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Targeting macrophage
phenotypes to prevent diseases
caused by Leishmania and
Trypanosoma cruzi infections
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and Marcela F. Lopes*

Laboratório de Biologia Imunitária George DosReis, Instituto de Biofı́sica Carlos Chagas Filho,
Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
Macrophage plasticity is remarkable, and recent studies have opened new

prophylactic and therapeutic avenues for immunomodulation of macrophage

phenotypes in inflammatory and infectious diseases. During infections caused by

the pathogenic protozoans Leishmania spp. and Trypanosoma cruzi,

susceptibility to disseminated or chronic infections and/or the development of

inflammatory diseases depend on the balance between protective immunity

mediated by macrophages and anti-inflammatory responses. Here, we will

discuss strategies that exploit macrophage plasticity towards the extreme

proinflammatory M1 or pro-infection M2 phenotypes to prevent the

establishment of disseminated and chronic infection or to temper parasite-

driven inflammatory responses. Immunomodulation of macrophage

phenotypes has been tested in experimental models of protozoan infections

through pharmacological approaches, synergy between pro-M1 cytokines, and

targeting of pro-M2 macrophage functions, such as efferocytosis. We will

address the cellular and molecular mechanisms underlying strategies designed

to redirect macrophage activation towards M1 and M2 phenotypes, as well as the

challenges and open questions.
KEYWORDS

ATRA, Axl, Chagas disease, efferocytosis, Leishmaniasis, M1 and M2 macrophages,
RANKL, Th1 and Th2 cytokines
1 Introduction

The pathogenic protozoans Trypanosoma cruzi (1) and Leishmania spp. (2) cause,

respectively, Chagas disease and the Leishmaniasis spectrum, which challenge Public

Health systems worldwide and afflict impoverished populations (3, 4). Vector-borne

Leishmania parasites establish localized infection and lesion in the skin or reach mucosa

and target organs, such as liver and spleen, or yet disseminate systemically, causing different

pathologies referred to as Leishmaniasis (2). Although other host cells have been described

(5), macrophages are the preferential host cells for Leishmania spp. and their ability to
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contain phagocytosed parasites or otherwise to fuel intracellular

infection depends both on the host immune system and pathogen

molecules that induce or subvert protective macrophage-mediated

responses (6–8).

T. cruzi parasites spread from the initial focus of vector-

transmitted infection through the blood to reach multiple tissues,

where they invade cell cytoplasm, replicate and induce rupture of

fibroblasts, myocytes, macrophages, and other cells (9, 10). In

addition to host T. cruzi parasites, macrophages play multiple

roles in the immune response, by inducing inflammation and by

harvesting cell debris, apoptotic cells and parasites released by other

cells (11–13). Therefore, how macrophages deal with infection

determines the extension of parasite spread to other cells/tissues,

leading to the development of chronic infection and Chagas disease

after multiple rounds of parasite-driven inflammation, especially in

the heart (10–12, 14).

Macrophages are functionally plastic in response to

environmental stimuli, such as parasite PAMPs (pathogen-

associated molecular patterns), cytokines, tissue-derived DAMPs

(damage-associated molecular patterns), and apoptotic cells, by

ranging from pro-inflammatory M1 macrophages, which fight

infection, to pro-tissue repair M2 macrophages that eventually

promote parasite replication (15–19) (Figure 1A). Here we will

discuss how host-directed therapies can modulate the balance

between M1 and M2 macrophages (20) to prevent the pathogenic

outcomes of protozoan infections caused by Leishmania spp. and T.

cruzi (Figure 1B).
2 The control of macrophage
plasticity in protozoan infections

Experimental Leishmaniasis is the prototype model where Th1

and Th2 responses mediated by IFN-g and IL-4 correlate with

genetic resistance and susceptibility to Leishmania major in

different mouse strains, i.e. C57BL/6 (B6) and BALB/c,

respectively (21, 22). Macrophages exposed to Th1 cytokines and

PAMPs were described as classically activated (M1) macrophages

able to produce NO and fight infection, whereas Th2 cytokines,

such as IL-4, IL-10 and IL-13 (23) induce alternatively activated

(M2) macrophages, which express Arginase 1 (Arg1) and

metabolize L-arginine towards the polyamine pathway (15, 16,

24–26). In addition to experimental models that develop Th1 or

Th2 responses (22) and in vitro settings that generate polarized M1

or M2 macrophages (16), T cell and macrophage responses to

protozoan infections show multiple/intermediate phenotypes

between the extreme poles, especially within the M2 spectrum

(18, 24). Here, we will not use the M1 and M2 terms to designate

the strict phenotypes (16), but as a ‘compass’ to guide discussion on

the immunomodulation towards M1 and M2 responses.

