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Primary immune thrombocytopenia (ITP) is an autoimmune disorder characterized

by platelet destruction and impaired production, leading to bleeding risk. While

immunosuppressive therapies are standard, many patients experience relapses or

refractory disease, highlighting the need for novel approaches. Emerging evidence

suggests the gutmicrobiota plays a role in immune regulation, yet its impact on ITP

remains unclear. Dysbiosis has been linked to immune dysfunction in other

autoimmune diseases, but whether it drives or results from immune

dysregulation in ITP is debated. This review explores the gut-immune axis in ITP,

focusing on microbiota-driven immune modulation, cytokine signaling, and

platelet homeostasis. We assess microbiota-targeted interventions, including

fecal microbiota transplantation (FMT), probiotics, and dietary modifications,

while addressing key controversies and knowledge gaps. Advances in

microbiome sequencing and artificial intelligence may facilitate personalized

interventions. Standardizing microbiota-based diagnostics and validating their

efficacy in clinical trials are crucial for their integration into ITP management.

Bridging these gaps may lead to microbiota-driven strategies that enhance

immune regulation and improve patient outcomes.
KEYWORDS

primary immune thrombocytopenia (ITP), gut-immune axis, immune dysregulation,
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Highlights
• The gut-immune axis influences ITP pathogenesis and platelet homeostasis.

• Dysbiosis disrupts immune regulation and drives disease progression.

• FMT, probiotics, and dietary interventions offer potential ITP therapies.
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• Microbiome sequenc ing and AI may advance

personalized treatments.

• Standardization and clinical validation are crucial for

microbiota-based strategies.
1 Introduction

Primary immune thrombocytopenia (ITP) is an acquired

autoimmune disorder characterized by a persistent low platelet

count due to immune-mediated platelet destruction and impaired

platelet production (1, 2). While immunosuppressive therapies,

such as corticosteroids and intravenous immunoglobulin (IVIG),

are commonly used, their effectiveness varies, and long-term

management remains challenging (3, 4). In particular, the

frequent need for alternative therapeutic strategies in refractory

cases underscores the need for a deeper understanding of ITP

pathogenesis and the development of novel treatment approaches.

Traditionally, ITP is associated with autoantibody-mediated

platelet destruction, where antibodies target platelet surface

glycoproteins such as GPIIb/IIIa and GPIb/IX (5–7). However,

emerging evidence reveals a more complex pathophysiology

involving dysregulated T-cell responses, pro-inflammatory cytokines,

and defective megakaryopoiesis. An imbalance between regulatory T

cells (Tregs) and effector T cells (Th1 and Th17) drives persistent

inflammation and immune-mediated platelet destruction,

underscoring the multifaceted nature of ITP pathogenesis (8, 9).

Notably, a reduction or dysfunction of Tregs is associated with the

induction of ITP, whereas their expansion or restoration is considered

immunoprotective, restoring immune tolerance and suppressing

autoreactive responses against platelets (10).

Beyond these immune mechanisms, recent research suggests that

gut microbiota plays a crucial role in shaping immune responses in ITP

(11). The gut-immune axis, which governs interactions between

intestinal microbiota and systemic immunity, has been implicated in

various autoimmune diseases, including systemic lupus erythematosus

and rheumatoid arthritis (RA) (12–14). Dysbiosis, an imbalance in gut

microbial composition, has been shown to drive immune dysregulation,

promote inflammation, and influence hematologic conditions (15–17).

However, the precise role of the gut microbiota in ITP pathogenesis

remains unclear, presenting a significant knowledge gap.

A key controversy center on whether alterations in the gut

microbiota are a consequence of immune dysfunction in ITP or an
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independent driver of disease progression (18). Additionally, while

microbiota-targeted interventions such as fecal microbiota

transplantation (FMT) and probiotics have shown promise in

other autoimmune conditions, their therapeutic potential in ITP

remains largely unexplored (19, 20). These gaps highlight the need

for further investigation into the mechanisms linking gut dysbiosis

to ITP pathogenesis and treatment response.

This review therefore comprehensively analyzes the gut-

immune axis in ITP, critically evaluating current knowledge and

identifying key unanswered questions. We explore the potential of

microbiota-targeted therapies to restore immune homeostasis,

highlight areas of consensus and controversy, and propose

directions for future research. By synthesizing available evidence

and pinpointing knowledge gaps, we aim to advance the

understanding of gut microbiota’s role in ITP and its implications

for novel therapeutic strategies.
2 The gut-immune axis: a new
perspective in ITP pathogenesis

Recent advancements in immunology and microbiome research

have revealed the intricate interplay between the gut microbiota and

systemic immune regulation (21, 22). This relationship is

particularly relevant in autoimmune disorders such as primary

ITP, where immune dysregulation leads to platelet destruction.

The gut-immune axis serves as a dynamic interface between

microbial communities and immune homeostasis, influencing

inflammation and hematologic balance (22). Although

disruptions in this axis have been implicated in several

autoimmune diseases, their precise role in hematologic diseases

like ITP remains poorly understood, underscoring significant gaps

in current knowledge (19, 23).
2.1 Overview of the gut microbiota and
immune system interactions

The gut microbiota, comprising a diverse and dynamic

ecosystem of bacteria, viruses, fungi, and archaea, interacts closely

with the immune system to maintain immune homeostasis. Gut-

associated lymphoid tissue (GALT) plays a pivotal role in sensing

microbial antigens and orchestrating immune responses (24).

Dendritic cells (DCs) sample microbial metabolites and antigens,

directing the differentiation of naïve T cells into Tregs or effector T

cells (Th1 and Th17) (25, 26). This interaction promotes immune

tolerance while maintaining a controlled inflammatory response.

However, the precise role of the gut microbiota in modulating

hematologic immune responses remains controversial (22, 27).

