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Background: Ovarian cancer remains the deadliest gynecological malignancy

with 5-year survival rates below 40% due to frequent recurrence and

chemoresistance. Aberrant crotonylation, a type of epigenetic modification,

has been implicated in the proliferation, metastasis, and immune evasion of

various cancers. However, its role in the ovarian cancer microenvironment and

clinical outcomes remains unexplored. The aim of this study was to develop a

prognostic model for ovarian cancer on the basis of crotonylation and to

investigate the underlying mechanisms and potential of crotonylation for

targeted therapy.

Methods: We systematically analyzed single-cell RNA-seq and bulk

transcriptomic datasets from ovarian cancer patients. Cellular crotonylation

activity was quantified using AUCell algorithm. Potential prognostic genes were

identified through DEG analysis and Weighted gene correlation network analysis

(WGCNA), and the associated molecular mechanisms were elucidated via Gene

set enrichment analysis (GSEA). An ovarian cancer prognosis model were

constructed by integrating machine learning algorithms. Immune

microenvironment features were assessed using CIBERSORT, ESTIMATE and

TIDE algorithms, with drug sensitivity predicted via genomics of drug sensitivity

in cancer.

Results: The ovarian cancer microenvironment is characterized by abundant

immune cell infiltration, with significant differences in crotonylation levels among

7 cell subtypes. We identified 451 key crotonylation-related genes. The

crotonylation risk score (RS) model demonstrated robust prognostic

performance. High-RS groups showed immunosuppressive characteristics:

decreased follicular helper T cells and activated NK cells, concomitant with M2

macrophage enrichment. Elevated RS was associated with increased stromal

activation, as indicated by a higher ESTIMATE score, and enhanced immune

evasion potential, reflected by an elevated TIDE score. Notably, high-RS patients

exhibited upregulated PDL1 and CD40, suggesting increased immunotherapy

susceptibility. Pharmacogenomic analysis identified vinblastine with differential

sensitivity, providing actionable targets for RS-stratified therapy.
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Conclusion:We elucidated the significant impact of crotonylation on the ovarian

cancer microenvironment and prognosis. We developed and validated a novel

prognostic model for ovarian cancer that can serve as a tool for predicting patient

outcomes and characterizing the immune microenvironment. These findings

enhance our understanding of the role of crotonylation in ovarian cancer and

establish a robust framework for developing therapeutic strategies

targeting crotonylation.
KEYWORDS

ovarian cancer, crotonylation, tumor progression, tumor microenvironment,
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Introduction

Ovarian cancer (OV) is one of the most lethal malignant tumors

in the female reproductive system, with approximately 70% of

patients being diagnosed at an advanced stage (1, 2). Although

surgery combined with platinum-based chemotherapy can

temporarily alleviate this condition, widespread metastasis,

recurrence, and drug resistance have resulted in a 5-year survival

rate that has long remained below 40% (3, 4). In recent years,

although precision medicine based on genetic testing (such as the

use of PARP inhibitors) has led to treatment advances, there are still

no widely applicable prognostic markers or effective intervention

targets (2, 5). Therefore, identifying effective prognostic markers

and therapeutic targets, as well as elucidating the key molecular

mechanisms driving the initiation and progression of ovarian

cancer, have become critical avenues to address the current

clinical challenges.

In recent years, a growing body of research has demonstrated

that epigenetic regulation is intricately linked to tumor

microenvironment (TME) remodeling, potentially serving as a

pivotal factor in the development and progression of ovarian

cancer (6, 7). Protein crotonylation is a recently discovered form

of acylation that was first identified in 2011 (8). Crotonylation is a

modification that transfers a crotonyl group to lysine residues using

crotonyl-CoA as the substrate; it is evolutionarily conserved and

typically associated with actively transcribed chromatin regions,

playing a crucial role in regulating gene expression (1, 8). Studies

have demonstrated that crotonylation is closely associated with the

proliferation, metastasis, and immune evasion of various tumors,
ssion omnibus; TCGA,

ssed genes; WGCNA,

Gene set enrichment
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, Crotonylation related
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including liver cancer and breast cancer (9–11). LINC00922

interacts with the protein sirtuin 3 (SIRT3) and inhibits its

binding to the promoter region of ETS1, leading to an increase in

H3K27 crotonylation (H3K27cr) levels in this region and the

subsequent activation of ETS1 transcription (12). Hypoxia-

induced decreases in PGK1 crotonylation promotes tumorigenesis

by coordinating glycolysis with the TCA cycle (10). However, the

expression patterns, prognostic value, and underlying mechanisms

o f c ro tony la t ion in ovar i an cance r have not been

systematically elucidated.

Despite efforts to identify prognostic genes for ovarian cancer

and construct predictive models using transcriptome data, existing

studies have several limitations. The adoption of a single-omics

approach has restricted the integration of single-cell data, thereby

hindering a comprehensive analysis of heterogeneous expression

patterns of specific markers within distinct cell subpopulations in

the TME. Consequently, the practical clinical utility of these models

remains suboptimal. The sensitivity and specificity of existing

markers, such as CA125 and HE4, are limited, highlighting the

urgent need for multidimensional molecular signatures to enhance

prognostic models. This study investigated the prognostic value and

potential role of crotonylation in ovarian cancer.

In this study, we integrated transcriptomic and single-cell data

to assess crotonylation levels across different cell subtypes. An

ovarian cancer prognosis model were constructed by integrating

machine learning algorithms, and the associated molecular

mechanisms were elucidated via Gene set enrichment analysis

(GSEA). Immune microenvironment features were assessed using

CIBERSORT, ESTIMATE and TIDE algorithms, with drug

sensitivity predicted via genomics of drug sensitivity in cancer.
Methods and materials

The research workflow of this study

As illustrated in Supplementary Figure 1, In scRNA-seq dataset,

UMAP clustering revealed 20 cellular clusters. Manual annotation

based on cell-type marker genes identified seven distinct cell
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populations. The “FindAllMarkers” function was employed to calculate

differentially expressed genes between different cellular clusters. Using

the AddModuleScore function, CRG scores were computed across

these seven cell types. Additionally, the PercentageFeatureSet function

was utilized to quantify CRG expression proportions within each cell

type. Comparative analysis of CRG scores and expression was

subsequently conducted across different sample types and cellular

populations. Concurrently, we utilized the AUCell_calcAUC function

from the R package AUCell to conduct AUCell scoring in the ovarian

cancer samples of the scRNA-seq datasets. Using the

AUCell_exploreThresholds function, the 7 different cell types in the

OV samples were respectively divided into high/low AUC groups. The

“FindMarkers” function subsequently identified differential expression

genes between these AUC subgroups across cellular clusters, which

were designated as DEG1 for subsequent investigation.

For bulk RNA-seq analysis, the GSVA package with ssGSEA

algorithm was implemented to calculate CRG scores. Additionally,

the Wilcoxon test was employed to evaluate the differences in CRG

score across different samples. Differential expression analysis

between ovarian cancer and normal samples in RNA-seq datasets

was performed via the limma package, with the resultant genes

defined as DEG2.

Co-expression module screening through WGCNA analysis in

the RNA-seq datasets identified four significant modules. Pearson

correlation analysis was performed to evaluate the correlation

between modules and CRG score, and module eigengenes

(MEGs) were identified based on these results. The intersection of

DEG1, DEG2, and MEGs was ultimately established as key genes

for this study.

Through integrative analysis, we identified key crotonylation-

related genes and elucidated their underlying molecular

mechanisms. Subsequently, we identified prognosis-associated

genes and developed a novel prognostic signature, i.e. “risk score

(RS),” using an ensemble machine learning algorithm. We

investigated the biological mechanisms distinguishing high- and

low-RS groups, as well as the relationships between RS and

immune-related features, drug sensitivity, and highly variable

gene (HGV) scores within the TME. Finally, we validated the

expression patterns of the identified prognostic genes.
Data acquisition and screening

scRNA-seq data from the OV dataset GSE184880 (13) were

downloaded from the NCBI Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/); this dataset

comprised five normal samples and seven tumor samples.

scRNA-seq datasets were normalized using the log-normalization

method implemented in the NormalizeData function of the Seurat

package (v4). The scRNA-seq data were processed and formatted as

a Seurat object using the R package Seurat (https://satijalab.org/

seurat/, version 4.4.0) (14), and the proportion of mitochondrial

genes in each cell was calculated using the “PercentageFeatureSet”

function in the Seurat package. Generally, and excessively high

proportion of mitochondrial genes in a cell may indicate that the
Frontiers in Immunology 03
cell is undergoing apoptosis or has been lysed. Therefore, we

excluded cells whose mitochondrial gene content exceeding 20%.