Both adaptive immunity (22, 23) and innate immunity (7, 27,

28) influence macrophage phenotype during infection and increase

resistance or contribute to the development of disease. Leishmania

braziliensis- but not L. major-recruited monocytes develop early M1

responses in the peritoneum of BALB/c mice (29). However, L.
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braziliensis induced a more efficient M1 response in B6 than in

BALB/c mice, characterized by increased expression of the M1

hallmarks IL-12, induced NO synthase (iNOS), and NO production

(29). These and other (30–32) experiments indicate that both

parasite species and genetic backgrounds are relevant for

macrophage responses during innate immunity. Exacerbated M1

responses may correlate with BALB/c resistance to L. braziliensis

versus L. major infection (33) and the development of inflammatory

disease underlying human mucocutaneous Leishmaniasis (34–36).

Conversely, a series of studies support the deleterious role of M2-

like monocytes and macrophages, which are better host cells for

Leishmania parasites (37–43). Dermal-resident macrophages

express M2 hallmarks and host Leishmania infection even in a

mixed IFN-g/IL-4 environment (27, 40, 44, 45). IL-4 from

eosinophils contributes to maintenance of M2-like macrophages

in a Leishmania infection model (44). Contrary to the Th1/Th2

paradigm, however, IFN-g can increase the recruitment of M2-like

monocytes that express Arg1 activity and promote parasite

infection (41). Overall, M1 and M2 macrophages play a key role

in resistance and susceptibility to Leishmania infection either in

coordination with Th1 and Th2 responses or in a complete

independent or unexpected fashion (15, 22, 23, 28, 41).

During T. cruzi infection, both innate and adaptive immunity

induce M1 microbicidal macrophages that help to control infection,

as evidenced by increased parasitemia and mortality in macrophage-

depleted mice (46) or in mice bearing IFN-g-signaling deficient

macrophages (47). Natural Killer cells, CD4 and CD8 T cells

produce IFN-g (13, 48) and help macrophage activation into NO/

iNOS-expressing M1 macrophages which are able to kill T. cruzi

parasites and reduce further parasite-driven pathogenesis (11). The

absence of M1 features, such as IL-12, leads to increased

differentiation of M2 macrophages that propagate parasite infection

and contribute to the development of Chagas disease (49). We

previously discussed the role of M1 and M2 responses (11, 28) and

their relevance in resistance and susceptibility to parasite-driven

neglected diseases, where immunomodulation might add new

therapeutic avenues to the insufficient treatment/vaccine portfolio

(8, 50–52). Other discussions are available for comprehensive review

(7, 11, 18, 28) and correlation with human diseases (53, 54). Here, we

will focus on the experimental models that used host-directed

therapies, such as mimicking T-cell macrophage cytokine crosstalk

and synergy with Th1 and Th2 cytokines to induce M1 and M2

phenotypes, pharmacological interventions targeting induction/

function of M1 and M2 macrophages, and identification of new

pro-M2 molecular targets.
3 RANKL helps to induce M1
macrophages by mimicking T-cell
macrophage crosstalk

In addition to the Th1/Th2 axis, the crosstalk between

macrophages and T cells might involve other cytokines and ligands

(23), such as IL-17, as discussed elsewhere (55) and the Receptor

Activator of Nuclear Factor-kB Ligand (RANKL). RANKL, also
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FIGURE 1

