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Introduction: The rise in cases of Gastric Cancer has increased in recent times

and demands accurate and timely detection to improve patients' well-being. The

traditional cancer detection techniques face issues of explainability and precision

posing requirement of interpretable AI based Gastric Cancer detection system.

Method: This work proposes a novel deep-learning (DL) fusion approach to

detect gastric cancer by combining three DL architectures, namely Visual

Geometry Group (VGG16), Residual Networks-50 (RESNET50), and

MobileNetV2. The fusion of DL models leverages robust feature extraction and

global contextual understanding that is best suited for image data to improve the

accuracy of cancer detection systems. The proposed approach then employs the

Explainable Artificial Intelligence (XAI) technique, namely Local Interpretable

Model-Agnostic Explanations (LIME), to present insights and transparency

through visualizations into the model's decision-making process. The

visualizations by LIME help understand the specific image section that

contributes to the model's decision, which may help in clinical applications.

Results: Experimental results show an enhancement in accuracy by 7\% of the

fusion model, achieving an accuracy of 97.8\% compared to the individual stand-

alone models. The usage of LIME presents the critical regions in the Image

leading to cancer detection.

Discussion: The enhanced accuracy of Gastric Cancer detection offers high

suitability in clinical applications The usage of LIME ensures trustworthiness and

reliability in predictions made by the model by presenting the explanations of the

decisions, making it useful for medical practitioners. This research contributes to

developing an AI-driven, trustworthy cancer detection system that supports

clinical decisions and improves patient outcomes.
KEYWORDS

gastric cancer, deep learning, explainable AI, explainable representations, convolutional
neural networks, VGG16, RESNET50, MobileNetV2
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1 Introduction

Gastric cancer (GC) has evolved as a widely spread deadly

malignancy across the globe, resulting in increased death rates and

severe implications due to factors like Helicobacter Pylori Infection,

gastritis, Aging, Improper hygiene standards, etc. (1). Gastric cancer

is one of the fifth most prevalent types of cancer diagnosed globally

and stands out as the third most significant cause of death among

cancer-infected patients (2, 3). Despite the advancements in

medical and diagnostic facilities, the early detection of gastric

cancer poses a critical challenge, primarily due to its vague and

obscure symptoms (4). Traditional healthcare methods such as

Biopsies and Medical Imaging are considered Invasive and have

resource constraints (5). Early and accurate detection of GC is

essential to improve survival rates and patient outcomes. More

precise, non-invasive, reliable, and scalable solutions are needed to

promote early diagnosis of Gastric Cancer (2).

Over the past years, Artificial Intelligence (AI) has

revolutionized the domain of healthcare and medical diagnostics

by assisting in enhanced decision-making. AI-driven models,

especially the Deep Learning (DL) and the Machine Learning

(ML) models, facilitate enhanced cancer detection by analyzing

vast data volumes and recognizing complex patterns to detect the

abnormalities that people may sometimes overlook (6). For

Instance, Convolutional Neural Networks (CNN) analyze the

endoscopic images to facilitate Image-based cancer detection.

Subsequently, the Recurrent Neural Networks (RNN) and its

variants, namely Long short-term memory (LSTM) and Bi-

directional LSTM (BLSTM), have delivered promising results in

analyzing sequential data as well as time series data such as genomic

sequences (7, 8). Through automated lesion detection,

segmentation, and classification made possible by integrating DL

with real-time endoscopic operations, clinicians can now make

choices more quickly and accurately (9).

Even though the individual DL models have shown remarkable

success in particular tasks, combining several DL architectures has

drawn many researchers’ attention to improve prediction

performance (10). Fusion models have emerged as a promising way

in AI-driven healthcare solutions, combining multiple DL modalities

to enhance the performance of cancer detection systems (11). Other

methods involving various modalities, like ensemble learning,

stacking, and bagging, are also employed for detecting cancer (12).

Model Fusion offers collaborative learning from different feature

representations, integrated into a single model rather than

combining the output of different models (13). Ensemble learning

and stacking techniques face difficulties in cross-model interaction,

which Intermediate Fusion offers. Fusion approach eliminates the

need to maintain multiple complete models and tends to be

computationally efficient compared to other techniques involving

various modalities (14). A more thorough representation of the

underlying data is extracted by leveraging the strengths of several

models, such as CNN, VGG16, ResNet, EfficientB3, etc., and taking

advantage of their distinct capacities for capturing the spatial

representations from the Images (15). This study implements the

intermediate fusion approach, where the individual models are first
Frontiers in Immunology 02
trained to extract intermediate representations or feature maps. These

representations are concatenated, and the fused features are jointly

trained before final prediction (13). This fusion approach provides

individual model separation and combined collaborative learning.

The intermediate fusion technique offers more benefits than early and

late fusion. Early fusion tends to combine data frommultiple sources,

facing integration issues due to different data formats and statistical

properties. Intermediate fusion allows the selection of the best-suited

model for various data sources, avoiding the integration of raw data.

Late fusion tends to combine the output of different modalities,

limiting the cross-model interactions mitigated by the intermediate

fusion technique (16). Intermediate fusion support joint training that

allows the models to adapt to other models and learn complex

patterns across different modalities, which is impossible in early

and late fusion (17). The detection of Gastric cancer may become

more accurate, resilient, and generalizable due to the intermediate-

level model fusion. The comparison of different fusion approaches is

presented in Table 1. However, combining several DL models adds

more complexity, especially regarding the transparency and

explanations of the models’ decisions (18).