Since low-quality cells or empty droplets typically have very few

genes and doublets may exhibit an abnormally high number of

genes, we also filtered out cells with fewer than 200 genes or more

than 6,000 genes. Additionally, we removed cells with fewer than

100 detected genes or where fewer than 3 cells contained a given

gene. After these quality control steps, a total of 47,897 cells were

retained for subsequent single-cell analysis. The RNA-seq data for

TCGA-OV, normalized to transcripts per kilobase per million

mapped reads (TPM), were downloaded from the official The

Cancer Genome Atlas (TCGA) portal (https://portal.gdc.cancer.

gov/). The TPM values were transformed using log2(TPM + 1)

transformation. After excluding samples lacking essential clinical

information (FIGO stage, tumor grade, age, and follow-up data), a

total of 414 OV samples remained in the TCGA-OV dataset. Since

the TCGA database does not include normal ovarian tissue samples,

we also obtained RNA-seq data for normal ovarian tissues from the

Genotype Tissue Express ion (GTEx) porta l (https : / /

www.gtexportal.org/home/); these data were also in TPM format

and underwent the same log2(TPM + 1) transformation, resulting

in a total of 193 control samples. The TCGA OV samples and the

GTEx control samples were combined to form the training set for

this study. We utilized the sva package (15) to remove batch effects

arising from different database sources. We downloaded the OV-

related datasets GSE140082 (16), GSE26193 (17), GSE26712 (18),

and GSE63885 (19) from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/) using the GEOquery package

(https : / /b ioconductor .org/packages/re lease/bioc/html/

GEOquery.html, version 2.70.0) (20). Among these datasets,

GSE140082 was generated on the GPL14951 platform, GSE26193

and GSE63885 were generated on the GPL570 platform, and

GSE26712 was generated on the GPL96 platform. We obtained

379 OV samples from the GSE140082 dataset, 107 OV samples

from the GSE26193 dataset, 185 OV samples and 10 control

samples from the GSE26712 dataset, and 75 OV samples from

the GSE63885 dataset. These samples were included in this study as

external validation datasets. Eighteen crotonylation-related genes

(CRGs), including CREBBP, EP300, KAT8, KAT2A, KAT2B,

KAT5, SIRT1, SIRT2, SIRT3, HDAC1, HDAC2, HDAC3,

HDAC8, TAF1, MLLT3, YEATS2, KAT6A, and DPF2 were

identified from previous literature (21).
Cell subpopulation annotation

The Seurat package (version: 4.4.0) was used for cell

normalization and regression based on the expression table

according to the percentage of mitochondria to obtain the scaled

data. Principal component analysis was constructed on the basis of

the scaled data with the top 2,000 highly variable genes, and the top

20 principals were used for uniform manifold approximation and

projection (UMAP) construction. Logarithmic normalization is

applied for standardization. Canonical correlation analysis (CCA)

in the Seurat package was applied for batch effect removal. The data
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were dimensionally reduced using the UMAP method with a

resolution threshold=1, resulting in the identification of 20 cell

clusters through clustering. We manually annotated these clusters

and identified seven distinct cell types the basis of marker genes:
Fron
- B cells/plasma cells: CD79A and JCHAIN;

- Endothelial cells: PECAM1 and CLDN5;

- Epithelial cells: KRT18, EPCAM, CD24, and KRT19;

- Fibroblasts: DCN and OGN;

- Monocytes: CD14, C1QA, and CD4;

- SMC/myofibroblasts: ACTA2, MYH11, and TAGLN; and

- T cells: CD3D, CD3E, and CD8A.
The “FindAllMarkers” function was used to calculate

differentially expressed genes between the various cell clusters,

and the results were visualized using a heatmap.
Calculation of CRG scores for single-cell
data

On the basis of the aforementioned annotation results, we used

the AddModuleScore function to calculate the CRG scores for the

seven identified cell types. Additionally, the percentage feature set

function was employed to determine the proportion of CRG

expression in these cell types. Furthermore, we compared the

differences in the CRG scores and CRG expression proportions

across the different cell types among various sample types.
AUCell scoring of cell populations

Using single-cell RNA sequencing data, AUCell (22) can

identify cells with active gene sets. AUCell employs the “area

under the curve” (AUC) method to determine whether a critical

subset of an input gene set is enriched among the expressed genes in

each cell. The distribution of AUC scores across all cells enables the

exploration of relative feature expression. Since the scoring method

is rank-based, AUCell is not influenced by gene expression units or

standardization procedures. Additionally, because cells are

evaluated individually, AUCell can be readily applied to larger

datasets and expression matrices can be grouped as needed. We

selected CRG and used the AUCell_calcAUC function in the R

package AUCell (https://bioconductor.org/packages/release/bioc/

html/AUCell.html, version 1.24.0) to calculate AUCell scores

using single-cell data for OV samples. We subsequently set the

random seed to 123456 and employed the AUCell_explore

Thresholds function to classify the seven different cell types in the

OV samples into high- and low-AUC groups. On the basis of the

AUC grouping information described above, we used the

“FindMarkers” function to calculate differentially expressed genes

(DEGs) between the high- and low-AUC groups within each cell

population. Additionally, genes with |log2FoldChange| > 0.25 and p

value < 0.05 were selected as DEG1s for further analysis (23).
tiers in Immunology 04
Identification of key genes involved in
crotonylation in ovarian cancer

The single-sample gene set enrichment analysis (ssGSEA)

algorithm can quantify the relative abundance of each gene set in

dataset samples. Therefore, we utilized the GSVA R package

(https://bioconductor.org/packages/release/bioc/html/GSVA.html,

version 1.50.1) (24) to calculate the crotonylation related genes

(CRG) Score for each sample on the basis of the expression matrix

of CRGs in the training set using the ssGSEA algorithm.

Additionally, we employed the Wilcoxon rank-sum test to assess

the differences in the CRG scores among different samples.

We then utilized the limma package (https://bioconductor.org/

packages/release/bioc/html/limma.html, version 3.58.1) (25) to

analyze DEGs between OV samples and normal samples in the

training set. Genes with |logFC| > 1 and p value < 0.05 were selected

as DEG2s for further analysis.

Weighted gene correlation network analysis (WGCNA) (26)

aims to identify coexpressed gene modules, explore the

relationships between gene networks and phenotypes, and study

core genes within these networks. Candidate soft thresholds ranging

from 1 to 20 were evaluated in the training set using the pick Soft

Threshold function. The selection criteria were as follows: (1) the

scale-free topological fit index (signed R²) should be ≥0.85 to ensure

that the network exhibits scale-free characteristics; (2) select the

minimum threshold should be selected while satisfying condition 1;

and (3) the average connectivity should exhibit a steady downward

trend to prevent overconnectivity. After a comprehensive

evaluation, a soft threshold of 14 was selected as the optimal

value. A scale-free network was subsequently constructed on the

basis of this soft threshold, followed by the generation of the

topological overlap matrix and hierarchical clustering. Gene

modules were identified using dynamic tree cutting, with a

minimum module size of 50 genes, and eigengenes were

calculated for each module. The correlation between modules was

assessed using their eigengenes, and hierarchical clustering was

performed. Modules with correlations greater than 0.5 were

merged, resulting in a final set of four modules. Pearson

correlation analysis was then conducted to evaluate the

relationships between modules and CRG scores, and module

genes (MEGs) were subsequently screened out.

Finally, the intersection of DEG1s, DEG2s, and MEGs was

determined to obtain the overlapping genes, which were identified

as the key genes for this study.
GO and KEGG enrichment analysis

To understand the functional enrichment and pathway

enrichment of key genes, we conducted enrichment analysis.