Targeting macrophage plasticity in parasite infection. (A) Tissue environment shapes macrophage differentiation towards M1 and M2 phenotypes.
Upon parasite infection, monocytes generate inflammatory macrophages which depending on environmental stimuli differentiate into M1 that
express iNOS, NO, and kill parasites or into pro-tissue repair M2 that express Arg1 and host parasites. Parasite PAMPs and DAMPs from disrupted
infected cells, PMNs, and NK cells induce M1, whereas apoptotic cells, eosinophils, and ILC2 lead to alternative activation of macrophages toward
M2 responses. In addition to innate immunity, T cells modulate M1 and M2 phenotypes and establish T cell-macrophage crosstalk that involves both
cell surface ligands and secreted cytokines, such as IFN-g and IL-4 to promote adaptive immunity. (B) During Leishmania spp. and T. cruzi infection,
classically activated (M1) macrophages control infection but also induce exacerbated inflammatory responses that lead to pathology, whereas
alternatively activated (M2) macrophages promote intracellular infection and/or tissue repair. The possible outcomes of modulation targeting
macrophage plasticity include but are not restricted to protective immunity, exacerbated infection, pathology, and tissue remodeling depending on
the direction and intensity of environmental stimuli. Created with BioRender.com. Arg1, arginase 1; CCL, C-C motif chemokine ligand; DAMP, damage-
associated molecular pattern; IL, interleukin; ILC2, type 2 innate lymphoid cells; iNOS, induced NO synthase; IFN-g, interferon-g; M1, Macrophage 1; M2,
Macrophage 2; NK; Natural Killer cells; PAMP, pathogen-associated molecular pattern; PMN, polymorphonuclear cells; RANKL, the receptor activator of
Nuclear Factor-kB ligand; Th, T helper cells; TNF-a, tumor necrosis factor-a.
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known for its pro-osteoclastic properties, is a potential vaccine

adjuvant that activate dendritic cells and macrophages to improve

T cell proliferation and Th1 responses (56, 57). Moreover, RANKL

may synergize with Th1 and Th2 environments to induce M1 and

M2 macrophages, respectively (58, 59). In the context of Th1

macrophage crosstalk, T cells from L. major-infected B6 mice

induce M1 responses in parasite-recruited monocytes in an antigen,

RANKL and IFN-g dependent manner (60). Whereas IFN-g alone

promotes TNF-a production in parasite-stimulated cocultures,

neutralization of either IFN-g or RANKL precludes IL-12 responses

(60). To dissect how RANKL might promote M1 responses, we

showed that thioglycolate-induced inflammatory macrophages

express the receptor RANK and shift from M2 to M1 phenotype

upon treatment with suboptimal IFN-g concentration in the presence

of RANKL (60). Low IFN-g dose/RANKL-induced M1 macrophages

express IL-12p35, iNOS, but reduced M2 features, such as Arg1, MR

(mannose receptor) MGL (galactose-type lectin), and CCL17 (60).

IFN-g and RANKL synergism induces M1 responses, such as NO

production and IL-12 secretion, through the NF-kB signaling

pathway (60). Furthermore, low IFN-g dose and RANKL promoted

L. major control by macrophages in a ROS and NO-dependent

fashion (60).

Multiple T-cell help mechanisms are probably redundant and

CD40L deficient mice remain resistant to low numbers of L. major

parasites in the B6 genetic background (61). However, blockade of

RANKL in L. major-infected CD40L deficient mice prevented lesion

healing, providing evidence that RANKL is necessary for T-cell DC

crosstalk, IL-12 production, and Th1 responses (62). Accordingly,

RANKL has been tested as an adjuvant for treating Ag-loaded DCs

to improve Th1 responses (56) and as a vaccine-associated RANKL

gene to induce anti-T. cruzi CD8 T cells (63). Interestingly, only a

less virulent T. cruzi strain induced RANKL signaling pathway (64),

which might contribute to M1 responses and control of infection,

whereas more virulent strains subvert protective responses.

Therefore, RANKL delivered locally is a safer prophylactic/

therapeutic strategy that might help to improve immunity to

protozoan parasites without disrupting bone homeostasis.