The “black-box” character of DL models is one of its most

significant drawbacks, which restricts their use in diagnostic

contexts (19, 20). The traditional AI-driven models do not

provide the relevant information and insights into the decisions

made. Hence, it becomes difficult for clinicians to accept and

validate the predictions made by them. For clinicians and other

medical professionals to trust and successfully use AI tools in

decision-making, they need systems that are interpretable and

explainable (21). Explainable AI (XAI) has become the new

domain for investigation to overcome this challenge (22). By

emphasizing the essential aspects and decision processes, XAI

techniques like attention mechanisms, saliency maps, and feature

attribution shed information on how models make their predictions

(23). XAI techniques evaluate the model predictions, find

biologically significant patterns, and ensure the system’s outputs

align with clinical knowledge in the context of GC diagnosis (24).

This study implements LINE (Local Interpretable Model-Agnostic

Explanations), which highlights the critical regions of the data,

presenting an easy and clear explanation of the model’s decision

(25). LIME is model-agnostic and works without knowledge of the

internal model structure, which makes it applicable to various data

sources. Other XAI methods like SHAP and GRADCAM are
TABLE 1 Comparison of different fusion approaches.

Criteria Early
Fusion

Late
Fusion

Intermediate
Fusion

Handling Data Heterogeneity NO YES YES

Enabling Cross
Model Interactions

NO NO YES

Supporting Joint Optimization NO NO YES

Robustness towards missing
data in one modality?

NO NO YES

Scalability NO NO YES
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1596085
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1596085
resource-intensive and are harder to interpret (26). In contrast to

such methods, LIME is a lightweight technique and presents faster

execution, which is necessary for critical applications like

cancer detection.

The primary motivation for our study arises from the need for

the early & precise detection of GC to improve the survival rate.

Even while AI-driven diagnostic systems have advanced, current

models sometimes lack stability and interpretability, which reduces

their suitability for clinical application (24). Additionally, gastric

cancer cells’ complex and varied nature poses difficulties in analysis

by the single-model approaches (6). This study intends to improve

predicted accuracy while guaranteeing the explainability of AI-

driven judgments by combining VGG16, RESNET50, and

MobileNetV2 models. Applying the LIME technique gives

physicians and clinicians visualizations and insights into how AI

models make predictions. LIME presents the explanations at the

local level by highlighting the areas in the images that contribute to

the model’s decision. XAI promotes more well-informed decision-

making and increases confidence in AI-assisted diagnostics by

offering analytical and visual explanations of model outputs (27).

AI-assisted cancer diagnostic systems assist healthcare professionals

with well-informed, data-driven decisions. Our research aims to

create a more reliable and interpretable AI system for gastric cancer

detection, as demonstrated in Figure 1.

This study introduces a novel model fusion approach for gastric

cancer detection with interpretability of results. The proposed
Frontiers in Immunology 03
framework leverages the strengths of three best-suited deep

learning architectures through intermediate fusion and presents

visual insights for the predictions through the XAI technique. It

combines three deep learning models—VGG16, RESNET50, and

MobileNetV2—to capitalize on their complementary feature

extraction capabilities to improve classification accuracy and

robustness. Furthermore, we use the XAI approach, LIME, to

overcome the black-box nature of DL modalities, providing

interpretable information about the decisions predicted by the

model. Our proposed methodology achieves two primary goals:

(1) A combination of multiple DL architectures to enhance the

performance of the fusion model, and (2) implementation of the

XAI technique to present the explanations about the model’s

predictions to ensure transparency and a feeling of trust to the

medical professionals. Through the integration of a fused DL model

with explainability through XAI, we tend to fill in the gap between

traditional clinical practice and AI-driven diagnostics, providing a

way for a reliable gastric detection system. The major contributions

of this paper are as follows.
• Design and Development of a unique framework for

detecting gastric cancer by fusing the VGG16, RESNET50,

and MobileNetV2.

• Application of XAI technique LIME for providing

insights and visualizing the features contributing to

model predictions.
FIGURE 1

AI-assisted gastric cancer detection.
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Fron
• Performance Evaluation of the proposed methodology on

the GasHisSDB dataset and demonstrating its superiority

by comparing its performance with other approaches.
This article’s formation is as follows. Section 2 presents an

overview of various methodologies designed and employed for

Cancer detection. Section 3 presents the proposed method,

describing all the relevant and minute details. Section 4 presents

the experimental setup and varied parameters used in the

experiments. The experimental results of our proposed

methodology and a comparative study to evaluate the model’s

performance compared to state-of-the-art approaches are

presented in Section 5. Section 6 covers the Conclusion and the

future scope.
2 Related work

Many researchers have developed varied and diverse

methodologies for detecting Gastric Cancer. A systematic

literature review is conducted to gain relevant insights into the

existing literature in this domain, consisting of studies published

over the last decade. Relevant and highly cited publications were

selected from various platforms, including online databases and

offline resources from academic libraries. In the first phase, searches

were performed using keywords such as gastric cancer detection,

medical imaging for gastric cancer, endoscopic analysis, DL and ML

in cancer diagnosis, histopathological image analysis, and early

detection strategies. Several well-established online databases were

explored to compile relevant research, including IEEE Xplore,

Springer, Elsevier, ACM Digital Library, Google Scholar, Scopus,

arXiv, and PubMed. The second phase of the study involved

defining inclusion and exclusion criteria. Studies focusing on

gastric cancer detection through non-invasive techniques were

prioritized, while research incorporating machine learning and

deep learning methodologies with explanations was particularly

emphasized. Only peer-reviewed articles were considered for

analysis, whereas non-peer-reviewed studies, white papers, and

research solely addressing preventive measures without diagnostic

applications were excluded. In the final stage, articles were selected

based on relevance, citation impact, reference quality, and indexing

in reputed databases. This structured review approach helps identify

key challenges and research gaps in gastric cancer detection.