While some studies suggest that gut microbial communities

influence immune regulation through cytokine production, others

propose that the immune system primarily shapes microbiota

composition (28, 29). This bidirectional relationship underscores

the complexity of gut-immune interactions and necessitates further

investigation in the context of ITP.
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The intricate interactions between the gut microbiota and the

immune system, including the influence of both commensal and

pathogenic microbes in shaping immune tolerance, modulating

inflammatory responses, and regulating systemic immune

regulation, is critical to understanding hematologic disorders such

as ITP. These mechanisms are visually summarized in Figure 1.
2.2 Mechanisms of gut microbiota in
immune homeostasis and the role of B
cells in ITP

The gut microbiota plays a pivotal role in immune regulation

through multiple interconnected mechanisms, influencing both

systemic and hematologic immune responses (12). Key pathways

include microbial metabolite production, pattern recognition
Frontiers in Immunology 03
receptor (PRR) signaling, and maintenance of intestinal barrier

integrity, each impacting immune homeostasis and ITP disease

progression (30).

One essential pathway involves the production of microbial

metabolites, particularly short-chain fatty acids (SCFAs) such as

butyrate, propionate, and acetate, generated by commensal bacteria

fermenting dietary fiber (31). SCFAs enhance regulatory T cell

(Treg) differentiation, suppress inflammatory cytokines (IL-6, TNF-

a, IFN-g), and promote anti-inflammatory responses both

systemically and within the gut (32). A reduction in SCFA-

producing bacteria has been linked to impaired immune

tolerance, heightened inflammation, and increased risk of

autoimmunity, suggesting a potential link between dysbiosis and

ITP pathogenesis (33, 34). Importantly, diminished Treg frequency

or function is associated with ITP induction, whereas restoration or

expansion of Tregs has been shown to confer protective effects by
FIGURE 1

Interactions between gut microbiota, systemic organs and the immune system. The gut microbiota plays a central role in regulating immune
function, metabolism, and overall systemic health through interactions with multiple organ systems. This schematic illustration depicts how bacteria,
viruses, fungi, and archaea influence host physiology by modulating immune responses, metabolic processes, and disease development. Dysbiosis
has been implicated in various conditions, including autoimmune diseases, neurodegenerative disorders, metabolic syndromes, and inflammatory
diseases. Key organ systems affected by alterations in microbiota include the immune system, colon, liver, and pancreas. In immune system, the gut
microbiota regulates Tregs, Th1/Th17 responses, and inflammation. In the colon, microbial communities influence gut barrier integrity and are
associated with inflammatory bowel diseases. In the liver, the gut-derived metabolites affect metabolic conditions such as non-alcoholic fatty liver
disease (NAFLD). In the pancreas, microbiota alterations have been associated with type 2 diabetes and other metabolic disorders. In the
bloodstream, microbial dysbiosis is linked to hematologic conditions, including immune thrombocytopenia (ITP). In the brain, microbiota-derived
metabolites have been implicated in neurological conditions such as Alzheimer’s disease, depression, and neuroinflammation. By modulating
microbial composition and function, the gut microbiota exerts local and systemic effects that contribute to immune homeostasis, disease
pathogenesis, and potential therapeutic interventions.
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re-establishing immune homeostasis and attenuating platelet

destruction (35).

Another critical mechanism is PRR signaling, where Toll-like

receptors (TLRs) and nucleotide-binding oligomerization domain

(NOD)-like receptors (NLRs) recognize microbe-associated

molecular patterns (MAMPs) to distinguish commensal bacteria

from pathogens (36, 37). This interaction normally regulates

immune tolerance by limiting unnecessary immune activation

(38). However, in gut dysbiosis, aberrant PRR signaling may

trigger chronic immune activation, disrupting the balance

between Tregs/effector T cells (Th1/Th17) and promoting a pro-

inflammatory milieu that exacerbates platelet destruction in ITP

(39, 40).

Furthermore, the gut microbiota maintains intestinal barrier

integrity, preventing the translocation of microbial components

into systemic circulation (41). Tight junction proteins (occludin,

claudin, zonulin) regulate intestinal permeability, preventing

leakage of bacterial endotoxins e.g., lipopolysaccharides (LPS) into

the bloodstream (41, 42). Dysbiosis-induced compromise of the gut

barrier can elevate circulating LPS levels, trigger systemic

inflammation, and aberrantly activate monocytes and DCs factors

that may contribute to immune dysregulation and platelet

destruction in ITP (11, 43).

Although these mechanisms highlight the immunomodulatory

potential of the gut microbiota, key controversies remain regarding

its specific role in ITP (12, 44). For instance, SCFA’s effects on

immune tolerance appear to be context-dependent, varying with

disease state, microbial composition, and host genetic factors (45,

46). Similarly, while PRR signaling is crucial for immune

surveillance, its dysbiosis-related overactivation has been

associated with both immune suppression and chronic

inflammation, resulting in conflicting findings in hematologic

disorders (22). This lack of consensus underscores the need for

further research to clarify how gut microbiota alterations influence

platelet homeostasis and immune regulation in ITP (19, 47).

In addition to T cell-mediated pathways, B cells, particularly

regulatory B cells (Bregs) have emerged as important players in

maintaining immune tolerance in autoimmune disorders, including

ITP (48). Bregs exert their immunosuppressive effects primarily

through IL-10 production, which inhibits pro-inflammatory T cell

responses and promotes Treg development (49). Dysregulation of

Bregs has been observed in ITP patients, suggesting that impaired

Breg function may contribute to loss of peripheral tolerance and

heightened platelet destruction (50). Gut microbiota has been shown

to modulate Breg development and function, likely via microbial

metabolites and PRR signaling. Thus, altered microbial composition

in ITP may impair Breg-mediated suppression of autoimmunity,

further implicating the gut-immune axis in disease pathogenesis (51).
2.3 Dysbiosis and its impact on
autoimmunity and hematologic diseases

Dysbiosis, defined as a disruption in gut microbial composition,

has been implicated in numerous autoimmune and hematologic
Frontiers in Immunology 04
disorders (16, 52). Studies have demonstrated that conditions such

as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA),

and multiple sclerosis (MS) exhibit characteristic microbial

imbalances, often marked by an overrepresentation of pro-

inflammatory species (e.g., Prevotella, Ruminococcus) and a

concurrent depletion of beneficial bacteria (e.g., Bifidobacterium,

Lactobacillus) (53, 54). These alterations are associated with

immune dysregulation, excessive cytokine production, and

chronic inflammation, all of which contribute to disease

progression (55).