Other potential adjuvants, such as the cytokines APRIL (a

proliferation-inducing ligand) and BAFF (B-cell activating factor),

produced by DCs and monocytes, can improve M1 responses

through interactions with their receptor TACI (transmembrane

activator and a CAML interactor) (65). Although there are still open

questions, such as how intracellular TACI receptor is mobilized to

interact with the ligands, APRIL and BAFF signal through TACI

receptor in macrophages to induce M1 responses and potentiate the

control of Leishmania infection (65). Therefore, APRIL and BAFF

are potential therapies and vaccine adjuvants to improve immunity

in parasite infections.
4 Targeting M1 to M2 shift in
protozoan infections

Exacerbated Th1/M1 responses underly or at least might

contribute to severe outcomes in inflammatory diseases caused by
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protozoan parasites (36). In this sense, diversion from the

proinflammatory M1 towards M2 phenotype is a potential

therapeutic strategy. By dissecting the role of monocytes in

Leishmania infection, we found that treatment with all-trans-

retinoic acid (ATRA) promotes macrophage maturation at the

cost of effective M1 responses (66). Whereas ATRA injection

helps T cell proliferation by reducing immature myeloid cells-

mediated suppression, early treatment with ATRA also reduced

NO production and increased parasite load in lymph nodes of L.

major-infected B6 mice (66). The effects of ATRA injection on

monocyte phenotype can be adaptive immunity independent as

showed in B6 or BALB/c mice treated with ATRA 24 h after i.p. L.

major infection and analysed for immune responses 24 h later (29).

Treatment with ATRA reduced M1 features, such as iNOS

expression, IL-12 and TNF-a secretion, and increased parasite

load within peritoneal macrophages (29). For comparing the

direct effects of ATRA in BALB/c and B6 bone-marrow derived

macrophages (BMDMs), we used an LPS (lipopolysaccharide)/

cytokine setting that mimics a mixed Th1/Th2/infection

environment (29). Treatment with ATRA reduced LPS-induced

M1 hallmarks, such as secretion of TNF-a and CXCL9, and

increased the M2 chemokines CCL17 and CXCL13. Moreover,

ATRA downmodulated iNOS expression and NO production by

LPS-stimulated macrophages (29). Whereas ATRA treatment

might be deleterious by increasing susceptibility to L. major

infection, it is reasonable to envision that ATRA could attenuate

exacerbated M1 pathogenic responses (28, 36) and prevent parasite-

driven inflammation and pathology upon pro-M1 L. braziliensis

infection. More proof-of-principle studies are necessary for guiding

further research and strategy development to treat human diseases.

Similar to ATRA that signals through intracellular receptors,

lipids extracted from T. cruzi parasites induce alternative activation

of macrophages and counteract inflammatory responses (67). The

activation of PPAR (peroxisome proliferator activator receptor) g
signaling pathway by parasite lipids might reduce NF-kB pathway

and prevent M1 responses (67). Likewise, the PPARa ligand

fenofibrate induces a pro-repair M2 response during acute and

chronic T. cruzi infection (68, 69). Furthermore, treatment with

fenofibrate reduces inflammation, fibrosis and biomarkers of tissue

damage, and improves heart functioning in experimental Chagas

disease in a macrophage dependent fashion (68, 69). Interestingly, a

short-term treatment of chronically infected mice with the betulinic

acid derivative BA5 helped to prevent inflammation and fibrosis by

inducing IL-10 and M2 polarization (70). Treatment with BA5 did

not change parasite burden but could be associated to current anti-

parasite drugs as an anti-inflammatory therapy (70). How to apply

these new anti-inflammatory tools to prevent pathology in Chagas

disease is a path yet to be explored.
5 Pharmacologically targeting M1 and
M2 macrophages

M1 macrophages play a protective role during acute T. cruzi

infection by phagocytosing parasites released from disrupted infected
frontiersin.org
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cells, followed by parasite killing within macrophages (11, 12). By

contrast, M2-like macrophages harbor and fuel parasite infection, by

diverting L-arginine metabolism towards the polyamine pathway (37,

71). Moreover, delayed induction of protective M1 responses can

contribute to parasite dissemination and disease (12), whereas

exacerbated inflammation ensues pathology. Therefore, the

mechanisms that govern M1 and M2 macrophage phenotypes are

potential targets for immunomodulation to improve immunity or

downregulate pathogenic inflammatory responses (Figure 1B).