A long time ago, the detection of Gastric cancer was solely

dependent on the wisdom and expertise of radiologists and

pathologists (28). The capability to learn and analyze data enables

Artificial Intelligence (AI) to contribute significantly to medical

image processing. AI Assistance in analyzing biomedical images

and records has delivered promising results over the past years (29).

The traditional ML models depend on handcrafted features

determined by the experts of the domain (30). With the

advancement in computational facilities and data availability in

large volumes, deep learning is a powerful and promising tool in

medical imaging. It has delivered promising results in detecting

gastric cancers at an early stage (31, 32). The primary problem with
tiers in Immunology 04
deep learning models, their black-box nature, is eliminated with the

advent of the XAI techniques that explain how the model derives

the decision (33). Convolutional Neural Networks (CNN) are used

in analyzing medical images and have recently increased (34). In

(35), the researchers designed a CNN-based analysis of endoscopic

images for detecting Early-Stage Gastric Cancer (EGC). This model

was trained on a dataset of 13584 images comprising 2693 images of

cancer lesions. This model presents a lower specificity, resulting in

more false positives. The study in (36) introduced a CNN-based

cancer diagnostic system employing the Inception-V3 model for

detecting EGC. In this approach, the researchers train the CNN

model using approximately 1700 images of EGC and nearly 400

images with non-cancerous lesions. The inception model works well

in visualizing complex patterns and has recorded an accuracy of

approximately 90%. The authors in (37) designed the CNN-based

cancer detection system by analyzing endoscopic images using the

RESNET50 model, known for its robust feature extraction. The

training set consisted of around 800 images, and nearly 200 were

used to test the model. This model achieved an accuracy of 89%, but

the data volume used for training is low; for larger datasets, the

results may decline. In (38), a CNN-based detection of gastric

cancer from endoscopic images is demonstrated. The model is

trained on nearly 13000 images and presents a sensitivity rate of

92%. The model achieved a fast processing speed, making it suitable

for real-time clinical applications. This model observed a high false

positive rate. Using single standalone models for detecting GC poses

limitations in extracting enhanced features and results in

low performance.

The research in (39) shows the ensemble learning mechanism’s

use to overcome the individual models’ limitations. This approach

combined the predictive power of RESNET34, RESNET50, and the

VGG networks for detecting GC. This model results in higher

computational times, limiting its application in real-world clinical

applications. The study in (10) presents the ID-GCS (Intelligent

Decision-Making for Gastric Cancer Screening), a multi-modal AI-

driven diagnostic system for detecting cancer by integrating images

with Textual data. The proposed model employs the hybrid

attention mechanism to combine the spatial features from images

and the textual semantics from endoscopic reports. The authors in

(40) present a deep learning fusion model using deep feature

extraction and optimization from the Wireless Capsule

Endoscopy (WSE) images. This approach fuses the Inception-V3

and the DenseNet-201 models. The features extracted by individual

models are concatenated using parallel concatenation, resulting in

higher accuracy with higher computational times. The study in (41)

presents a deep learning-based multi-modal feature fusion model

designed to enhance the survival prediction of gastric cancer

patients by integrating histopathological images, clinical data, and

genomic information. This approach employs the GLFUnet and the

Graph Convolutional Neural Network to extract gene expression

data and features with enhanced representation of pathology

images. In (42), a multi-scale feature fusion approach is presented

that integrates the multi-scale features, resulting in improved

detection of small and multiple lesions. With the help of

encoders, better feature representations are facilitated. The
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authors in (43) propose GCLDNet, a novel deep learning

framework for gastric cancer lesion detection that integrates

multiple advanced techniques to enhance diagnostic accuracy.

This approach implements the level feature aggregate structure

and the attentionbased feature fusion module. This approach

records the accuracy of 88% and 89% respectively, on the SEED

and the BOT datasets consisting of histopathological images. Haq

et al. in (44) designed the hybrid DL approach for multi-class

classification of gastric cancer from endoscopic images. The

proposed model integrates GoogleNet and Vision Transformers

to classify Images into typical, early-stage, and advanced-stage

cancer. The use of DL models causes a hurdle for clinicians to

accept the results because of the unavailability of explanations about

the decisions derived from the model.

The researchers in (19) present the use of XAI techniques to

overcome the black-box character of the DL algorithms. This

approach presents the use of Gradient-based models and shape-

based feature extraction techniques on the outputs generated by

RESNET50, AlexNet, and GoogleNet models. Additionally, LIME is

applied to highlight the most critical regions influencing

predictions, enhancing trust in AI-generated results. In (45), the

researchers employed ensemble learning integrating InceptionV2

and V3, VGG16 models, and the explanations are presented by

SHAP. The SHAP presents the feature-level interpretations of the

model decisions, making it acceptable to clinicians. Shaw et al. in

(46) demonstrate using the DenseNet-201 model for predicting

cancer and explaining the results with LIME. With LIME, enhanced

visualizations and validations of decisions are presented by

highlighting the influential regions in the Images. The authors in

(47) demonstrated using LIME to interpret the textual data from the

patient’s health records. Various machine learning techniques

analyze the data, and LIME interprets the results. In (21), SHAP

is applied to interpret the feature importance based on the detection

presented by hybrid deep learning architectures.