Gene Ontology (GO) analysis (27) is a widely used method for

conducting large-scale functional enrichment studies,

encompassing biological process (BP), molecular function (MF),

and cellular component (CC) terms. The Kyoto Encyclopedia of

Genes and Genomes (KEGG) (28) is a widely used database that
frontiersin.org
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stores information on genomes, biological pathways, diseases, and

drugs. GO annotation analysis and KEGG pathway enrichment

analysis of key genes were conducted using the R package

clusterProfiler (29), with an FDR cutoff value of < 0.05 considered

statistically significant.
Construction of an OV prognostic model
by integrating machine learning algorithms

First, we conducted univariate Cox regression analysis of the

key genes identified in both the training set and the validation set to

obtain genes with p < 0.1 and consistent hazard ratios across at least

three datasets simultaneously (30). On the basis of the genes

screened by univariate Cox regression analysis, an integrated

computational framework was employed to identify potential

prognostic genes and construct OV prognostic models. Initial

gene signatures were constructed in TCGA-OV using ten

machine learning algorithms, including random survival forest

(RSF), elastic net (Enet), lasso, ridge, stepwise cox, CoxBoost, Cox

partial least squares regression (plsRcox), supervised principal

components (SuperPC), generalized boosted regression modeling

(GBM), and survival support vector machine (survival-svm) (30,

31). Several of these algorithms possess feature selection

capabilities, such as lasso, stepwise Cox, CoxBoost, and RSF. We

integrated 10 algorithms to generate a model. To mitigate potential

confounding effects from stochastic variation, a 10-fold cross-

validation was implemented to ensure model robustness. On the

basis of 10-fold cross-validation, 101 algorithmic combinations for

the key genes identified were fitted to predict the survival outcomes

of ovarian cancer patients. These 101 models were subsequently

validated using four additional GEO datasets. To address batch

effects across GEO datasets, batch correction was conducted

utilizing the ComBat function from the sva package.

For each model, the c-index was calculated across all datasets,

and the model with the highest average c-index was selected as the

optimal model. The optimal model was used to construct an OV

prognostic model, and the genes included in this model were

identified as OV prognostic genes. The risk score (RS) for each

patient was then calculated. The R package timeROC (https://

cran.r-project.org/web/packages/timeROC/, version 0.4) (32) was

used to validate the model through ROC curve analysis. The

optimal cutoff point of the RS was determined using the

surv_cutpoint function in the survminer package, on the basis of

the survival time and survival status of OV patients (33). Patients

were then divided into high- and low-RS groups according to this

optimal cutoff value. Kaplan-Meier analysis was conducted using

the “survival” (https://cran.r-project.org/web/packages/survival/

index.html, versions 3.4-8) and “survminer” packages to

investigate the correlation between patient survival time and RS.

On the basis of the results of the analysis of the OV prognosis

model, we utilized the R package rms (https://cran.r-project.org/

web/packages/rms/, version 6.8-0) to construct a nomogram (34). A

nomogram is a graphical tool that represents the functional

relationships among multiple independent variables using a series
Frontiers in Immunology 05
of nonintersecting line segments on a Cartesian coordinate plane; it

is derived from multivariate regression analysis and employs

specific scales to score each variable within the model. The total

score is then calculated to predict the probability of an event

occurring. Additionally, calibration curves and ROC curves at 1,

2, 3, 4 and 5 years were plotted to evaluate the predictive

performance of the nomogram.
High- and low-RS groups and immune-
related characteristics

Using CIBERSORT (https://cibersort.stanford.edu/) (35), we

calculated the proportions of 22 immune cell types on the basis of

the TCGA OV tumor sample expression data. CIBERSORT is a tool

that deconvolutes the expression matrix of immune cell subtypes

using linear support vector regression. This method relies on a

known reference set, which provides gene expression signatures for

22 immune cell subtypes to estimate immune cell infiltration.

The degree of infiltration of immune and stromal cells in the

tumor microenvironment (TME) significantly impacts patient

prognosis. To elucidate the prognostic implications of genes

regulating immune and stromal cell activity, we employed the

ESTIMATE algorithm (https://bioinformatics.mdanderson.org/

estimate/), which uses transcriptional profiling of cancer samples

to quantitatively assess the heterogeneity of cellular infiltration

within the TME. We evaluated the immune activity of OV tumor

samples using the expression profile matrix data via the R package

“ESTIMATE” (36). With the ESTIMATE algorithm, we calculated

the ESTIMATEScore, ImmuneScore, StromalScore, and

TumorPurity to quantify the immune and stromal components

within the samples.

On the basis of the RNA-seq data from the Tumor Immune

Phenotype (TIP, http://biocc.hrbmu.edu.cn/TIP/) database, we

analyzed and visualized the anticancer immune status of each

sample in the high- and low-RS groups, as well as the

proportions of tumor-infiltrating immune cells across the seven

stages of the cancer immune cycle (37).
GSEA enrichment analysis

To delineate biological pathway disparities across comparative

cohorts, we conducted systematic gene set enrichment analysis

(GSEA) (38) using transcriptomic datasets from ovarian cancer

patients. GSEA is a computational method that can be used to

determine whether a predefined set of genes shows statistically

significant differences between two biological states and is

commonly used to estimate changes in pathways and biological

processes within expression datasets. Using the R package

clusterProfiler, we selected GO(including biological process,

cellular component, and molecular function) and KEGG pathway

for the GSEA of genes that were differentially expressed genes

between high- and low-RS OV groups. A false discovery rate (FDR)

< 0.05 was considered to indicate significant enrichment.
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Drug sensitivity analysis of high- and low-
RS groups

To investigate the sensitivity of ovarian cancer to common

chemotherapy drugs, we utilized the Genomics of Drug Sensitivity in

Cancer (GDSC, https://www.cancerrxgene.org/) database (39) to

estimate the sensitivity of each patient to ovarian cancer

chemotherapy drugs. We used the R package pRRophetic to

calculate the half-maximal inhibitory concentration (IC50) (40).

The Wilcoxon test was used to compare drug sensitivity differences

among different RS groups. Additionally, we predicted responses to

immunotherapy and immune escape effects using the Tumor

Immune Dysfunction and Exclusion (TIDE) algorithm (41)

(http://tide.dfci.harvard.edu).
Identification of highly variable genes and
calculation of highly variable gene scores

The FindAllMarkers function in the Seurat package was used to

identify the top 100 highly variable genes (HVGs) for each cell

population in OV samples. ssGSEA can be used to quantify the

relative abundance of gene sets within individual samples.

Therefore, we subsequently employed the R package GSVA

(https://bioconductor.org/packages/release/bioc/html/GSVA.html,

version 1.50.1) (24) to calculate the highly variable gene scores

(HVGs) for each cell type in each OV sample from the TCGA

dataset. This was achieved by applying the ssGSEA algorithm to the

expression profiles of HVGs for each cell type in each sample.
Immunohistochemical analysis based on
the HPA database

We compared the immunohistochemical (IHC) expression

patterns of prognostic genes between normal tissues and OV

tumor tissues using the Human Protein Atlas (HPA) database

(https://www.proteinatlas.org/) (42).
Tissue specimens

We collected 16 OV tissues and 7 benign ovarian tumor tissues

from Shanghai First Maternity and Infant Hospital. The OV patients

were not received any preoperative radiation, chemotherapy, or other

anticancer therapies before surgery. This study was approved by the

Ethics Committee of Shanghai First Maternity and Infant Hospital.