In hematologic disorders, gut dysbiosis has been increasingly

associated with the breakdown of immune tolerance, platelet

dysregulation, and systemic inflammation (19, 52). Certain

bacterial taxa, such as Enterobacteriaceae and Prevotella, have

been associated with an elevated pro-inflammatory Th17

response, promoting systemic inflammation and disrupting

hematologic homeostasis (41, 56). Conversely, commensal

bacteria like Bifidobacterium and Lactobacillus have been shown

to enhance regulatory T cell (Treg) activity, mitigate excessive

immune activation, and support immune balance (57, 58). The

depletion of these beneficial microbes in patients with ITP suggests

a potential role of the gut microbiota in modulating platelet

homeostasis; however, direct causal relationships have yet to be

confirmed (19, 47).

Beyond immune cell modulation, dysbiosis is associated with

metabolic shifts that further influence immune responses (59, 60). A

decrease in SCFA-producing bacteria, such as Bacteroides and

Firmicutes, correlates with reduced Treg activity, impaired

immune regulation, and increased inflammation, all of which are

observed in autoimmune conditions (32, 61). Additionally, altered

bile acid metabolism and tryptophan catabolism can modulate T

cell differentiation, cytokine production, and systemic immune

responses, potentially exacerbating platelet destruction in ITP (32,

62). However, whether these microbial and metabolic changes are a

cause or consequence of immune dysregulation in ITP remains

unclear, necessitating longitudinal studies and mechanistic research

to establish causality.

A growing body of evidence suggests that distinct microbiota

alterations are shared among various autoimmune diseases,

highlighting common patterns of dysbiosis that may drive

immune dysregulation across multiple conditions (12, 44).

Table 1 summarizes key microbial alterations in autoimmune

diseases, including ITP, and their associated immune effects.
2.4 Evidence linking gut microbiota
alterations to ITP development and severity

Emerging research suggests that alterations in gut microbiota

may contribute to the pathogenesis of ITP; however, findings remain

inconsistent (18, 69). Comparative studies of the gut microbiomes of

ITP patients and healthy controls have identified notable microbial

differences (52, 70). Specifically, a reduction in SCFA-producing

bacteria, such as Bacteroides and Firmicutes, may impair immune

tolerance mechanisms, potentially exacerbating autoimmune
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responses (12, 46). Concurrently, an increase in pro-inflammatory

taxa, including Escherichia coli and Enterobacteriaceae, has been

associated with heightened Th17 responses and systemic

inflammation (71). Additionally, experimental models suggest that

antibiotic-induced dysbiosis can alter platelet counts and immune

responses, reinforcing a potential link between gut microbiota and

ITP progression (19, 72).

Despite these compelling findings, several critical gaps remain

in the literature (11, 47, 72–74). Many studies are limited by small

sample sizes, cross-sectional designs, and a lack of longitudinal

analyses, making it difficult to establish causality between gut

dysbiosis and ITP development (74). To clarify the causal

relationship between gut dysbiosis and ITP, recent proposals

emphasize the need for prospective longitudinal studies that track

microbiota composition before and after disease onset or treatment

(72). Additionally, mechanistic investigations using gnotobiotic

mouse models may help elucidate how specific microbial taxa and

metabolites influence immune regulation and platelet homeostasis

(75, 76). Furthermore, while microbiota-targeted therapies such as

FMT and probiotics have shown promise in other autoimmune

diseases, their efficacy and applicability in ITP remain largely

unexplored (77). Emerging studies indicate that microbiota-

driven systemic metabolic changes can influence immune

regulation in diseases beyond the gut, as seen in brain metastasis,

where alterations in the gut microbiome affect tumor progression

via the gut-to-brain axis (78).

To address these knowledge gaps, future research should focus

on three key areas. First, longitudinal studies are needed to

investigate how changes in gut microbiota correlate with the

onset, severity, and treatment response of ITP over time (19).

Second, mechanistic studies should explore the causal

relationships between specific microbial taxa, microbial

metabolites, immune dysregulation, and platelet homeostasis (47).

Lastly, controlled clinical trials are essential to assess the therapeutic

potential of microbiota-targeted interventions, including probiotics,

prebiotics, dietary modifications, and FMT, in the management of

ITP (11, 79).

By addressing these critical gaps, researchers can determine

whether modulating the gut microbiota represents a viable

therapeutic avenue for improving immune regulation and clinical

outcomes in patients with ITP (80).
Frontiers in Immunology 05
3 Gut microbiota modulation in ITP: a
novel therapeutic strategy

Given the emerging evidence linking gut microbiota dysbiosis

to immune dysregulation in ITP, researchers have begun exploring

microbiota-targeted interventions as potential therapeutic strategies

(19, 81). By restoring gut microbial balance, these approaches aim

to modulate immune responses, promote immune tolerance, and

mitigate the pathogenic mechanisms underlying ITP. Several

microbiota-based interventions, including fecal FMT, probiotics,

dietary modifications, and microbiome-targeted pharmacologic

strategies, have shown promise in modulating the gut-immune

axis (82, 83). However, the clinical translation of these therapies

remains challenging due to a limited mechanistic understanding

and the need for well-designed clinical trials.

Various microbiota-targeted therapies have been proposed as

potential interventions for ITP, aiming to restore microbial balance

and modulate immune function (11, 84). These strategies include

FMT, probiotics, prebiotics, SCFA supplementation, and bile acid

modulation (85, 86). While some have shown promise in

autoimmune diseases, their application in ITP remains

underexplored. The following Table 2 summarizes the

mechanisms, current evidence, and challenges associated with

these microbiota-based therapies.
3.1 Fecal microbiota transplantation:
mechanisms, clinical applications, and
emerging evidence in ITP

FMT has gained attention as a promising approach to

modulating gut microbiota composition (87). This procedure

involves transferring fecal material from a healthy donor to a

recipient, aiming to restore microbial diversity and improve

immune homeostasis. Studies suggest that FMT can replenish

beneficial taxa such as Bacteroides and Firmicutes, which are

associated with immune tolerance (88). Originally developed for

treating recurrent Clostridioides difficile infections, FMT has shown

potential in various autoimmune and inflammatory diseases,

including ITP (81).
TABLE 1 Key microbiota alterations in autoimmune diseases and ITP.