Advancements in deep learning, ensemble learning models, and

XAI techniques for gastric cancer detection are reflected in the

literature review. Various methodologies for GC have employed

different CNN-based architectures, presenting enhanced feature

extraction and improved classification results. When tested on

diverse datasets, most standalone models encounter difficulties

with low generalization, high false positive rates, and small lesion

detection. Although ensemble models improve accuracy, their use

in real-time clinical situations is hampered by their high computing

costs and longer inference times. Moreover, while XAI techniques

such as LIME, SHAP, GRADCAM, etc. have been introduced to

address the black-box character of the DL algorithms. The SHAP

and GRADCAM demand high computational resources and result

in higher latency. Various approaches are implemented on limited

datasets, limiting their ability to generalize effectively to real-world

scenarios. Our proposed approach combines VGG16, RESNET50,

and MobileNetV2 to address the limitations noted in the literature,

effectively extracting multi-scale features while maintaining

efficiency. LIME-based explanations are provided to present

transparency, lower latency, and ensure the clinicians trust the
Frontiers in Immunology 05
AI-driven predictions. By optimizing feature fusion and balancing

computational efficiency, our model aims to provide a more

robust, interpretable, and clinically viable solution for gastric

cancer detection.
3 Proposed methodology

The proposed methodology combines three CNN variant

models, namely VGG16, RESNET50, and MobileNetV2. The

primary goal of this fusion is to combine the strengths of each

model and improve the overall feature extraction process. After

prediction, LIME is applied to provide insights about the model’s

decision, ensuring the transparency and trustworthiness of the

model. The proposed methodology includes two components: (1)

Cancer Prediction using a Fused Model by analysis of Images,

and (2) Explaining the model’s decision using LIME visualizations.

Figure 2 presents the fused model ’s architecture with

relevant details.

Our proposed work integrates the three convolutional-based

neural networks: VGG16, RESNET50, and MobileNetV2. The

VGG16 model is a 16-layer model comprising 13 convolutional

and 4 fully connected layers. This model is chosen because of its

simplicity and capacity to capture minute details through small

convolution filters (48). RESNET50 model is a 50-layer CNN

network that employs residual connections to overcome the

vanishing gradient problem by skipping some connections,

resulting in more efficient learning (49). MobileNetV2 is a

lightweight architecture consisting of depth-wise convolutions

that can be separated and an inverted residual structure that

reduces the computational complexities while maintaining the

model’s accuracy (50).

The fusion is performed at an intermediate level. The outputs of

the penultimate layers of each model are combined to achieve a

comprehensive and enhanced feature representation. Each of the

models captures different patterns from the data through partial

model training. The patterns observed by these models are then

concatenated to present a rich and distinct set of features and

representations. A high-dimensional fused feature vector then

undergoes further training through the fully connected dense layers.

This fully connected layer incorporates the learned representations

forwarded to the output layer. Later, the fully connected layer is

followed by the output layer that uses the sigmoid activation

function, which works well for binary classification.

LIME (Local Interpretable Model-agnostic Explanations)

technique highlights the critical regions within the Image that

contribute to the fused model’s decision-making process. LIME

produces locally faithful explanations by altering the input image

and tracking the alterations in the model’s predictions. Then LIME

identifies and highlights the critical areas within the Image, and the

non-important areas are shaded with black pixels. These

visualizations by LIME help medical practitioners validate the

model’s decision and build trust in the model’s decision-

making process.
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3.1 Proposed algorithm

The proposed algorithm comprises three popular CNN

modalities: VGG16, RESNET50, and MobileNetV2. These

individual models are implemented to fetch the spatial features

from the Image data. These diverse features are fused at the

intermediate layers, presenting more comprehensive feature

vectors and leveraging the capabilities of individual networks.
Frontiers in Immunology 06
These fused vectors are then passed through a fully connected

layer for final classification. Additionally, LIME is applied to present

the visuals of the highlighted content in the Images that contribute

towards the Model’s prediction for Gastric Cancer. The detailed

algorithm for Gastric Cancer Detection is given in Algorithm 1.

As shown in Algorithm 1, the input is the set of the

Histopathological Images DI consisting of pairs (xi,yi) where

xirepresents the image and the yirepresents the corresponding label
FIGURE 2

Architecture of fusion model with LIME interpretation.
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(0 or 1). These images are resized to 160*160 pixels and are

normalized by dividing them by 255 such that the data falls in the

range of [0,1]. The input normalized data is supplied to the pre-

trained CNN models, namely VGG16, RESNET50, and

MobileNetV2. The VGG16 model comprises 13 convolutional

layers, five pooling layers, and three fully connected layers. This

model is computationally expensive but extracts the low-level features

from the data, making it useful in medical imaging. The RESNET50

model consists of 48 convolutional layers, a single pooling layer, and a

single fully connected layer. This model targets the vanishing gradient

problems common in deep neural networks. This model is highly

suited for extracting deep hierarchical features while being

computationally efficient. MobileNetV2 is a lightweight deep neural

network that presents depth-wise separable convolutions and

inverted residual blocks that reduce the computational cost while

preserving critical spatial features. The last layer, i.e., the fully

connected layer of every individual model, is frozen, and the

intermediate outputs representing features are obtained with the

help of Global Average Pooling (GAP). This technique compresses

the high-dimensional feature maps into low-dimensional vectors,

resulting in lower complexity and retaining spatial information.