(No: KS25292). All subjects involved in this study signed informed

consent documents prior to the operation.
Real-time quantitative PCR

Total RNA from clinical tissue samples from patients with benign

ovarian tumor and ovarian cancer was extracted by Trizol Reagent
Frontiers in Immunology 06
(Invitrogen, CA, USA), and cDNA synthesis was performed by using a

PrimeScriptTM RTMaster Mix Kit (TaKaRa BIO, Japan) according to

the manufacturer’s protocol. The mRNA level was detected by using a

Genious 2× SYBR Green Fast qPCR Mix (Low ROX Premixed)

(Abclonal Bio, Wuhan, China) and an QuantaStudio™ -5 System

(Thermo Fisher Scientific, MA, USA). The relative gene expression

levels were calculated using the 2−DDCt method, and normalized by b-
actin. All experiments were carried out in triplicate. The PCR primers

were designed and synthesized by Sangon Biotech (Shanghai, China).
Statistical analysis

All data calculations and statistical analyses were conducted

using R programming (version 4.3.3). For comparisons of

continuous variables between two groups, the statistical

significance of normally distributed variables was assessed using

the independent Student’s t-test, whereas differences in

nonnormally distributed variables were analyzed using the

Mann–Whitney U test (also known as the Wilcoxon rank sum

test). Differences in categorical variables were evaluated using the

chi-square test. The ggpubr R package was used to compare

differences between two groups of data, and the survival package

in R was used for survival analysis. Kaplan–Meier survival curves

were generated to visualize survival differences, and the log-rank

test was applied to assess the significance of survival time differences

between patient groups. The survminer R package was utilized to

visualize results. Unless otherwise specified, Spearman correlation

analysis was performed to calculate the correlation coefficients

between different molecules. All statistical p values in this study

were two-sided, with p < 0.05 considered statistically significant.
Results

Single-cell heterogeneity in the ovarian
cancer microenvironment

Twenty clusters were identified in the OV single-cell dataset

through UMAP clustering, as detailed in the Methods section

(Figure 1A). Manual annotation revealed seven distinct cell types

within these clusters: B cells and plasma cells, endothelial cells,

epithelial cells, fibroblasts, monocytes, SMC myofibroblasts, and T

cells (Figure 1C). We analyzed the expression patterns of marker genes

across single-cell subpopulations within different clusters and visualized

the results in a bubble plot (Figure 1B). Additionally, through

differential expression analysis, we identified differentially expressed

genes (DEGs) in various cell types and presented the expression

profiles of the top 20 DEGs for each cell type via a heatmap

(Figure 1D). Finally, we compared the proportions of each cell type

between normal and tumor tissues (Figure 1E). The results

demonstrated that the proportions of B cells, plasma cells, epithelial

cells, monocytes, and T cells were significantly greater in the ovarian

cancer samples than in control samples. In contrast, endothelial cells,

fibroblasts, and smooth muscle cell (SMC) myofibroblasts were more
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abundant in normal tissues. These findings suggest that immune cell

infiltration is prominent in the ovarian cancer microenvironment.

However, mechanisms remain poorly understood. Further exploration

of this process could facilitate the development of therapeutic strategies

targeting the immune microenvironment.
Crotonylation in the ovarian cancer
microenvironment

To investigate the potential role of crotonylation in the ovarian

cancer microenvironment, we systematically profiled the expression
Frontiers in Immunology 07
of crotonylation-related genes (CRGs) across cellular subtypes

using single-cell transcriptomics. The percentageFeatureSet

function was used to calculate the expression levels of CRGs in

the seven aforementioned cell types. The results demonstrated that,

in ovarian cancer samples, the expression levels of CRGs were

significantly elevated in endothelial cells, epithelial cells, monocytes,

SMC myofibroblasts, and T cells compared to the control group. In

contrast, the expression levels of CRGs in B cells were markedly

reduced relative to the control group (Figure 2A). The

AddModuleScore function in the Seurat package was

subsequently utilized to compute the CRG scores across different

cell types. The analysis revealed significant differences in CRG
FIGURE 1

Single-cell analysis of the ovarian cancer microenvironment. (A) Clustering results for single-cell data. (B) Bubble plot depicting the expression of
marker genes across different cell clusters. (C) Annotation results for identified cell clusters. (D) Heatmap showing differential gene expression in the
single-cell transcriptome (displaying the top 20 genes; red indicates upregulation, and blue indicates downregulation). (E) Proportion of cell types in
different samples.(Chi-squared test, without applying multiple testing corrections).
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scores among endothelial cells, epithelial cells, fibroblasts,

monocytes, and T cells across different sample types (Figure 2B).

To verify the activity levels of CRGs across different cell types,

we utilized the AUCell package to calculate the CRG activity in each

cell type within the OV samples (Figures 2C, D). On the basis of the

threshold of 0.043 provided by the AUCell_exploreThresholds

function, cells from the OV samples were categorized into high-

and low-AUC groups (Figure 2E). We subsequently employed the

chi-square test to compare the distributions of different cell types
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between the high- and low-AUC groups. The results indicated that

the activity of CRGs was significantly greater in B and plasma cells,

monocytes, epithelial cells, and T cells than in the other cell types

(p < 0.05) (Figure 2F). Crotonylation results in abnormal cell type-

specific activation in ovarian cancer, which can serve not only as a

biomarker for molecular stratification but also as a potential driver

of disease progression by regulating the heterogeneity and plasticity

of the TME. Consequently, crotonylation may emerge as a valuable

tool for predicting the prognosis of patient with ovarian cancer.
FIGURE 2

Calculation of the scores for crotonylation-related genes(CRGs) using single-cell data. (A) Differences in the expression levels of CRGs across
different cell types. (B) Differences in CRG scores among various cell types. (C) AUCell scores calculated on the basis of CRGs in ovarian cancer(OV)
samples from the single-cell dataset. (D) UMAP plot of AUCell scores derived from CRGs in ovarian cancer(OV) samples from the single-cell dataset.
(E) UMAP plot illustrating the distribution of the high- and low-AUCell score groups. (F) Differences in the proportions of cell clusters between the
high- and low-AUCell score groups. (*p < 0.05; **p < 0.01; ***p < 0.001) (Wilcoxon rank sum test and Chi-squared test, without applying multiple
testing corrections).
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Identification of key genes and their
potential biological mechanisms in ovarian
cancer progression based on the basis of
CRGs

To delineate the prognostic utility of crotonylation in ovarian

cancer and elucidate the underlying mechanisms, we employed a

multi-omics integrative approach to systematically identify key genes

associated with CRGs. First, we identified differentially expressed genes

(DEGs) between high- and low-CRG scores groups for each cell

population and selected DEGs on the basis of |log2FoldChange| >

0.25 and p < 0.05. There were 197 DEGs in B cells and plasma

cells (Supplementary Figure 2A), 451 DEGs in endothelial cells

(Supplementary Figure 2B), 420 DEGs in epithelial cells

(Supplementary Figure 2C), 562 DEGs in fibroblasts (Supplementary

Figure 2D), 610 DEGs in monocytes (Supplementary Figure 2E), 1,148

DEGs in SMC myofibroblasts (Supplementary Figure 2F), and 350

DEGs were identified in T cells (Supplementary Figure 2G). The

results of the differential expression analysis are summarized in

Supplementary File 1. We merged the differentially expressed genes

(DEGs) between the high and low-CRG score groups across various

cell populations, resulting in a total of 2,618 genes. These genes were

designated as DEG1s for this study (Supplementary File 2).

To compare the differences in gene expression patterns between

OV tumor samples and normal samples, we conducted differential

expression analysis using the limma package. The analysis revealed

1,074 upregulated genes and 1,442 downregulated genes

(Supplementary Figure 3). These differentially expressed genes

(DEGs) between ovarian cancer samples and normal samples

were designated as DEG2s. The complete list of genes is provided

in Supplementary File 3. In accordance with the method described,

the CRG Score for each sample in the training set was calculated on

the basis of the CRG expression matrix of each sample through the

ssGSEA algorithm. The differences in CRG Scores between OV

tumor samples and normal samples were compared. The analysis

results revealed that the CRG Score of the tumor samples was

significantly lower than that of normal samples (Figure 3A).

We subsequently conductedWGCNA using the training dataset

to identify coexpression modules. During the WGCNA analysis, we

excluded one outlier sample by setting a cutoff height threshold

(Figure 3B). Using a scatter plot, we determined that a soft

threshold of 14 was optimal and proceeded with subsequent

analyses (Figure 3C). The module merge and cut height was

subsequently set to 0.5. Modules with merged and cut heights

lower than 0.5 were merged and sheared. The genes in the

training set were clustered into four modules (MEbrown, MEblue,

MEturquoise, and MEgrey) (Figure 3D). Pearson correlation

analysis was used to determined the correlation between each

module and the CRG scores (Figure 3E) and selected the module

with the highest correlation, namely, the MEturquoise module was

selected for further analysis. The MEturquoise module contained

2,038 genes. The list of genes is provided in Supplementary File 4.