In T. cruzi infected B6 mice, PLA2 (phospholipase A2) and PI3K

(phosphatidyl inositol 3 kinase) signaling pathways induce

macrophage activation and protective immunity, while genetic

ablation and pharmacological inhibition promote a shift to M2

macrophages and result in increased parasitemia and parasite load

in the heart, associated with heart pathology/defective function (72,

73). By contrast, regulatory mechanisms such as SLAMF1 (signaling

lymphocytic activation molecule) that reduces NADPH

(nicotinamide adenine dinucleotide phosphate) oxidase and CD73

ectonucleotidase downregulate macrophage activation in

susceptible BALB/c mice and are potential targets to improve

macrophage-mediated immunity towards M1 responses (74, 75).

Importantly, CD73 ablation and pharmacological inhibition

prevented heart pathology and arrhythmia associated with

parasite infection, tissue damage and inflammation (75, 76).

Association between M2 macrophages and susceptibility to

Leishmania parasites (37–40, 42, 53) indicate that macrophage

phenotypes might be targets for immunotherapy in Leishmaniasis.

The L-arginine metabolism through the Arg1 activity is a hallmark of

diffuse cutaneous Leishmaniasis in patients (37, 77, 78). In

experimental models, susceptibility versus resistance to L. major

infection correlates well with increased Arg1 expression and Th2

responses in BALB/c versus B6 mice (79). Inhibition of Arg1 activity

helped both parasite and lesion control in L. major-infected BALB/c

mice (79). Conversely, treatment with L-ornithine increased

susceptibility in otherwise resistant B6 mice (79). In T. cruzi

infection, IL-13-induced susceptibility is associated with enhanced

M2 responses, such as Arg1 activity, whereas treatment with Arg1

inhibitors reduced mortality (80). Accordingly, infection of BMDMs

with virulent but not less virulent T. cruzi parasites subverts parasite

killing by inducing Arg1 expression and downmodulating iNOS

expression (81).

In addition to L-arginine metabolism, other aspects of

immunometabolism are potential targets for the control of

macrophage plasticity and Leishmania infection (82, 83). Iron

containing nanoparticles target host cell metabolism and improve

protective M1 responses to fight Leishmania parasites (8). Induction

versus inhibition of glucose-6-phosphate dehydrogenase (G6PDH)

activity regulates NO-dependent resistance versus macrophage

susceptibility to Leishmania parasites (84).

T. cruzi infection induces the metabolic check point mammalian

Target of Rapamycin inhibition (mTOR) mTORC1 pathway in

macrophages (85). Moreover, in vitro treatment with the mTOR

inhibitor rapamycin reduced M2 responses, increased

proinflammatory cytokines, and promoted parasite control in a

NLRP3-dependent fashion (85). How to regulate immunometabolism
Frontiers in Immunology 05
in vivo in a cell specific fashion is a challenge to develop successful

therapy that prevents homeostasis disruption.

T. cruzi infection modifies macrophage miRNA responses (86)

and some miRNAs control macrophage plasticity to induce M1 and

M2 phenotypes (87). In macrophages infected with antimony-resistant

Leishmania parasites, certain miRNAs downmodulate iNOS

expression and subvert Myd88 (myeloid differentiation primary

response 88)-NFkB signaling to promote early IL-10 secretion that

contributes to increased parasite burden and pathology in visceral

Leishmaniasis (88). Remarkably, modulation of miRNAs can be used

in vivo and are potential tools to shape macrophage phenotypes and

ability to control Leishmania infection (89, 90).
6 Identifying new inhibitable pro-M2
molecular targets

During infection, M2 macrophages are parasite-permissive host

cells that also play a role in anti-inflammatory responses, tissue

remodeling, and fibrosis (17, 49). Macrophages respond to Th2

cytokines and to recognition and removal of apoptotic cells

(efferocytosis) by turning off M1 and switching to pro-M2

signaling pathways (17, 71). A major goal on drug discovery and

development of host-directed therapies is to identify new selective

targets that show anti-parasite potential without enhancing

pathology or disrupting host homeostasis. i.e. tissue repair (68,

69) (Figure 1B).

