenitis (MESA) lesions observed in Sjogren’s

syndrome (103), further implicating thymic B cells in the

development of salivary gland autoimmunity and/or MALT

lymphoma. These observations suggest the possibility that chronic

inflammation in the thymus driven by autoreactive thymic B cells

linked with Sjogren’s syndrome pathology plays a role in the

development of subsequent thymic B cell MALT lymphomas.
Food allergy

Food al lergies are character ized by IgE-mediated

hypersensitivity reactions triggering mast cell activation and

subsequent clinical symptoms ranging from mild skin reactions to

potentially life-threatening anaphylaxis (104). As the thymus has

been found to contain a reservoir of antibody-secreting plasma cells

maintained throughout the lifespan (105), it was speculated that the

thymus may be a source of IgG and/or IgE-secreting plasma cells

specific for dietary antigens involved in food allergy. Recently,
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plasma cells secreting IgG specific to common cow’s milk antigens

(alpha-lactalbumin, lactoferrin, and casein) were detected in the

human infant thymus (106). In A/J mice, which are commonly used

to study environmental carcinogens in tumorigenesis, a population

of IgE-secreting cells in the thymus was found to develop after the

first postnatal week, and this population induced T cell tolerance to

IgE within the first few weeks of life (107). A similar population of

IgE-producing cells was noted in BALB/c mice (107). In BALB/c

mice Kwon et al. noted a significant population of IgE-secreting

CD138+ Blimp1+ plasma cells in the thymus induced by IL-4

signaling from iNKT cells (108). In this study, thymus-derived

IgEs were found to expand the frequency of mast cells in the gut and

correlated with the severity of food anaphylaxis induction. After

thymectomy, serum IgE levels and severity of food anaphylaxis

declined significantly. Thus, IgE-producing thymic plasma cells

have been associated with both tolerance and exacerbation of

pathology in allergic disorders.
Conclusions/future directions

Despite older individuals experiencing a significantly higher

incidence of autoimmune disease (109), the precise mechanisms

driving this increased susceptibility remain incompletely resolved.

Thymic B cells have emerged as critical, nonredundant mediators
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of T cell self-tolerance through both BCR-acquired antigen and

expression and presentation of Aire-dependent and Aire-

independent tissue-restricted antigen genes unique from those

expressed by mTECs and presented by other thymic APCs (22–

24). However, the thymus is among the most rapidly aging tissues

in the body and undergoes pronounced atrophy with age-

associated declines in APC function (reviewed in (66)). It is now

understood that thymic B cells also undergo phenotypic

alterations with aging, including increased expression of the

transcription factor T-bet and IgG2a class-switching associated

with ABCs, as well as loss of Aire and costimulatory molecule

expression, all of which may contribute to age-associated loss of

tolerance against antigens presented by thymic B cells (29).

Supporting this notion, several autoimmune diseases with age-

associated increases in incidence, are associated with thymic B cell

abnormalities, including late-onset myasthenia gravis, systemic

lupus erythematosus, Sjogren’s syndrome, and neuromyelitis

optica (summarized in Figure 2). The clinical implications of

thymus-resident B cells and plasma cells shaping systemic

tolerance to common environmental and dietary antigens are

especially striking and warrant further investigation, as effective

strategies to mitigate IgE-mediated food allergies are lacking

despite sharply increasing prevalence of food allergies among

children and adults in the US population (110). Thus, there is a

critical need to more comprehensively define the contribution of
FIGURE 2

Overview of the contribution of thymic B cells to autoimmune disease pathogenesis. Thymic B cells mediate induction of central tolerance against a
variety of self-antigens and are thus implicated in the induction of several autoimmune diseases. Myasthenia gravis is associated with an
accumulation of thymic B cells which can produce autoantibodies against the acetylcholine receptor (AChR) and the muscle sarcomere protein
Titin. Thymic B cell expression of the water channel AQP4 has been shown to be required for the negative selection of AQP4-reactive T cells,
preventing TFH cell interactions with B cells driving neuromyelitis optica. Autoimmune diseases such as SLE and type I diabetes (T1D) are associated
with an accumulation of thymic B cells and the formation of ectopic germinal centers. In T1D, this is associated with the targeting and destruction of
insulin-expressing mTECs, resulting in impaired negative selection of insulin-reactive T cells. An accumulation of thymic B cells may disrupt thymic
architecture and trigger lymphocytic infiltration of the salivary and lacrimal glands leading to development of Sjogren’s syndrome. A subgroup of
IgE-secreting thymic plasma cells is present under homeostatic conditions, promoting expansion of mast cells in the skin and gut, which is
correlated with the severity of anaphylaxis induction in mice and may be linked with development of food allergy. Figure was generated in
BioRender.com.
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thymic B cells to negative selection under steady-state, aging, and

autoimmune conditions to inform the design of therapeutic

approaches to restore and maintain T cell tolerance.
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