We intersected the genes within the MEturquoise module, DEG1s,

and DEG2s, resulting in 451 key genes for this study (Figure 3F). A

list of these genes is provided in Supplementary File 5.
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To explore the potential biological mechanisms underlying the

key genes, we conducted GO and KEGG enrichment analyses of the

451 identified key genes. The results of these analyses are

summarized in Supplementary File 6 (GO) and Supplementary

File 7 (KEGG). GO analysis revealed that the key genes were

associated with biological processes such as the regulation of

cardiac muscle cell apoptosis, the aerobic electron transport

chain, and the regulation of striated muscle cell apoptosis. These

genes were also linked to cellular components such as respiratory

chain complexes, mitochondrial respirasomes, and respirasomes, as

well as molecular functions such as NADH dehydrogenase

(ubiquinone) activity, NADH dehydrogenase (quinone) activity,

and exo-alpha-sialidase activity (Figure 3G). The KEGG analysis

revealed that the key genes were involved in pathways related to

nonalcoholic fatty liver disease, diabetic cardiomyopathy, and

chemical carcinogenesis via reactive oxygen species (Figure 3H).
Construction of a prognostic model of
ovarian cancer on the basis of CRGs

To investigate the prognostic value of DEGs associated with

CRGs in ovarian cancer, we constructed a risk model to evaluate

their impact on patient prognosis. On the basis of the 451 key DEGs

identified, we performed univariate Cox regression analysis

separately using the tumor samples of the training set and

validation set, resulting in the identification of 13 genes (BANF1,

CDK2AP2, CYBA, DDT, EPS8, LRIG1, MRPL4, NUCB2, PAF1,

PMP22, RABGAP1L, S100A13 and USO1). We constructed

prediction models using 101 algorithm combinations through 10-

fold cross-validation using TCGA OV samples. Model evaluation

focused primarily on their robustness across different validation

cohorts. Consequently, we also assessed the performance of these

models using four additional test cohorts and calculated the average

c-index for each algorithm (Figure 4A). Ultimately, we selected the

RSF model, which had the highest average c-index (0.637). On the

basis of the RSF analysis of the 13 genes, 12 genes were retained as

prognostic markers (Figure 4B).

A proportional hazards regression model was used to calculate

the risk regression coefficients for the 12 genes (Figure 4C), and a

formula for calculating the risk score (RS) was constructed. The

calculation formula is as follows: RS = (-0.250 * NUCB2 expression) +

(-0.014 * CDK2AP2 expression) + (0.162 * PAF1 expression) +

(-0.157 * LRIG1 expression) + (-0.083 * MRPL4 expression) + (0.090

* EPS8 expression) + (0.187 * USO1 expression) + (-0.085 * DDT

expression) + (0.019 * PMP22 expression) + (-0.181 * RABGAP1L

expression) + (0.005 * S100A13 expression) + (-0.097 *

BANF1 expression).

After the risk scores (RS) for ovarian cancer patients were

obtained, the patients were grouped according to the cutoff value

provided by the surv_cutpoint function from the survminer

package in R. Survival analysis was conducted on basis of the

group information, and survival curves were generated. The

survival probability of the low-RS groups in the TCGA cohort

was significantly greater than that of the high-RS groups (p <
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0.0001) (Figure 4D). Similar results were observed for the

GSE140082 cohort (p < 0.0001) (Figure 4F), the GSE26193 cohort

(p = 0.013) (Figure 4H), the GSE26712 cohort (p = 0.0017)

(Figure 4J), and the GSE63885 cohort (p = 0.0037) (Figure 4L).

We subsequently developed a prognostic model for

performance evaluation. The results demonstrated that our model
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exhibited superior performance in the TCGA cohort. Specifically,

the AUC values at 1, 2, 3, 4, and 5 years were 0.555, 0.642, 0.640,

0.631, and 0.632, respectively (Figure 4E). Notable performance was

also observed in the validation cohorts. In the GSE140082 cohort,

the time-dependent AUC values for 1, 2, and 3 years were 0.683,

0.650, and 0.579, respectively (Figure 4G). For the GSE26193
FIGURE 3

Identification of key genes and their potential biological mechanisms in ovarian cancer progression on the basis of crotonylation related genes(CRGs).
(A) Distribution of CRG scores across different sample types in the training set. (B) Cluster tree diagram after removing outlier samples using a cut height
threshold. (C) Determination of the optimal soft-threshold power. (D) Analysis of the aggregation process of module genes. (E) Correlation heatmap
between modules and CRG scores. (F) Intersection of genes from the Module related genes, DEG1s, and DEG2s. (G) Gene ontology (GO) enrichment
analysis. (H) The Kyoto encyclopedia of genes(KEGG) enrichment analysis. (Wilcoxon rank sum test, without applying multiple testing corrections).
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FIGURE 4

Construction of a prognostic model of ovarian cancer on the basis of crotonylation related genes(CRGs). (A) C-index values for 101 machine
learning algorithm combinations across five cohorts. (B) Random Survival Forests(RSF) analysis results. (C) Risk regression coefficients for 12 genes.
(D) Survival curves comparing high- and low-risk scores (RS) groups in the TCGA cohort. (E) ROC analysis for predicting 1, 2, 3, 4, and 5 year overall
survival in the TCGA cohort. (F) Survival curves comparing high- and low-risk scores(RS) groups in the GSE140082 cohort. (G) ROC analysis for
predicting 1, 2, and 3 year overall survival in the GSE140082 cohort. (H) Survival curves comparing high and low-risk scores(RS) groups in the
GSE26193 cohort. (I) ROC analysis for predicting 1, 2, 3, 4, and 5 year overall survival in the GSE26193 cohort. (J) Survival curves comparing high and
low-risk scores(RS) groups in the GSE26712 cohort. (K) ROC analysis for predicting 1, 2, 3, 4, and 5-year overall survival in the GSE26712 cohort.
(L). Survival curves comparing high and low-risk scores(RS) groups in the GSE63885 cohort. (M). ROC analysis for predicting 1, 2, 3, 4, and 5 year
overall survival in the GSE63885 cohort. (Log-rank test, without applying multiple testing corrections).
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cohort, the AUC values at 1, 2, 3, 4, and 5 years were 0.630, 0.668,

0.666, 0.610, and 0.584, respectively (Figure 4I). In the GSE26712

cohort, the AUC values for 1, 2, 3, 4, and 5 years were 0.570, 0.559,

0.594, 0.606, and 0.623, respectively (Figure 4K). Finally, in the

GSE63885 cohort, the AUC values for 1, 2, 3, 4, and 5 years were

0.699, 0.557, 0.643, 0.589, and 0.585, respectively (Figure 4M).
Construction of a nomogram for ovarian
cancer patients based on the RS

To evaluate whether factors such as patient age, tumor stage, and

the RS could be considered independent prognostic factors for OV

patients, we constructed a nomogram for OV patients. We first

performed univariate analysis and subsequently incorporated key

clinical variables, including age and stage into multivariate risk

regression analyses. Univariate risk regression analysis revealed that

patient age (p < 0.001), tumor stage (p = 0.03), and RS (p < 0.001) were

significantly associated with ovarian cancer prognosis (Figure 5A).

Therefore, we selected factors with p values less than 0.05 from the

univariate Cox analysis for inclusion in the multivariate risk regression

analysis. The results indicated that patient age (p < 0.001), tumor stage

(p = 0.04), and RS (p < 0.001) were independently associated with

ovarian cancer prognosis and could serve as prognostic factors

(Figure 5B). Finally, a nomogram was constructed on the basis of the

clinical features of age, RS, and tumor stage (Figure 5C). We plotted

calibration curves to evaluate the performance of the nomogram

model. Figure 5D shows the comparison between the nomogram

model and the ideal model at 1, 2, 3, 4, and 5 years. The results

indicated that the nomogrammodel was most consistent with the ideal

model at 1 year; the other time points also showed substantial

consistency, suggesting the high accuracy of our model. Finally, we

evaluated the overall performance of the nomogrammodel. The results

demonstrated that the nomogram model exhibited good predictive

performance, with time-dependent AUCs of 0.673, 0.689, 0.682, 0.655,

and 0.627 at 1, 2, 3, 4, and 5 years, respectively (Figure 5E).
Potential biological mechanisms and
immunological characteristics of the RS