These extracted features from individual modalities are

concatenated, forming a comprehensive feature map. This fused

feature map is then passed through three fully connected dense

layers comprising 512 neurons, 256 neurons, and 128 neurons to

learn complex patterns among the features. These layers employ the

ReLU activation function to introduce non-linearity. A drop-out rate

of 50% is applied to reduce the over-fitting of the model. Then, the

output layer is employed with a sigmoid activation function to

facilitate binary classification with either (0:Cancer Detection or 1:

Cancer Not Detected) output. LIME is used to improve the

interpretability of the model’s conclusions. Important areas of an

image that affect the model’s predictions are found and highlighted by

LIME. It operates by changing the input image and tracking the

changes in the model’s output. Black pixels conceal non-relevant

areas, while the key regions contributing to the classification choice

are highlighted.
Fron
1: Input: Dataset DI = (xi ,yi)f gNi=1, where xi ∈ R160�160�3, yi

∈ 0, 1f g.

2: where xi represents the Image and yi represents the

output label 0:Normal, 1:Abnormal

3: Output: Trained fusion model F(x;q).

4: Step 1: Load and Pre-process Data

5: Load dataset DI from directory.

6: Resize all images xi to 160 × 160.
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7: Normalize images:

xi ←
xi

255

8: Step 2: Define Base Models

9: Initialize pre-trained models:

V(xi ; qvgg16) = fVGG16(xi)

R(xi ; qresnet50) = fRESNET50(xi)

M(xi ; qmobilenetv2) = fMobileNetV2(xi)

where:

fVGG16(xi) = ReLU(Wvgg16 * xi + bvgg16)

fRESNET50(xi) = x + ReLU(WRESNET50 * xi + bRESNET50)

fMobileNetV2(xi) = DepthwiseConv(xi) + PointwiseConv(xi)

10: Remove fully connected layers, keeping the

convolutional base.

11: Freeze weights of all pre-trained models:

qvgg16, qRESNET50, qMobileNetv2 all set to non − trainable

12: Step 3: Extract Features

13: Compute feature maps using Global Average Pooling

(GAP):

vgg16i = GAP(VGG16(xi ; qvgg16))

RESNET50i = GAP(RESNET50(xi ; qRESNET50))

MobileNetv2i = GAP(MobileNetv2(xi; qMobileNetv2))

14: Step 4: Feature Fusion and Classification

15: Concatenate feature vectors:

Fusioni = ½vgg16i ;RESNET50i ;  MobileNetV2i�

16: Pass concatenated features through fully connected

layers:

hidden1 = ReLU(Weights1Fusioni + bias1)

hidden2 = ReLU(Weights2hidden1 + bias2)

hidden3 = ReLU(Weights3hidden2 + bias3)

17: Dropout 50% units:

d = Dropout(0:5)(hidden3)
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Fron
18: Output layer:

oi = s(Weights4d + bias4)

19: Step 5: Explainability with LIME

20: Apply LIME for visualizing Highlighted Images,

presenting explanations about the Model’s Decisions:

V = LIME(F(xi ; q),xi)
Algorithm 1. Feature fusion of VGG16, RESNET50 and MobileNetV2 for
gastric cancer classification.
3.2 Complexity analysis

The computational complexity of the model is analyzed through

the number of operations, the number of trainable parameters, and

the time incurred at each step in the decision-making process. The

time complexity includes the time spent in extracting the features by

the individual model, fusing these features, and applying the LIME

technique. The total complexity of the model is the summation of

all these complexities incurred at different stages.

1) Feature Extraction: Each model extracts the features from the

input image xi through numerous convolutional operations. The

time complexity for a single convolution operation in any model is

given by:

O(kernel2 � Cinput � Coutput �Ht �Wd)

Where:
• kernal represents the size of kernel (e.g., kernal = 3 for

3x3 kernels),

• Cinput and Coutput denote the input and output channels.

• Ht and Wd represent the height and width of the image.
Then, the Global Average Pooling is performed, which has

complexity as shown below.

O(Ht �Wd)

The total feature extraction time for each model is denoted as:

TVGG16 = O(TVGG16)

TResNet50 = O(TResNet50)

TMobileNetV2 = O(TMobileNetV2)

Where TVGG16, TResNet50, and TMobileNetV2 are the total

time complexities for feature extraction of each model. The feature

extraction process of each of these three models is performed in

parallel, so the overall complexity for feature extraction is:
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Textraction = max (TVGG16,TResNet50,TMobileNetV2)

2) Feature Fusion: The extracted features are concatenated to

form a single high-dimensional feature map. The size of the fused

vector is the sum of the dimensionalities of each model’s output. Let

dimVGG16, dimResNet50, and dimMobileNetV2 represent the

dimensionalities of the feature vectors for VGG16, RESNET50,

and MobileNetV2, respectively. dimFusion represents the

dimensions of the fused vector. The time complexity of the fusion

process is denoted as:

TFusion = O(dimFusion) = O(dimVGG16 + dimResNet50 + dimMobileNetV2)

3) Fully Connected Layer: The combined features are then

passed through the fully connected layer. The time complexity of

each of the dense layers is represented by:

O(diminput � dimoutput)

where diminput represent the input dimensions and dimoutput

denote the output dimensions. The total time complexity of dense

layers will be

Tdenselayers = O(dimfusion � hidden1) + O(hidden1 � hidden2)

+ O(hidden2 � hidden3) + O(hidden3 � 1)

Where hidden1, hidden2, and hidden3 denote the neuron counts

at each hidden layer. The output layer consists of one neuron for

binary classification.