Disease Microbial changes Immune impact References

Systemic lupus erythematosus (SLE) Decreased firmicutes, increased bacteroidetes Elevated Th17 responses, decreased Tregs (60, 63)

Rheumatoid arthritis (RA)
Increased Prevotella copri, reduced SCFA-
producing bacteria

Pro-inflammatory cytokine production (IL-6,
TNF-a)

(64, 65)

Multiple sclerosis (MS) Reduced akkermansia, increased pro-inflammatory taxa Enhanced Th1/Th17 responses (66, 67)

Primary immune
thrombocytopenia (ITP)

Decreased bacteroides and firmicutes,
increased enterobacteriaceae

Impaired immune tolerance,
platelet destruction

(19, 68)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1595977
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guo et al. 10.3389/fimmu.2025.1595977
Restoring gut microbial diversity and modulating immune

responses through fecal microbiota transplantation (FMT) has

emerged as a promising therapeutic strategy to improve disease

outcomes, as illustrated in Figure 2. This schematic highlights the

key mechanisms through which FMT may contribute to immune

homeostasis, including shifts in microbial composition, an increase

in the activity of Tregs, and a reduction in systemic inflammation.

FMT modulates immune responses through several

mechanisms, including the enhancement of Tregs, increased

Bifidobacterium abundance, and suppression of pro-inflammatory

Th1 and Th17 responses, as observed in autoimmune conditions

such as multiple sclerosis and inflammatory bowel disease (IBD)

(12, 46). Additionally, microbial metabolites such as SCFAs

contribute to immune modulation by strengthening the intestinal

barrier and suppressing excessive immune activation (89, 90).

The gut microbiota also influences systemic immune function,

as demonstrated by recent findings on the gut-brain axis, where

microbiota-derived metabolites, such as kynurenic acid, impact

immune interactions at distant sites. This highlights the broader

systemic effects of gut microbiota and underscores the need for

further investigation into microbiota-targeted therapies in

autoimmune conditions like ITP (78).

Emerging evidence suggests that gut microbiota may directly

influence platelet regulation. Certain microbial metabolites,

including SCFAs and secondary bile acids, have been shown to

modulate platelet function by affecting megakaryocyte

differentiation and platelet activation (11, 91). Moreover, gut

dysbiosis has been associated with increased platelet aggregation

and altered hemostatic balance in other diseases, suggesting that

restoring microbial equilibrium through FMT could contribute to

improved platelet homeostasis (92). While direct evidence of FMT’s

effect on platelet regulation in ITP is limited, case reports and small

clinical studies have observed platelet count improvement following

microbiota restoration therapies (19, 72).

Despite these promising findings, several challenges remain in

translating FMT into a standardized treatment for ITP. Donor

microbiota variability and long-term engraftment pose significant

challenges, as microbial compositions differ significantly between
Frontiers in Immunology 06
donors and recipients, potentially affecting therapeutic outcomes.

Additionally, safety concerns include the risk of pathogen

transmission, unintended immune activation, and unpredictable

long-term effects (93). Therefore, well-controlled, randomized

clinical trials are necessary to confirm the efficacy and safety of

FMT in ITP management and to determine optimal protocols for

donor selection, microbiota preparation, and recipient response

monitoring. Addressing these issues is critical for integrating FMT

into mainstream ITP treatment (88).
3.2 Probiotics and prebiotics: potential to
restore gut balance and regulate immune
responses

Probiotics and prebiotics represent another avenue for

modulating gut microbiota in ITP (21, 47). Probiotics, including

specific Lactobacillus and Bifidobacterium strains, enhance

beneficial bacterial populations, while prebiotics, such as inulin

and fructooligosaccharides, selectively stimulate microbial growth,

promoting gut-immune homeostasis (94). However, the

immunomodulatory effects of probiotics are highly strain-

dependent, with some strains exerting potent anti-inflammatory

properties, while others may have limited or even opposing effects

in different individuals (95).

Clinical studies suggest that Lactobacillus rhamnosus and

Bifidobacterium breve increase Treg activity while reducing IL-6

and TNF-a, leading to decreased systemic inflammation in

autoimmune diseases (96). Additionally, Lactobacillus plantarum

has been shown to enhance gut barrier integrity by upregulating

tight junction proteins, thereby preventing bacterial translocation and

reducing systemic immune activation (97). Similarly, prebiotics,

including inulin and fructooligosaccharides, serve as metabolic

substrates for beneficial bacteria, fostering a gut environment that

supports immune homeostasis (98). The combination of specific

probiotic strains with targeted prebiotic supplementation (synbiotics)

may offer enhanced therapeutic potential by optimizing microbial

colonization and metabolic activity (99).
TABLE 2 Potential microbiota-targeted therapies for ITP.

Therapeutic
Approach

Mechanism of Action Current Evidence Challenges & Limitations

Fecal Microbiota
Transplantation (FMT)

Restores microbial diversity, promotes
immune tolerance

Small studies suggest platelet improvement
in ITP

Donor variability, safety concerns,
regulatory issues

Probiotics
Enhances Treg activity, reduces
inflammatory cytokines

Effective in other autoimmune diseases;
underexplored in ITP

Strain specificity,
inconsistent responses

Prebiotics
Supports beneficial bacterial growth, increases
SCFA production

Some evidence in metabolic disorders
and autoimmunity

Need for targeted prebiotics in ITP

SCFA Supplementation
Directly modulates immune responses
via gut-immune axis

Butyrate shows promise in
reducing inflammation

Bioavailability and dosing challenges

Bile Acid Modulation
Regulates T-cell differentiation and
inflammatory pathways

Early-stage research in gut-
immune interactions

Requires further validation in
hematologic diseases
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Despite promising preclinical and clinical evidence supporting

probiotic use in other autoimmune diseases, their application in ITP

remains underexplored (100). One of the major challenges is the

variability in probiotic efficacy, which stems from strain-specific

effects, inter-individual differences in microbiota composition, and

inconsistencies in host immune responses (101). For instance, while

Bifidobacterium adolescentis has been shown to reduce Th17-

mediated inflammation in rheumatoid arthritis, similar effects

have not been confirmed in ITP (102). Additionally, the

interaction between probiotics and endogenous microbial

communities can lead to variable colonization success, limiting

the predictability of therapeutic outcomes (103).