To explore the potential biological mechanisms underlying the RS,

we first used the limma package to conduct differential expression

analysis between the high- and low-RS groups in the training set of OV

samples. We obtained the fold changes in expressed for the

differentially genes and ranked genes accordingly. We subsequently

performed GSEA enrichment analysis using both GO-related and

KEGG-related gene sets. GSEA enrichment analysis results are

provided in Supplementary File 8. Figure 6A displays the top 10

enriched terms for the GO-related gene set, including extracellular

matrix structural constituent, collagen-containing extracellular matrix,

and external encapsulating structure. Figure 6B shows the top 10

enriched pathways for the KEGG-related gene set, including ECM-

receptor interaction, focal adhesion, and cytoskeleton organization in

muscle cells.
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To investigate the association between the RS and immune

microenvironment, we analyzed its relationship with infiltrating

immune cell populations. Using the CIBERSORT algorithm, as

described in the methods, we estimated the relative abundance of

infiltrating immune and stromal cells. The results demonstrated

significant associations between crotonylation risk scores and the

infiltration levels of various immune cell populations, including

T_cells_follicular_helper, NK_cells_activated, Macrophages_M2, and

Dendritic_cells_activated(Figure 6C). High-RS groups showed

immunosuppressive characteristics: decreased follicular helper T cells

and activated NK cells, concomitant with M2 macrophage enrichment

(p < 0.05) (Figure 6C). To further investigate the immune features

associated with RS, we utilized the ESTIMATE algorithm to calculate

the StromalScore, ImmuneScore, ESTIMATEScore, and TumorPurity.

The results indicated that high-RS was associated with increased

stromal activation, as indicated by a higher StromalScore and

ESTIMATE score, and enhanced immune evasion potential, reflected

by an elevated TIDE score (p < 0.05) (Figure 6D). However, the tumor

purity was significantly greater in the low-RS groups than in the high-

RS groups (p < 0.05) (Figure 6E). Furthermore, we analyzed the

differences in the RS within the tumor immune cycle by tracking the

tumor immune phenotype in ovarian cancer, and the results indicated

that step 5 was significantly activated in the high-RS compared to the

low-RS groups. (p < 0.05) (Figure 6F). Finally, we employed the

Wilcoxon rank-sum test to compare the expression levels of immune

checkpoint genes between the high- and low-RS groups. The results

revealed that the expression of nine immune checkpoint genes was

significantly different between these two groups, Notably, high-RS

patients exhibited upregulated PDL1 and CD40 (p < 0.05)

(Figure 6G). The above findings indicate that the high RS groups

exhibits increased susceptibility to immunotherapy.
Predicting the drug sensitivity of ovarian
cancer patients using the RS

In accordance with the methods described, we calculated the IC50

values of chemotherapy drugs, including methotrexate, vinblastine,

doxorubicin, cisplatin, docetaxel, and gefitinib, in OV patients

(Figure 7A). We found that the IC50 value of vinblastine was

significantly greater in the low-RS groups than in the high-RS groups

(p < 0.05) (Figure 7A). Additionally, we explored the relationship

between the RS and the immune therapy predictor TIDE. The results

indicated that TIDE scores were significantly higher in the high-RS

groups than in the low-RS groups (p < 0.05) (Figure 7B).
Analysis of highly variable genes between
the high- and low-RS groups in the ovarian
cancer microenvironment

To further validate the critical role of crotonylation within the

ovarian cancer microenvironment, we examined the association

between RS and highly variable gene (HGV) scores across different

cell subtypes, as well as their influence on patient survival rates. First, as
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detailed in the Methods section, we utilized the FindAllMarkers

function from the Seurat package to identify the top 100 HVGs for

each cell population in the ovarian cancer samples (Supplementary File

9). Using the ssGSEA algorithm, we subsequently calculated HVG

scores for each cell population in the training set. We then employed

theWilcoxon rank sum test to compare the distribution of HVG scores

between the high- and low-RS groups. Additionally, we utilized the

surv_cutpoint function in the survminer package’s, incorporating

patient survival time and status as target variables, to determine the

optimal cutoff values for the HVG scores for each cell population.

Patients were stratified into high- and low-HVG score groups on the

basis of these cutoff values. Then, Kaplan–Meier analysis was

conducted to evaluate the association between patient survival time

and the HVG score of each cell population.

The analysis revealed no significant difference in the HVG scores

for B cells and plasma cells between the high- and low-RS groups (p =

0.89) (Figure 8A). However, patients with higher HVG scores for B

cells and plasma cells exhibited a significantly greater survival

probability compared to those with lower HVG scores (p = 0.0075)

(Figure 8B). For endothelial cells, HVG scores were significantly

higher in the high-RS groups than in the low-RS groups (p = 9.5 × 10-

5) (Figure 8C), and patients with higher HVG scores for endothelial

cells had a significantly lower survival probability than those with

lower HVG scores (p = 0.0043) (Figure 8D). No significant difference

was observed in the HVG scores for epithelial cells between the high-

and low-RS groups (p = 0.27) (Figure 8E), nor was there a significant
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difference in survival probability between patients with high and low

HVG scores for epithelial cells (p = 0.086) (Figure 8F). Fibroblasts

showed significantly increased HVG scores in the high-RS groups

compared to the low-RS groups (p = 4.1 × 10-6) (Figure 8G), and

patients with higher HVG scores for fibroblasts had a significantly

lower survival probability than those with lower HVG scores (p =

0.039) (Figure 8H). Monocytes demonstrated significantly increased

HVG scores in the high-RS groups compared to the low-RS groups (p

= 8 × 10-5) (Figure 8I), but no significant difference in survival

probability was observed between patients with high and low HVG

scores for monocytes (p = 0.13) (Figure 8J). SMC myofibroblasts also

exhibited significantly increased HVG scores in the high-RS groups

compared to the low-RS groups (p = 4 × 10-5) (Figure 8K), yet no

significant difference in survival probability was noted between

patients with high and low HVG scores for SMC myofibroblasts (p

= 0.11) (Figure 8L). Finally, no significant difference was found in the

HVG scores for T cells between the high- and low-RS groups (p =

0.098) (Figure 9M), nor was there a significant difference in survival

probability between patients with high and low HVG scores for T

cells (p = 0.054) (Figure 8N).

Finally, we analyzed the correlations among the HVG scores for the

seven cell populations. The results demonstrated that the HVG scores

for all seven cell types were positively correlated. Notably, the strongest

positive correlations were observed between SMC myofibroblasts and

endothelial cells (r = 0.90, p < 0.001) and between SMC myofibroblasts

and fibroblasts (r = 0.90, p < 0.001) (Figure 8O).
FIGURE 5

Construction of a nomogram on the basis of the risk scores(RS) for ovarian cancer patients in the TCGA database. (A) Univariate Cox analysis results.
(B) Multivariate Cox analysis results. (C) Nomogram based on clinical characteristics. (D) Calibration curves for 1-, 2-, 3-, 4- and 5-year survival. (E) ROC
analysis for predicting 1-, 2-, 3-, 4- and 5-year overall survival rates via the nomogram model.
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FIGURE 6

Potential biological mechanisms and immunological characteristics of the risk scores(RS). (A) Gene Set Enrichment Analysis (GSEA) enrichment analysis
of Gene ontology (GO) related gene sets. (B) GSEA enrichment analysis of Kyoto encyclopedia of genes(KEGG) related gene sets. (C) Differences in
immune cell infiltration between the high- and low-RS groups. (D) Differences in the StromalScore, ImmuneScore, and ESTIMATEScore between high-
and low-RS groups. (E) Differences in tumor purity between the high- and low-RS groups. (F) Differences in the tumor immune cycle between the high-
and low-RS groups. (G) Differences in immune checkpoint gene expression between the high- and low-RS groups. (*p < 0.05; **p < 0.01; ***p < 0.001)
(Wilcoxon rank sum test, without applying multiple testing corrections).
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Expression and immunohistochemical
analysis of prognosis-related genes in
ovarian cancer

To further analyze the expression of prognosis-related genes in

ovarian cancer, we compared the expression levels of the 12 identified

prognostic genes (BANF1, CDK2AP2, DDT, EPS8, LRIG1, MRPL4,

NUCB2, PAF1, PMP22, RABGAP1L, S100A13, and USO1) across

different sample types. The analysis revealed that in the training set,

the expression of BANF1, CDK2AP2, DDT, LRIG1, MRPL4, and

S100A13 was significantly upregulated in tumor samples, and the

expression of EPS8, NUCB2, PAF1, PMP22, RABGAP1L, and USO1

was higher in control samples (p < 0.05) (Figure 9A). Consistent with

these findings, in the GSE26712 validation set, the expression of

BANF1, CDK2AP2, DDT, LRIG1, MRPL4, and S100A13 was

significantly upregulated in tumor samples, and the expression of

EPS8, NUCB2, PAF1, PMP22, RABGAP1L, and USO1 was higher in

control samples (p < 0.05) (Figure 9B).