4) LIME Explainability: LIME applies a perturbation operation

to the input image to explain the model’s decision. Let count

represent the number of perturbations. The time complexity of

LIME is defined as:

TLIME = O(count � TFusion)

5) Overall Complexity: The total time complexity per image,

including all the operations, is defined as:

TOverall = Textraction + Tdenselayers + TLIME

Where Textraction is the total complexity for feature extraction,

Tdenselayers is the complexity of the fully connected layers, and TLIME

is the complexity of LIME explainability.
4 Experimental setup

Varied experiments are carried out to evaluate the performance

of a fused deep learning architecture on the GasHisSDB dataset,

specifically on the 160 * 160 pixels Image dataset. These

experiments are carried out on an Intel Core i7 processor with

NVIDIA GeForce 1650–4 GB GPU and 8 GB DDR4 RAM. The

experiments are implemented using Python 3.7 within the

Anaconda Framework. The DL models and XAI techniques were

implemented using TensorFlow and Keras, and the LIME libraries

explain the model. Additional Libraries, namely Numpy, SMOTE,

and Matplotlib, were used for data handling and visualization.
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The images are pre-processed by normalizing them to a

standard scale to ensure data consistency. Image rotation and

flipping are applied as a part of the augmentation process to

create a generalized behavior in the model. The complete dataset

is split into a ratio of 75:25, where 75% data is used for training, and

25% is used for evaluating the model. 10% of the training data is

used for validation of the model. The images of size 160*160 pixels

with three channels are fed to the fused model comprising three

pre-trained CNN models (RESNET50, VGG16, and MobileNetV2).

The model undergoes training for 50 epochs with a batch size of 32.

The Regularization techniques, namely drop-out and batch

normalization, help to improve the model’s consistency and

prevent over-fitting.

The evaluation of the fused model is facilitated through different

performance metrics, such as Accuracy, Precision, Recall, and F1

score. The XAI technique, LIME, is applied to interpret the

decisions taken by the model. The application of LIME highlights

the specific areas within the individual images that contribute to the

model’s decision. Using XAI techniques ensures that clinicians

understand the patterns observed by deep learning models are

trustworthy and can be accepted.
4.1 Dataset description

The dataset used for the experiments is the Gastric

Histopathology Sub-size Image Dataset (GasHisSDB), consisting

of pathology images representing gastric cancer (51). This dataset

incorporated 600 whole photos of 2048 * 2048 pixels, which were

captured with a 20X magnification camera, and were annotated by

four experienced pathologists at Longhua Hospital in China. TO

generate more granular data, some researchers from Northeastern

University extracted 245196 image patches, which were further

investigated and validated by experienced pathologists from

Liaoning Cancer Hospital and Institute. These image patches

were captured at three distinct sizes: 80*80 pixels, 120*120 pixels,

and 160*160 pixels, forming three subdatasets. These sub-datasets

comprise two classes: Abnormal, denoting the presence of cancer

tissues, and Normal, indicating the absence of cancer cells. In the

case of Abnormal images, the image regions in the photos were

carefully extracted, and the areas with a minimum of 50% cancerous

tissue were retained to ensure high-quality data. The images are

rotated to reduce the correlation among the image patches, and the

whole dataset is scrambled to facilitate balanced distribution.

The Whole images were strained using the hematoxylin and

eosin (H&E), a standard technique for straining Histopathology

Images (52). These images were analyzed using high-precision

microscopes to ensure robust cancer tissue visualization. This

straining technique provides the best data for deep-learning

architectures to detect gastric cancers. This study uses the

160*160 sub-dataset comprising 13124 images of the Abnormal

class, denoting Positive results for Gastric Cancer (Cancer Patient),

and 20160 images of the Normal class, denoting Negative results for

Gastric Cancer (Normal Patient). The detailed summary of the

dataset used for the experiments is presented in Table 2.
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5 Result analysis

A varied set of experiments is carried out to evaluate the

working of the proposed model. The performance of the

proposed fusion model (VGG16, RESNET50, and MobileNetv2)

was systematically assessed using the GasHisSDB dataset. The

results of experiments demonstrate that the fusion approach

significantly enhances classification accuracy compared to

individual models. Different DL models are initially applied to the

GasHisSDB dataset to measure their performance in classifying

gastric cancer images. Different CNN-based architectures, including

VGG16, RESNET50, MobileNetv2, InceptionV3, DenseNet, and

EfficientNet, are implemented and tested based on various

evaluation metrics. After a comprehensive performance analysis,

the top three performing models—VGG16, RESNET50, and

MobileNetv2—are selected for fusion. These architectures are

chosen due to their ability to capture diverse spatial hierarchies,

deep feature representations, and computational efficiency. LIME

provides interpretability to the fused model’s predictions. LIME

creates visual explanations by emphasizing the regions of an image

that significantly influence the classification choice. LIME finds

those crucial regions that the fused model concentrates on when

differentiating between cancerous and non-cancerous tissues by

varying input photos and examining the model’s reaction. This

explainability mechanism is essential in medical diagnostics since it

guarantees openness and fosters confidence among medical

practitioners. The reliability of the suggested fusion strategy in

gastric cancer detection is further supported by the highlighted

areas in LIME-based representations matching clinically

significant locations.

The first experiment applies different deep learning

architectures to the GasHisSDB dataset to assess its effectiveness

in gastric cancer detection. Various deep learning models, namely
TABLE 2 Summary of GasHisSDB dataset.