Future research should focus on defining optimal probiotic

formulations, identifying microbial signatures predictive of

response, and evaluating their impact on platelet homeostasis and

immune regulation (69). Advancements in microbiome sequencing

and metabolomic profiling may enable the development of

personalized microbiota-based interventions, tailoring probiotic

and prebiotic therapies to individual ITP patients for improved

efficacy (104).
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3.3 Dietary and metabolomic interventions:
role of SCFAs, bile acids, and tryptophan
metabolites in immune modulation

Dietary interventions play a pivotal role in shaping gut

microbiota composition and function (87). Specific dietary

components influence the production of key microbial

metabolites, which, in turn, modulate immune responses (105).

Among these, SCFAs, bile acids, and tryptophan-derived

metabolites are particularly significant in maintaining immune

homeostasis and resolving inflammation (105). However, while

their immunoregulatory effects have been well characterized in

autoimmune diseases, their specific impact on platelet regulation

in ITP remains an emerging area of research.

SCFAs, including butyrate and propionate, are microbial

fermentation products that exert profound immunomodulatory

effects (53). These metabolites enhance regulatory T cell (Treg)

differentiation and inhibit pro-inflammatory cytokines such as IL-6,

TNF-a, and IFN-g, thereby reducing autoimmune activity (106).

Butyrate, in particular, acts as a histone deacetylase inhibitor,
FIGURE 2

Gut microbiota balance and immune modulation. (A) In a normal gut microbiota environment, commensal bacteria such as Vibrio and Bacillus
interact with intestinal epithelial cells to maintain immune homeostasis. This balance promotes the differentiation of regulatory T cells (Treg) and
immune tolerance while preventing excessive inflammation driven by Th1 and Th17 cells. A balanced gut microbiota contributes to a well-regulated
immune system by enhancing gut barrier integrity and modulating host immune responses. (B) In a state of gut microbiota imbalance (known as
dysbiosis), there is an overrepresentation of pathogenic bacteria and viruses, along with a reduction in beneficial microbial populations. This
microbial shift disrupts gut barrier function, leading to increased bacterial translocation and heightened immune activation. Dysbiosis skews immune
regulation by reducing Treg activity and increasing Th1 and Th17 responses, promoting systemic inflammation and immune dysregulation. Such
alterations in the gut microbiota may contribute to autoimmune conditions, including ITP, by exacerbating inflammatory pathways and impairing
immune tolerance.
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promoting Treg expansion and suppressing Th17-mediated

inflammation, mechanism relevant to platelet destruction in ITP

(69, 107). Additionally, SCFAs strengthen gut barrier integrity by

upregulating tight junction proteins, thereby reducing microbial

translocation and systemic immune activation factors that may

contribute to excessive immune responses in ITP (62, 69).

Recent studies suggest that lower SCFA levels in autoimmune

conditions are linked to immune dysregulation and altered

thrombopoiesis (108, 109). Butyrate has been shown to reduce

megakaryocyte apoptosis, potentially impacting platelet production

and turnover (110). Additionally, SCFA supplementation has

demonstrated protective effects on platelet homeostasis in

inflammatory conditions, indicating a possible therapeutic avenue

for ITP (32, 108).

Bile acids, traditionally recognized for their role in lipid

metabolism, have recently emerged as key modulators of immune

responses, influencing T-cell differentiation via interactions with

gut microbiota (111). Secondary bile acids, such as deoxycholic acid

and lithocholic acid, regulate immune pathways through host

receptors, including the Farnesoid X receptor (FXR) and Takeda

G-protein-coupled receptor 5 (TGR5) (112). FXR activation

suppresses Th17 cell differentiation, thereby reducing

inflammatory cytokine production, a process that could mitigate

platelet autoantibody formation in ITP (113). TGR5 signaling has

been shown to enhance Treg function, contributing to immune

tolerance and reducing autoimmunity in conditions such as SLE

and RA (8, 114).

Alterations in bile acid metabolism have been identified in ITP

patients, suggesting a potential role in immune dysregulation (47).

Recent studies indicate that bile acid supplementation can modulate

thrombopoiesis, potentially linking gut microbiota-derived bile

acids to platelet production and function (115). These findings

support the investigation of bile acid-targeted therapies in ITP as a

novel immunomodulatory approach (11).

Tryptophan metabolism also plays a crucial role in immune

homeostasis, with its metabolites modulating immune responses via

the aryl hydrocarbon receptor (AhR) and indoleamine 2,3-

dioxygenase (IDO) pathways (116). Kynurenine, an AhR ligand,

has been shown to promote Treg differentiation, enhancing

immune tolerance and reducing autoimmune activity (117).

Indole derivatives regulate Th17 differentiation, thereby

controlling inflammatory responses that may drive platelet

destruction in ITP (2, 118). Additionally, serotonin, a tryptophan

metabolite, has been implicated in platelet aggregation, further

underscoring the potential gut-immune-thrombosis axis in ITP

(11, 43). Dysregulation of tryptophan metabolism in autoimmune

conditions suggests a possible link to ITP pathophysiology, with

recent findings highlighting microbiota-mediated tryptophan

metabolism as a key factor in hematologic disorders (119).