We subsequently retrieved immunohistochemical results for the

prognostic genes in ovarian cancer (OV) from the HPA database.

The results revealed notable differences in the protein expression

levels of these genes between OV tumor tissues and normal

tissues (Figure 9C).

Furthermore, We collected clinical tissue samples from patients

with benign ovarian tumor and ovarian cancer. we performed

quantitative analysis of prognostic genes (NUCB2, CDK2AP2,

PAF1, LRIG1, MRPL4, EPS8, USO1, DDT, PMP22, RABGAP1L,

S100A13, BANF1) via qRT-PCR. The results showing high

consistency with the findings derived from scRNA-seq and

transcriptome datasets (p < 0.05) (Figure 9D).
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Correlation analysis between prognostic
genes and immune cells

To explore immunoregulatory potential of the prognostic genes,

we conducted a comprehensive correlation analysis between

prognostic genes and immunological profiles. Figure 10 reveals

distinct immune interaction patterns. NUCB2 was significantly

correlated with follicular helper T cells and activated Dendritic

cells. CDK2AP2 displays multifaceted connections involving

regulatory T cells (Tregs), activated dendritic cells, and M2

macrophage. BANF1 demonstrates pronounced associations with

memory B cells, CD8+ T cells, natural killer cell subsets, and M0

macrophages. LRIG1 have strong links with CD8+ T cells, activated

CD4+T memory cells, and M0 Macrophages. PAF1 exhibited

significant correlations with B cells (naive), plasma cells, dendritic

cells (resting), and neutrophils. MRPL4 exhibited a significant

correlation with naive B cells. EPS8 showed significant

correlations with naive B cells, memory B cells, resting CD4+ T

memory cells, gd T cells, activated NK cells, monocytes, M2

macrophages, eosinophils, and neutrophils. USO1 was

significantly associated with memory B cells, plasma cells, resting

and activated CD4+ T memory cells, activated NK cells, M1

macrophages, activated dendritic cells, and neutrophils. DDT

demonstrated significant correlations with memory B cells,

plasma cells, CD8+ T cells, and M1 macrophages. PMP22

exhibited significant correlations with memory B cells, CD8+ T

cells, activated CD4+ T memory cells, follicular helper T cells,

activated NK cells, monocytes, M1/M2 macrophages, resting/

activated dendritic cells, and neutrophils. RABGAP1L showed

significant correlations with resting CD4+ T memory cells,
FIGURE 7

Drug sensitivity analysis. (A) Differences in the half-maximal inhibitory concentration(IC50) values for methotrexate, vinblastine, doxorubicin, cisplatin,
docetaxel, and gefitinib between the high- and low-RS groups. (B) Distribution of tumor immune dysfunction and exclusion(TIDE) scores for the
high- and low-RS groups. (*p < 0.05; ns, no significance).
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FIGURE 8

Analysis of highly variable genes(HVGs) in the ovarian cancer microenvironment between the high- and low-RS groups. (A) Distribution differences in the
HVG scores for B cells and plasma cells between the high- and low-RS groups. (B) Survival analysis results for HVG scores for B cells and plasma cells.
(C) Distribution differences in the HVG scores for endothelial cells between the high- and low-RS groups. (D) Survival analysis results for HVG scores for
endothelial cells. (E) Distribution differences in HVG scores for epithelial cells between the high- and low-RS groups; (F) Survival analysis results for HVG
scores for epithelial cells. (G) Distribution differences in HVG scores for fibroblasts between the high- and low-RS groups; (H) Survival analysis results for
HVG scores for fibroblasts. (I) Distribution differences in the HVG scores for monocytes between the high- and low-RS groups. (J) Survival analysis
results for HVG scores for monocytes. (K) Distribution differences in HVG scores for SMC myofibroblasts between the high- and low-RS groups.
(L) Survival analysis results for HVG scores for SMC myofibroblasts. (M) Distribution differences in the HVG scores for T cells between the high- and
low-RS groups. (N) Survival analysis results for HVG scores for T cells. (O) Heatmap of HVG score correlations (red indicates a positive correlation, blue
indicates a negative correlation). (*p < 0.05; **p < 0.01; ***p < 0.001) (Wilcoxon rank sum test, without applying multiple testing corrections).
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follicular helper T cells, regulatory T cells (Tregs), monocytes, M0

macrophages, activated dendritic cells, and resting mast cells.

S100A13 exhibited significant correlations with naive B cells,

memory B cells, CD8+ T cells, activated NK cells, M0/M1

macrophages, and resting dendritic cells. Collectively, these

findings indicate that prognostic genes are closely linked to

immune regulation.
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Discussion

Crotonylation, a recently identified protein acyl modification

characterized by its unique acyl group, not only alters protein

structure but also modulates protein stability and activity (8, 43).

Research into crotonylation has revealed that crotonylation plays a

critical role in various physiological processes, including RNA
FIGURE 9

Expression analysis of ovarian cancer prognostic genes. (A) the expression of ovarian cancer prognostic genes among different types of samples in
the training set. (B) the expression of ovarian cancer prognostic genes among different types of samples in the GSE26712 validation set.
(C) Immunohistochemical analysis results for OV prognostic genes in the HPA database (BANF1, CDK2AP2, DDT, EPS8, LRIG1, MRPL4, NUCB2, PAF1,
PMP22, RABGAP1L, S100A13, and USO1) (D) the mRNA expression of ovarian cancer prognostic genes among clinical tissue samples from patients
with benign ovarian tumor and ovarian cancer by qRT-PCR.(*p < 0.05; **p < 0.01; ***p < 0.001). (Wilcoxon rank sum test, without applying multiple
testing corrections).
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processing, nucleotide metabolism, and chromatin remodeling (44).

Ovarian cancer has high metastatic potential, and the majority of

cases are diagnosed at an advanced stage. Furthermore, this

malignancy is characterized by a propensity for recurrence and

the development of treatment resistance, factors that collectively

contribute to a relatively low five-year survival rate (38).

Dysregulated crotonylation may cause cell dysfunction and

eventually lead to pathological processes such as carcinogenesis

and metastasis. A quantitative proteomics study characterized

p300-regulated lysine crotonylation, revealing that p300-targeted

lysine crotonylation substrates may be involved in cancer

development (45). The crotonylation of Lys27 of histone H3

facilitates CRC metastasis (12). These findings suggest that

crotonylation could function as a carcinogenic factor, potentially

promoting tumor progression; however, further investigation is

needed to understand its role in ovarian cancer.

In this study, by integrating single-cell transcriptome and bulk

RNA-seq data from patients with ovarian cancer, for the first time,

we systematically revealed the regulatory characteristics and

prognostic value of protein crotonylation in the progression of

ovarian cancer. Initially, we characterized the heterogeneity of the

ovarian cancer microenvironment and observed a high degree of

immune cell infiltration. Furthermore, leveraging single-cell and

bulk transcriptome data, we conducted an extensive analysis of

crotonylation levels within this microenvironment. Our findings

indicated that crotonylation was abnormally activated in a cell

subtype-specific manner in ovarian cancer.

Crotonylation not only serves as a biomarker for molecular

stratification but also likely contributes to disease progression by

modulating the heterogeneity and plasticity of the TME. According

to the EDRN database, 4.5% (20 out of 443) of tumor biomarkers

are crotonylated, and 32 crotonylated proteins are associated with
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tumor-related genes (9). These crotonylated proteins play critical

roles in tumorigenesis and tumor development. Numerous studies

have demonstrated that crotonylation is decreased in hepatic

carcinoma, gastric cancer, and renal carcinoma but increased in

thyroid cancer, esophageal cancer, colorectal carcinoma, pancreatic

cancer, and lung cancer. These findings suggest that crotonylation

may exert effects by regulating distinct cancer-related proteins (9).