Parameter Value

Dataset used GasHisSDB (160 × 160 subset)

Staining Method Hematoxylin and Eosin (H&E)

Magnification 20×

Microscopes Used
Nikon (Japan) and
Olympus (Japan)

Cancerous Region Coverage area 50%

Acquisition Software NewUsbCamera

Data Augmentation
Random rotation and
Dataset scrambling

Total Number of Images 33284

Count of Abnormal Images in 160 *
160 subset

13124

Count of Normal Images in 160 *
160 subset

20160

Class Labels 2 Labels (Normal, Abnormal)
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CNN, AlexNet, GoogleNet, RESNET50, VGG16, InceptionV3,

EfficientNetB0, MobileNetv2, and Xception, are implemented,

and their performance is measured. These models are selected

due to their widespread use and performance in image

classification tasks, especially in medical imaging. Each model is

finetuned and optimized to identify significant features from

histopathology pictures and enable precise classification. The

whole dataset is split into two parts, where 75% of the data is

supplied for training the model, and the remaining 25% of the data

is used as testing data for evaluating the model’s performance. This

partitioning method is selected to maintain an independent set for

reliable evaluation and supply enough training data for model

optimization. With 50 epochs in the training phase, the models

were able to pick up on intricate patterns in the dataset gradually.

To balance learning stability and computational efficiency, a batch

size of 32 was used. The experimental results are summarized in

Table 3. The experimental results in Table 3 demonstrate superior

VGG16, RESNET50, and MobileNetV2 performances compared to

other models. The consistency of these three models in detecting

gastric cancer indicates their robustness. Because of their

remarkable performance, these three models are then considered

for fusion in the following experiment to improve the results in

comparison to the performance of the individual models.

Based on the performance of the above experiment, three

different models, VGG16 (91% accuracy), RESNET50 (88%

accuracy), and MobileNetV2 (89% accuracy), reported the highest

accuracy in comparison to others. Hence, these models are

concatenated to form a fusion model. The same split criteria of

75:25 is used for the dataset. The fused model was trained using the
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Adam optimizer for different iterations (epochs), including 10, 20,

35, 50, 70, and 100. After 50 epochs, the validation losses increased,

resulting in the model’s over-fitting. Thus, the fused model is

trained for 50 epochs involving a batch size of 32. The fusion

approach demonstrated superior classification accuracy by

leveraging the complementary feature extraction capabilities of

RESNET50, VGG16, and MobileNetV2. The fused model

recorded an accuracy of 98%. The summary of the results of the

fusion model is presented in Table 4.

The results are better visualized as shown in Figure 3, where

each model’s performance metrics—Accuracy, Precision, Recall,

and F1-Score—are clearly depicted in bar chart form. The Fusion

Model outperforms the individual models in all metrics,

demonstrating enhancement in overall performance. This

graphical visualization presents a clear comparison of various

models and the effectiveness of the Fusion model with respect to

other models.

With an accuracy of around 98%, the fused model outperforms

the individual models and records approximately 7% higher

accuracy compared to VGG16, the best-performing standalone

model. The various feature extraction skills of the separate

models, which support one another during the fusion process, are

responsible for the performance boost. The confusion matrix of the

fusion model compared to the confusion matrices of the best-

performing individual models is presented in Figure 4. The

confusion matrices show how well each model performs in

classification by showing how many observations are correctly

and erroneously predicted . VGG16, RESNET50, and

MobileNetV2 demonstrate strong classification abilities. However,
TABLE 3 Performance results of different DL models on the GasHisSDB dataset.

Model Accuracy Precision Recall F1-Score

CNN 71.1% 71.8% 71.1% 71.2%

AlexNet 78.9% 79.2% 78.9% 79.0%

GoogLeNet 80.4% 80.6% 80.4% 80.5%

InceptionV3 82.7% 83.0% 82.7% 82.8%

EfficientNetB0 84.3% 84.7% 84.3% 84.5%

Xception 83.5% 83.8% 83.5% 83.6%

VGG16 91.1% 92.5% 92.7% 92.6%

RESNET50 88.3% 93.5% 86.7% 90.0%

MobileNetv2 89.8% 93.4% 89.5% 91.4%
VGG16. RESNET50 and MobileNetV2 present highest accuracy.
TABLE 4 Performance results of different modalities on the GasHisSDB dataset.

Model Accuracy Precision Recall F1 Score

VGG16 91.1% 92.5% 92.7% 92.6%

RESNET50 88.3% 93.5% 86.7% 90.0%

MobileNetv2 89.8% 93.4% 89.5% 91.4%

FUSION (VGG16, RESNET50, MobileNetV2) 97.81% 98.39% 98.00% 98.19%
Fusion Model presents higher accuracy compared to Individual Models.
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some misclassifications occur. By combining the advantages of

three separate architectures, the fusion model exhibits better

prediction performance, making more accurate classifications and

fewer incorrect ones. This demonstrates how well the model fusion

strategy increases overall stomach cancer detection accuracy

and dependability.

To improve the fused model’s interpretability, we visualized the

key areas inside the image affecting classification choices using

LIME (Local Interpretable Model-agnostic Explanations). After

creating altered versions of an input image and assessing the

model’s reaction, LIME builds a locally interpretable surrogate

model that emphasizes the most significant areas. Multiple images

of each class, normal and abnormal images, were chosen for this

investigation. LIME is applied to examine how the fused model

distinguishes between cancer-infected and non-cancerous areas.

The regions of the histopathological pictures that are most

important to the model’s categorization are highlighted in the

LIME visualizations produced. According to the findings, the

fused model mainly concentrates on critical cellular components

linked to stomach cancer, guaranteeing that predictions are based

on biologically significant characteristics.

Figure 5 shows the results of the LIME technique applied to the

Cancerous Images. Every resultant image consists of three parts: the
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original image, the LIME highlighted results, and the image having

annotations describing the malignant or benign regions. The black-

shaded portions in the pictures represent less importance of those

pixels in the model’s prediction. Figure 5a shows that LIME

highlights the five critical regions facilitating cancer prediction.