Despite growing interest in dietary interventions, their role in

ITP remains speculative (120). Limited clinical data exist regarding

the effects of specific dietary modifications on platelet counts and

immune function in ITP patients (121). Additionally, dietary

interventions may have variable effects depending on individual
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microbiota composition and metabolic responses (122). Future

research should prioritize characterizing microbial metabolite

profiles in ITP patients to identify potential therapeutic targets,

investigating the roles of SCFAs, bile acids, and tryptophan

metabolites in modulating platelet regulation and immune

responses. It should also assess the clinical efficacy of dietary

interventions, including probiotic and prebiotic supplementation,

as well as bile acid modulation, through well-designed randomized

controlled trials (47, 123). By integrating microbiome sequencing

and metabolomic profiling, researchers can better define the role of

microbial metabolites in platelet function and immune modulation,

leading to potential novel therapeutic approaches in ITP (52, 79).
3.4 Pharmacologic strategies targeting the
gut: microbiome-based drug development

Pharmacologic approaches to modulating the gut microbiota

are emerging as a potential strategy for treating autoimmune

diseases, including ITP (12). These approaches include

microbiome-based small molecules, postbiotics, and engineered

probiotics designed to selectively modulate microbial

communities and immune function (21).

Postbiotics, which are bioactive compounds produced by

beneficial bacteria, have shown promise in immune modulation

without the need for live microorganisms (124). Microbiome-based

small molecules are being developed to target specific microbial

metabolic pathways that influence immune responses (125).

Additionally, engineered probiotics are being designed to deliver

immunomodulatory molecules directly within the gut, offering a

targeted approach to restoring immune balance (126).

While microbiome-based drug development is still in its early

stages, these strategies hold great potential for providing precise and

effective treatments for ITP (127). However, key challenges include

ensuring microbial stability, understanding long-term safety, and

optimizing drug delivery systems (128). Future studies should

investigate the pharmacokinetics and pharmacodynamics of these

microbiome-based therapies in ITP, as well as their potential for

integration with standard treatments (129).
4 Challenges and limitations in gut
microbiota therapy for ITP

Despite the growing interest in microbiota-targeted therapies

for ITP, several challenges and limitations must be addressed before

these strategies can be effectively translated into clinical practice.

While preclinical and early clinical studies suggest that microbiota

modulation may help restore immune tolerance and regulate

platelet homeostasis (130), inconsistencies in research findings,

methodological limitations, and unresolved safety concerns

remain key barriers. This section critically examines the current

knowledge, debates ongoing controversies, and identifies gaps that

future research should address.
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4.1 Variability in gut microbiota
composition among individuals

One of the fundamental challenges in microbiota-based

therapies is the high degree of inter-individual variability in gut

microbial composition (131). Factors such as genetics, diet,

medication history (including prior antibiotic use), and

environmental influences contribute to significant differences in

microbial diversity and function (132). This variability complicates

the standardization of microbiota-based interventions, as a

treatment effective for one patient may not yield similar benefits

for another (133). Additionally, baseline microbiota differences may

influence therapeutic responses, highlighting the need for patient-

specific approaches. Future research should focus on stratifying

patient populations based on microbiome profiling to optimize

treatment efficacy (134).
4.2 Standardization and safety concerns in
FMT and microbiota-based interventions

FMT has shown promise as a microbiota-based intervention in

autoimmune diseases, but its application in ITP remains largely

experimental (135). One major concern is the lack of

standardization in FMT protocols, including donor selection,

preparation methods, and delivery routes (87). Donor microbiota

composition can vary significantly, leading to inconsistent

therapeutic outcomes (136). Additionally, potential risks

associated with FMT include the transmission of infectious

agents, unintended immune activation, and long-term alterations

in gut microbiota that may have unpredictable consequences (137).

Beyond FMT, the safety profile of probiotics and prebiotics in

ITP patients has not been rigorously evaluated (69). While some

probiotic strains exhibit immunomodulatory properties, others may

provoke excessive immune activation or lead to bacterial

overgrowth, particularly in immunocompromised individuals

(138). To address these safety concerns, further clinical trials with

well-defined protocols are needed to assess the risks and benefits of

microbiota-targeted therapies in ITP.
4.3 Need for robust clinical trials and
biomarker discovery in ITP-microbiota
research

Although emerging studies suggest a link between gut dysbiosis

and ITP, most existing research relies on small-scale, cross-sectional

studies with limited statistical power (139). Longitudinal studies are

needed to investigate how changes in gut microbiota correlate with

the onset, severity, and treatment response of ITP over time.

Second, mechanistic studies should explore the causal

relationships determine whether gut microbiota alterations

precede ITP onset or arise as a consequence of the disease and its

treatments (18). Furthermore, the identification of reliable

microbial biomarkers for disease progression and treatment
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response remains a significant gap in current research (140).

Developing standardized methods for microbiome analysis,

including metagenomic sequencing and metabolomic profiling,

could help establish microbiota-based diagnostic and prognostic

tools for ITP (141).

Clinical trials evaluating microbiota-targeted interventions in

ITP are also lacking (52). While probiotics, prebiotics, dietary

modifications, and FMT have been explored in other

autoimmune conditions, few studies have directly assessed their

impact on platelet counts and immune regulation in ITP patients.

Large-scale, randomized controlled trials are essential to determine

the efficacy, safety, and durability of these interventions in a

hematologic context (142).
4.4 Ethical and regulatory considerations in
applying microbiota therapies to
hematologic disorders

The integration of microbiota-based therapies into hematologic

disease management raises several ethical and regulatory challenges

(143). Unlike conventional pharmacologic agents, microbiota-

based interventions involve live organisms, making it difficult to

define consistent dosing, manufacturing processes, and quality

control standards (69). Regulatory agencies, such as the FDA and

EMA, currently classify FMT as an investigational therapy,

necessitating rigorous oversight before its widespread adoption in

ITP treatment (77).

Additionally, ethical concerns related to FMT donor selection,

consent processes, and long-term safety monitoring must be

addressed (87). Patients undergoing microbiota-based treatments

should be informed of potential risks, including unforeseen

immune complications or persistent microbiome alterations

(144). Establishing regulatory frameworks that balance innovation

with patient safety will be crucial in advancing microbiota-targeted

therapies in ITP (129).

To overcome these limitations, future research should focus on

developing standardized microbiota-based protocols by establishing

guidelines for donor screening, sample preparation, and treatment

administration to improve the reproducibility and safety of

microbiota-based therapies (93). Additionally, personalizing

microbiota interventions through microbiome sequencing and

precision medicine approaches can help tailor treatments based

on individual microbiota profiles, thereby increasing therapeutic

efficacy (145). Conducting large-scale, controlled clinical trials will

be essential for evaluating the long-term impact of microbiota-

targeted therapies in ITP and ensuring their clinical adoption (84).