We previously showed that T cell apoptosis increases during T.

cruzi infection and contributes to defective T cell responses that

might underly parasite persistence (91). Molecular mechanisms

such as ligands, death receptors, and the components of

proapoptotic machinery were studied and tested in proof-of-

concept experiments in acute T. cruzi infection (92). By

summarizing, treatment with anti-FasL and the pan caspase

inhibitor zVAD improved both T-cell and macrophage-mediated

immunity and reduced parasitemia during acute infection (93–95).

Nonetheless, we observed a timely regulated increase in Th1 and

Th2 responses in FasL deficient or anti-FasL treated mice (93, 96),

and that caspase-8 deficiency also upregulated Th2 responses to T.

cruzi and L. major infections (97, 98). Therefore, whereas

interesting as a hypothesis test, interrupting apoptosis-inducing

signaling might disrupt homeostasis and bring considerable

concern issues. Nonetheless, a vaccine strategy prevented the

induction of Fas-expressing proapoptotic CD8 T cells after T.

cruzi challenge (99), opening a safer prophylaxis avenue than

pharmacological targeting of apoptosis signaling pathways.

Importantly, vaccine-induced CD8 T cells exhibit effector

responses and differ from exhausted/proapoptotic T cells

generated during T. cruzi infection (99), which might fail to

induce early macrophage activation to control infection (12).

Upon apoptosis, efferocytosis removes apoptotic cells and

prevents the release of DAMPs and subsequent inflammation.

Multiple receptors detect phosphatidylserine exposure or other

apoptosis features and initiate phagocytosis of apoptotic cells and

anti-inflammatory signaling to ensure homeostasis (100–103).
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During inflammation, however, macrophages might use a different

set of efferocytosis receptors providing an opportunity for selective

pharmacological intervention. Accordingly, anti-inflammatory

versus inflammatory stimuli induce preferential expression

of the TAM (Tyro Axl Mer) receptors Mer versus Axl in

macrophages (104).

Efferocytosis of apoptotic cells promotes T. cruzi replication

within macrophages in a TGF-b, prostaglandin E2, and polyamine

dependent fashion (71). In peritoneal macrophages from infected

mice, the integrin avb3 was identified as a putative efferocytosis

receptor for apoptotic cell-inducing signaling that contributes to T.

cruzi growth (71). For addressing the role of efferocytosis receptors

during parasite infection, we used single Mer or Axl defective mice

and BMDMs cultured with T cells from T. cruzi-infected mice,

which provided both effector and pro-apoptotic cells able to impact

on macrophage phenotypes (105). In vitro, Mer deficiency

significantly reduced efferocytosis but had little impact on

macrophage phenotype (105). Remarkably, Axl defective

macrophages showed improved M1 responses, such as CXCL9
Frontiers in Immunology 06
and IL-12p35 expression, iNOS expression and NO production,

and increased ability to control T. cruzi infection despite only

partial inhibition of efferocytosis (105).

Moreover, Axl-deficient mice had reduced peak parasitemia

and less inflammation and fibrosis in their hearts compared to

infected B6 WT and Mer-/- mice (105). Infected Axl-/- mice also

showed increased M1 responses in the peritoneum and spleen and

iNOS expression in the heart (105). These results indicate that Axl is

a selective target to improve macrophage-mediated immunity

without interfering with apoptosis or Mer-mediated homeostatic

efferocytosis. Nonetheless, the accumulation of apoptotic cells in

infected Axl-deficient mice (105) is a potential deleterious side effect

that deserves caution in efferocytosis inhibition.

During Leishmania infection, the TAM receptor Mer plays a

role in the efferocytosis of infected neutrophils by DCs and

suppression of T cell responses (106). Furthermore, Mer-

mediated efferocytosis of infected neutrophils transfers

Leishmania parasites to macrophages (107). Dual Mer/Axl genetic

ablation reduced the development of M2 macrophages and parasite
TABLE 1 Macrophage plasticity: molecular targets to shape M1 and M2 phenotypes.