A previous study revealed that crotonylation facilitates cell invasion

through the crotonylated SEPT2-K74-P85a-AKT pathway and that

high SEPT2-K74 crotonylation predicts poor prognosis and a high

recurrence rate in HCC patients (46). Studies have demonstrated

that the level of PGK1 K131cr in advanced breast cancer cells is

significantly lower than that in early-stage cells, suggesting that

reduced levels of PGK1 K131cr are associated with a poorer

prognosis in breast cancer patients (10). A recent study revealed

that crotonylated BEX2 interacts with NDP52 and enhances

mi tophagy to modu l a t e th e apop to s i s induced by

chemotherapeutic agents in non-small cell lung cancer cells (47).

p300-mediated lysine crotonylation enhances the expression of

HNRNPA1 to promote the proliferation, invasion, and migration

of HeLa cells (48). Other crotonylation-regulated proteins, such as

SIRT1 (49), SIRT2 (50), and SIRT3 (51), have been confirmed to

play regulatory roles in cervical cancer. However, the precise

regulatory mechanisms underlying crotonylation have yet to be

fully elucidated, necessitating further in-depth investigations.

In this study, we identified 451 key crotonylation-related genes

in ovarian cancer and analyzed their potential biological

mechanisms. GO analysis revealed that the key crotonylation-

related genes in ovarian cancer are associated with several

biological processes, including the regulation of cardiac muscle

cell apoptosis, aerobic electron transport chain activity, and

striated muscle cell apoptosis. These genes are also linked to
FIGURE 10

Correlation analysis between key Crotonylation-related genes(CRGs) and immune cells.(*p < 0.05; **p < 0.01; ***p < 0.001). (Spearman’s rank
correlation, without applying multiple testing corrections).
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cellular components such as the respiratory chain complex,

mitochondrial respirasome, and respirasome, as well as molecular

functions such as NADH dehydrogenase (ubiquinone) activity,

NADH dehydrogenase (quinone) activity, and exo-alpha-sialidase

activity. KEGG analysis revealed that the key genes are associated

with several important pathways, including chemical carcinogenesis

mediated by reactive oxygen species (ROS). Crotonylation may also

serve as a valuable tool for predicting the prognosis of ovarian

cancer patients. Univariate Cox analysis identified 12 prognostic

genes in ovarian cancer: BANF1, CDK2AP2, DDT, EPS8, LRIG1,

MRPL4, NUCB2, PAF1, PMP22, RABGAP1L, S100A13, and USO1.

We employed a combination of 101 machine learning algorithms

and constructed predictive models using 10-fold cross-validation,

ultimately selecting the random survival forest (RSF) model. We

then calculated the risk regression coefficients of the prognostic

genes using the Cox proportional hazards regression model and

developed a formula for calculating the RS value on the basis of

these coefficients. Finally, we validated the prognostic model and

confirmed that RSs exhibit excellent predictive performance in

patients with ovarian cancer. The RS is an effective quantitative

tool for analyzing crotonylation modifications in the clinical

diagnosis and treatment of ovarian cancer, guiding the

implementation of more targeted therapeutic strategies; its

prognostic accuracy for ovarian cancer patients has been

validated with data from multiple independent medical centers.

Crotonylation also plays a pivotal role in reshaping the tumor

immune microenvironment and modulating the response to

immunotherapy. A 2020 study published in Nature reported that the

loss of histone lysine crotonylation promotes immunogenic cytosolic

dsRNA and dsDNA generation through increased H3K27ac, which

stimulates the RNA sensor MDA5 and the DNA sensor cGAS to

increase type I interferon signaling, leading to compromised GSC

tumorigenic potential and increased CD8+ T cell infiltration (52). Lao.

et al. reported that GCDH inhibits HCC progression via the

crotonylation-induced suppression of the PPP and glycolysis,

resulting in HCC cell senescence, and that senescent cells further

shape the antitumor microenvironment via the SASP. The GCDHlow

population is responsive to anti-PD-1 therapy because of the increased

presence of PD-1+CD8+ T cells (53). We investigated the relationships

between RS and immunological characteristics, as well as the

underlying biological mechanisms. The analysis revealed high-RS

groups showed immunosuppressive characteristics, and high-RS was

associated with increased stromal activation and enhanced immune

evasion potential. Furthermore, we found that step 5 of the tumor

immune cycle was significantly activated in the high-RS compared to

the low-RS group. The results demonstrated that the expression of nine

immune checkpoint genes was significantly different between these two

groups, Notably, high-RS groups exhibited upregulated PDL1 and

CD40. The above findings indicate that the high RS groups exhibits

increased susceptibility to immunotherapy. Pharmacogenomic analysis

identified vinblastine with differential sensitivity, providing actionable

targets for RS-stratified therapy.
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We also conducted a comprehensive analysis of highly variable

gene (HVG) scores across different cell subtypes in the high- and

low-RS groups, the correlations among HVGs between these

subtypes, and the survival rates associated with high and low

HVG scores. The results demonstrated that high-RS groups in

various cell subtypes, including fibroblasts, endothelial cells, and

monocytes within the ovarian cancer microenvironment, exhibited

elevated HGV scores, which influenced patient survival rates. These

findings further substantiate the critical role of crotonylation in the

ovarian cancer microenvironment.

Finally, we examined the expression levels of prognostic genes

in ovarian cancer samples. We found that the expression of BANF1,

CDK2AP2, DDT, LRIG1, MRPL4, and S100A13 was upregulated in

ovarian cancer samples, and the expression of EPS8, NUCB2, PAF1,

PMP22, RABGAP1L, and USO1 was upregulated in normal

samples. And prognostic genes are closely linked to immune

regulation. These may become important markers for predicting

the prognosis of ovarian cancer.

Given the crucial role of crotonylation in tumor progression, it

holds great potential as a key biomarker for predicting patient

prognosis and developing tumor-targeted therapies. However, the

role and molecular mechanisms of crotonylation in ovarian cancer

remain largely unexplored. This study, for the first time, elucidates the

role of crotonylation in the ovarian cancer microenvironment and its

potential biological mechanisms. We identified 12 prognostic genes for

ovarian cancer, developed a prognostic prediction model based on the

crotonylation modification network, and analyzed immune-related

characteristics, highly variable gene mutation scores, and drug

sensitivity across different prognostic groups. These findings provide

a theoretical foundation for prognosis stratification, recurrence

monitoring, and the optimization of precision treatment strategies

for ovarian cancer. However, this study has several limitations. While

single-cell and transcriptome data provide insights into the expression

patterns of crotonylation-related genes, there is a lack in vitro and in

vivo functional validation of key targets. Additionally, the prognostic

model has not been validated in multicenter cohorts or prospective

clinical samples, and there is a need for dynamic monitoring, such as

evaluating the correlation between changes in crotonylation scores

before and after treatment and therapeutic efficacy. Addressing these

gaps will be a key focus of our future research.
Conclusion

In summary, in our study, We elucidated the significant impact

of crotonylation on the ovarian cancer microenvironment and

prognosis. We developed and validated a novel prognostic model

for ovarian cancer that can serve as a tool for predicting patient

outcomes and characterizing the immune microenvironment.

These findings enhance our understanding of the role of

crotonylation in ovarian cancer and establish a robust framework

for developing therapeutic strategies targeting crotonylation.
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Flowchart representation of the study design.

SUPPLEMENTARY FIGURE 2

Differential analysis between the high- and low-AUCell score groups.

Differential analysis of B cells and plasma cells (A), endothelial cells
(B), epithelial cells (C), fibroblasts (D), monocytes (E), SMC myofibroblasts

(F), and T cells (G) between the high- and low-AUCell score groups.

SUPPLEMENTARY FIGURE 3

Differential analysis between ovarian cancer(OV) tumor samples and normal
samples. (A) Volcano plot illustrating the results of the differential expression

analysis between OV tumor samples and normal samples in the TCGA
database. (B) Heatmap of differentially expressed genes between OV tumor

samples and normal samples. Red indicates upregulation, and blue
indicates downregulation.

SUPPLEMENTARY FIGURE 4

Gene selection workflow.
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