Furthermore, clarifying the mechanisms of action through further

research is necessary to elucidate how specific microbial taxa and

metabolites influence platelet regulation and immune responses in

ITP (11). Addressing these aspects will provide a stronger

foundation for the integration of microbiota-based therapies into

ITP management (96). By tackling these challenges and knowledge

gaps, microbiota-targeted interventions may become a viable and

evidence-based approach for managing ITP, complementing
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existing immunomodulatory treatments and improving

patient outcomes.
5 Future directions and clinical
translation

While significant strides have been made in understanding the

gut-immune axis in ITP, translating these findings into effective

clinical applications remains a challenge (18). Several critical gaps

must be addressed, including the lack of standardized microbiota

profiling in clinical practice, variability in treatment responses, and

the need for robust clinical trials to validate microbiota-based

interventions (146). This section highlights the key areas of future

research that could bridge these gaps and facilitate the integration of

microbiota-targeted therapies into mainstream ITP management.
5.1 Integrating microbiota profiling in ITP
diagnosis and prognosis

One promising avenue for advancing ITP management is the

incorporation of microbiota profiling into diagnostic and

prognostic assessments. Given the increasing evidence that gut

microbiota composition influences immune responses and disease

severity, recent studies have identified microbial signatures linked

to hematologic diseases, where altered Bacteroides and

Enterobacteriaceae profiles predict disease progression, suggesting

potential biomarker applications for ITP (19, 147).

Recent advancements in microbiome sequencing have facilitated

the identification of microbial alterations linked to systemic disease

progression (140). For instance, studies in brain metastases have

demonstrated how gut microbiota composition can influence disease

dynamics, underscoring the potential of microbiota profiling as a

valuable tool for diagnosing and monitoring immune-mediated

disorders such as ITP (78). Metagenomic sequencing enables high-

resolution characterization of microbial taxa, revealing microbiota-

related risk factors predictive of autoimmune disease severity (148).

An overview of microbiota-based biomarkers and diagnostic

approaches in ITP, including key microbial alterations, sequencing

methodologies, and their potential clinical applications, is presented

in Figure 3. This schematic highlights how microbiota profiling

could be integrated into routine diagnostic workflows to enhance

precision medicine approaches in ITP.

Despite these advances, specific microbial signatures

distinguishing ITP from other autoimmune and hematologic

diseases remain unclear. While some studies suggest that gut

dysbiosis may contribute to platelet regulation and immune

modulation in ITP, no definitive microbial biomarkers have been

validated for ITP diagnosis or disease stratification (11, 19).

Furthermore, the high inter-individual variability in gut

microbiota composition complicates the reproducibility and

clinical application of microbiome-based diagnostics (12, 131).

The application of microbiota profiling in ITP diagnosis presents

both opportunities and challenges (18, 19). Table 3 summarizes the
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advantages and limitations of various microbiome-based diagnostic

approaches, highlighting their potential role in disease monitoring and

personalized treatment strategies.

While microbiota profiling holds promise, its clinical relevance

in ITP remains uncertain. Studies suggest an association between

gut dysbiosis and platelet regulation in ITP, but causal mechanisms

remain unclear, necessitating longitudinal studies to establish

microbiota-driven disease modulation (19, 47). Additionally, the

standardization of sampling methods, data interpretation, and

validation across different populations is needed before

microbiota profiling can be reliably incorporated into clinical

practice (149).

To advance microbiota profiling as a diagnostic tool in ITP,

future research should focus on identifying robust microbial

biomarkers specific to ITP that distinguish it from other

hematologic and autoimmune disorders (150); conducting large-

scale, multi-cohort microbiome studies to evaluate consistent

microbial signatures across diverse populations (151); integrating

microbiome data with clinical parameters and multi-omics

approaches (e.g., metabolomics, proteomics) to refine diagnostic

accuracy (152); and developing standardized guidelines for

microbiome-based clinical diagnostics to ensure reproducibility

and regulatory approval for ITP diagnosis (153).
5.2 Personalized microbiota-based
therapies for ITP management

The concept of personalized microbiota-based therapies is

gaining traction as an alternative or adjunctive strategy for ITP

management (19). Given the variability in microbiota composition

among individuals, tailoring interventions based on a patient’s

specific microbial profile may enhance treatment efficacy (82).

Personalized approaches may include selective probiotic

formulations, prebiotic-enriched diets, or customized FMT

protocols designed to restore microbial balance and immune

homeostasis (154).

However, significant challenges remain. The efficacy of

probiotics and prebiotics in ITP has not been rigorously tested,

and the optimal strains or formulations for modulating immune

responses remain undefined (138). Moreover, inter-individual

differences in microbiota composition may influence therapeutic

outcomes, necessitating a precision medicine approach (145).

Future studies should focus on characterizing microbiota profiles

associated with positive treatment responses and developing

predictive models to guide personalized microbiome-based

interventions (155).
5.3 Advances in microbiome sequencing
and artificial intelligence for targeted
interventions

Technological advancements in microbiome sequencing and

artificial intelligence (AI) are revolutionizing the development of
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microbiota-targeted interventions. High-throughput sequencing

techniques, such as 16S rRNA sequencing and shotgun

metagenomics, allow for comprehensive profiling of gut microbial

communities, facilitating the identification of microbial alterations

linked to ITP (156). These tools could be leveraged to refine

microbiota-based diagnostics and therapeutic strategies.