Molecular target Intervention/experimental
model

Macrophage findings Infection and pathology outcome Ref. n°

RANKL-RANK RANKL + low IFN-g/inflammatory
pMacs RANK-Fc- treated CD40L
KO mice

Switch M2-M1
Reduced IL-12 producing cells

NO/ROS-dependent L. major killing
Increased L. major infection, increased lesion

(60, 62)

APRIL/BAFF-TACI APRIL or BAFF-treated pMacs
TACI KO mice
WT Mac transfer into TACI KO mice

Reduced M2 responses
M2 responses
Reduced M2 responses

Reduced in vitro L. major infection
Increased L. major infection/lesion
Reduced L. major infection, reduced lesion

(65)

Th2 cytokine/Arg1-
polyamine pathway

IL-13 tg mice
Arg1 inhibitor/IL-13 tg
Arg1 inhibitor/BALB/c
Ornithine/B6 mice

Increased M2 response/Arg1 Increased T. cruzi infection, increased mortality
Reduced mortality
Reduced L. major infection/lesion
Increased L. major infection/lesion

(79, 80)

ATRA-RXR/RAR Paw injection/B6 mice
Ip injection in B6/BALB/c mice

Reduced NO responses
Reduced M1 responses

Increased L. major infection, increased lesion
Increased L. major load in pMacs

(29, 66)

Fenofibrate-PPAR-a Oral gavage/acute (B6) and chronic
(BALB/c) T. cruzi infection

Increased M2 and reduced
M1 responses

Reduced inflammation, heart fibrosis and tissue
damage, improved heart function.

(68, 69)

CD73 ecto-
nucleotidase

CD73 KO/acute T. cruzi infection
Iv CD73 inhibitor/BALB/c mice

CD73-/- M1-like heart Macs
Switch M2-M1

Reduced parasite burden, increased parasitemia
Reduced tissue parasitism, tissue damage, improved
heart function

(75, 76)

SLAMF1 SLAMF1 KO mice/
acute T. cruzi infection
Anti-SLAMF1/BALB

Reduced M2-like heart Macs Reduced tissue parasitism, mortality, and tissue
damage
Reduced tissue parasitism

(74)

TAM receptors Axl KO mice/
acute T. cruzi infection
Mer/Axl DKO mice/L.
major infection

Axl-/- M1-like heart iNOS+

cell
Switch M2-M1

Reduced parasitemia, inflammation and fibrosis
Reduced L. major infection, increased lesions

(105, 107)

PI3Kg- AKT1
signaling

PI3K inhibitor/BMDM
Sc PI3K inhibitor/B6 mice
PI3Kg KO mice/
acute T. cruzi infection
AKT1-Lys KO mice

PI3Kg-/- M2-like Macs

Increased T. cruzi infection
Increased weight loss and mortality
Increased tissue parasitism, tissue damage,
inflammation, mortality
High tissue parasitism, mortality

(73)

PLA2b PLA2b KO mice/acute T.
cruzi infection

PLA2b -/- M2-like Macs High tissue parasitism (72)

miR146a-5p Anti-146a oligos/BMDMs

Iv anti 146a oligos/BALB/c mice

Switch M2-M1 responses

Switch M2-M1 responses

Reduced L. donovani phagocytosis, reduced parasite
survival
Reduced parasite burden in L. donovani infection

(89)
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infection (107). Nonetheless, increased lesions in infected double

KO mice indicate that Mer and/or Axl play an essential anti-

inflammatory role to prevent parasite-induced pathology (107).

New studies in single-receptor defective mice might clarify the

individual roles of TAM receptors in L. major infection.
7 Concluding remarks

Targeting immunoregulatory host mechanisms such as T-cell

coinhibitory receptors (51, 108) can improve otherwise suppressed

immune responses or upregulate immunity. Likewise, unveiling the

mechanisms of macrophage plasticity (87) might translate into

host-directed therapies to mitigate human diseases. New drug

delivery systems by using liposomes or nanoparticles (8) and

vaccine mRNA technology will foster the development of new

drugs, vaccines, and therapeutic vaccines to fight infectious

diseases. How these remarkable scientific and technological

advances (Table 1) might translate into clinical trials for Chagas

disease and Leishmaniasis and lead to effective solutions for tropical

neglected diseases will demand major scientific, industrial, and

political efforts.
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