AI-driven approaches further enhance our ability to analyze

complex microbiota datasets, predict treatment responses, and

develop targeted therapeutic interventions (157). Machine learning

models can identify microbial patterns associated with disease states

and recommend tailored microbiota-based therapies based on an
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individual’s gut microbiota composition. Integrating AI with

microbiome research holds great potential for optimizing precision

medicine approaches in ITP and improving clinical outcomes (158).
5.4 Potential for gut microbiota
manipulation in combination with standard
ITP therapies

Combining microbiota-targeted therapies with conventional

ITP treatments represents an exciting avenue for improving
FIGURE 3

Overview of microbiota-based biomarkers and diagnostic approaches in ITP. This figure illustrates the role of microbiota profiling in the diagnosis
and management of immune thrombocytopenia (ITP). (A) Microbial signatures in ITP highlight key alterations in bacterial taxa, including decreased
Bacteroides and Firmicutes, and increased Enterobacteriaceae, which are associated with immune dysregulation and platelet destruction. (B) A
comparison of diagnostic tools—metagenomic sequencing, 16S rRNA sequencing, microbiota biomarker panels, and multi-omics integration—
highlighting their benefits and limitations for clinical application in ITP. (C) Clinical applications and future perspectives include predictive models for
early detection, personalized treatment strategies integrating probiotics and dietary interventions, and longitudinal monitoring to assess disease
progression and therapeutic responses. This schematic underscores the potential of microbiota-based diagnostics in improving precision medicine
approaches for ITP management.
TABLE 3 Advantages and challenges of microbiota profiling in ITP diagnosis and prognosis.

Diagnostic Tool Benefits Challenges & limitations

Metagenomic Sequencing Identifies specific microbial signatures, high-resolution analysis Costly, requires specialized bioinformatics

16S rRNA Sequencing Rapid microbial composition analysis, relatively cost-effective Lower resolution than whole-genome sequencing

Microbiota Biomarker Panels Potential for early detection and prognosis Need for standardization and validation

Microbiota Analysis Personalized risk assessment, predictive modeling Requires extensive training data and validation
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patient outcomes (159). Current standard therapies, such as

corticosteroids, thrombopoietin receptor agonists, and

immunosuppressive agents, exhibit variable efficacy and often

associated with significant side effects (160). Modulating the gut

microbiota may serve as a complementary strategy to enhance

treatment efficacy, reduce immune-related side effects, and

improve long-term disease management (69).

Certain microbiota-targeted interventions, such as probiotics

and SCFA-based dietary strategies, may help regulate immune

responses, reduce inflammation, and promote platelet production,

thereby decreasing reliance on long-term immunosuppressive

therapies (108). Additionally, microbiota-based strategies may

facilitate immune tolerance in refractory ITP cases, improving the

likelihood of sustained remission. However, the challenge remains

in identifying the most effective microbiota-based combinations

and understanding their interactions with existing therapies. Future

clinical trials should investigate the synergistic effects of microbiota-

targeted therapies with current ITP treatments to optimize patient

care (129).

Future directions should prioritize robust Phase II/III clinical

trials, standardized microbiome diagnostics, longitudinal

microbiota-immune tracking, and integration of AI-driven

predictive models to personalize treatment. These efforts will

advance precision microbiome therapeutics for ITP and improve

long-term outcomes.

While microbiota-targeted therapies hold great promise for

ITP, several obstacles must be addressed before they can be

effectively implemented in clinical practice (161). Future research

should prioritize large-scale, randomized controlled trials to

validate the efficacy of microbiota-based interventions, establish

standardized diagnostic protocols, and further explore the

mechanistic pathways linking gut dysbiosis to ITP pathogenesis

(162). Integrating microbiota profiling into precision medicine

approaches and leveraging AI-driven strategies may pave the way

for innovative and personalized treatment options (145).

Robust Phase II/III clinical trials are urgently needed to validate

the clinical efficacy of microbiota-targeted interventions, including

fecal microbiota transplantation, SCFA supplementation, and

strain-specific probiotics (163). These studies should incorporate

standardized microbiome profiling and immune monitoring to

establish reproducible outcomes (164). In parallel, recent

proposals emphasize the importance of prospective longitudinal

studies and gnotobiotic mouse models to establish causality and

elucidate the underlying microbial mechanisms that regulate

immune responses and platelet homeostasis in ITP (165).

By addressing these challenges, the field can move toward more

targeted and effective microbiota-based therapies for ITP, ultimately

improving patient outcomes and transforming disease

management (127).
6 Conclusion

The growing recognition of the gut-immune axis in primary ITP

represents a paradigm shift in understanding and managing this
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autoimmune disorder (19). Traditional treatment strategies have

primarily focused on immunosuppressive approaches; however,

emerging evidence highlights the pivotal role of gut microbiota in

immune regulation and disease progression (12). The interplay

between gut microbiota, immune tolerance, and platelet homeostasis

offers new avenues for therapeutic intervention, shifting the focus

toward microbiota-targeted strategies.

Microbiota-based therapies, including FMT, probiotics,

prebiotics, and dietary interventions, hold significant promise in

modulating immune responses and restoring microbial balance in

ITP (166). These approaches can enhance immune tolerance,

reduce inflammation, and complement existing treatment

modalities (167). However, while early studies provide compelling

insights, further clinical trials are essential to validate the safety,

efficacy, and long-term effects of these interventions (168).

Despite these promising developments, several challenges must

be addressed before microbiota-targeted therapies can be fully

integrated into clinical practice. Standardizing microbiome

profiling methods, identifying reliable microbial biomarkers, and

optimizing therapeutic strategies tailored to individual microbiota

compositions remain critical research priorities (154, 169).

Importantly, clarifying the temporal relationship between

dysbiosis and immune dysfunction in ITP requires longitudinal

microbiome studies and mechanistic experiments, including the use

of gnotobiotic animal models (165). Additionally, long-term studies

are needed to evaluate the durability of microbiota modulation and

its sustained effects on disease outcomes.

Continued research is crucial for translating gut-immune

insights into effective clinical strategies. Advancements in

microbiome sequencing, artificial intelligence-driven microbiota

profiling, and biomarker discovery may facilitate the development

of personalized, precision-based therapies for ITP (104). Integrating

microbiota modulation with standard immunosuppressive

therapies and thrombopoietin receptor agonist therapies may lead

to synergistic treatment effects and improved patient outcomes (82).

In conclusion, leveraging the gut-immune axis for ITP

management represents an exciting frontier in autoimmune disease

research. As our understanding of gut microbiota expands, microbiota-

targeted interventions may pave the way for more effective, sustainable,

and personalized treatment strategies for ITP, ultimately improving

patients’ quality of life and long-term disease management.
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