The LIME technique presents the images in which the highlighted

sections are represented with yellow lines, denoting the critical areas

that contribute highly to the model’s decision. This highlighted

section shows the presence of irregular cell structures and

malignant lesions. The third part of the image presents the

abnormal cell structures by annotating them with blue boxes.

Similarly, Figure 5b shows the widespread distribution of the

regions and detects two regions comprising densely packed cell

clusters, marking them with the abnormal annotation with blue

boxes. More structures and aligned results are observed in Figure 5c,

showing four different important regions from the image

identified by LIME, out of which three areas consist of irregularly

shaped and elongated structures representing densely packed cells,

indicating a case of abnormality. Similarly, Figure 5d identifies the

three significant regions, of which two areas resembled

abnormalities due to cancer lesions. The LIME explanation

effectively identifies the most crucial regions with malignancies in

the model’s classification.
FIGURE 3

Performance of different models of gastric cancer detection.
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FIGURE 4

Confusion matrices of individual models and the fused model. (a) Confusion Matrix of VGG16 Model on GasHisSDB dataset. (b) Confusion Matrix of
RESNET50 Model on GasHisSDB dataset. (c) Confusion Matrix of MobileNetV2 Model on GasHisSDB dataset. (d) Confusion Matrix of Fusion (VGG16
+RESNET50 + MobileNetv2) Model on GasHisSDB dataset.
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FIGURE 5

LIME explanations for Cancerous Images. (a) Cancer Abnormality observed: Case 1. (b) Cancer Abnormality observed: Case 2. (c) Cancer
Abnormality observed: Case 3. (d) Cancer Abnormality observed: Case 4.
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Similarly, the interpretation of some predictions as Non-

cancerous by LIME is presented in Figure 6. The significant

regions are identified in the original Image. They are highlighted

in yellow, and the non-important areas are represented by black, as

shown in Figure 6a. The cell arrangement in the highlighted section

is well-structured, and no irregular cell clustering is observed;

hence, the Image is annotated as Non-Cancerous in green boxes.

Figure 6b shows fewer regions resembling well arranged and

organized cell tissues and the absence of abnormal nuclei

formation. The highlighted areas present the uniform distribution

of the cells without any abnormality. This Image is thus annotated

as Non-Cancerous, and green boxes annotate the areas in the last

part of the Image. Figure 6c shows the absence of dark stains or

irregular cell formations, presenting the well-distributed cell

structure. A large part of the Image is essential for model

decision, represented by LIME with yellow lines. This region

shows the absence of irregularities and densely packed cell

structures, resulting in the prediction of a non-cancerous class.

Figure 6d shows the diverse regions contributing to the model’s

decision. These regions have evenly distributed cells and have no

presence of excessive clustering of cell nuclei. Thus, these regions

are annotated as non-cancerous and are highlighted in green boxes.

The findings of LIME properly resemble the absence of malignant

cells and present explanations about the model’s prediction as

Non-Cancerous.
5.1 Comparative analysis

We compare our model’s performance with current

methodologies and approaches for identifying gastric cancer.

Researchers have created many methods and models to increase

diagnostic accuracy, using deep learning architectures, machine

learning models, and different imaging modalities. To provide an

equitable and significant comparison, we mainly concentrate on
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histological image analysis methods in this investigation. Table 5

compares our approach with these approaches.

The research in (53) presented the fusion approach, fusing

EfficientNetB0 and DenseNet-201 for cancer detection. This

approach combines handcrafted and deep features to enhance the

classification performance. This approach recorded an accuracy of

95% after applying the cross-magnitude generalizations, and no

explanation techniques were used. In (54), the researchers employ

the Deep Belief Network (DBN) for predicting cancer. This

approach records an accuracy of 96% with the absence of any

explanations. This approach uses the statistical two-tailed test to test

the performance of DBN. This approach samples the data into 40

images per sample, raising concerns about generalization. Hu et al.

in (51) presented using the VGG16 model for detecting gastric

cancer. This experiment was run for 100 epochs, resulting in higher

computational times and increased risk of over-fitting. This

approach recorded an accuracy of 96%, and no explanations

about the decisions are presented. The authors in (55) present the

hybrid approach, combining a DL and boosting models for

detecting cancer. This approach employs the EfficientNetV2B0 for

extracting features and employs CatBoost for classification

purposes. This approach records an accuracy of 93.9%. It presents

the GradCAM visualizations, explaining the model’s decisions in

heat maps—the fusion of EfficientNetV2B0 and CatBoost results in

higher computational times.

The study in (56) presents the Enhanced EMD-CNN

(EEMDCNN) model for automated detection of gastric cancer. This

approach uses the empirical mode decomposition (EMD) to extract the

intrinsic features by adding multi-resolution deconvolutional filters.

This approach is susceptible to noise and varying intensities of inputs

and records an accuracy of 94.5%, resulting in higher computational

times due to additional convolutional layers. No explanations about the

decisions are presented. The researchers in (57) employ the use of

ResInvolution, a combination of ResNet and Involution operations, to

adjust the spatial weights of the features. This approach records an
A B
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FIGURE 6

LIME explanations for non-cancerous (normal) images. (a) Cancer Abnormality not observed: Case 1. (b) Cancer Abnormality not observed: Case 2.
(c) Cancer Abnormality not observed: Case 3. (d) Cancer Abnormality not observed: Case 4.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1596085
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1596085
accuracy of 91% and is implemented in a Federated Environment,

achieving data privacy. In (46), the authors presented a method using

the DenseNet-201 model, a pre-trained CNN variant. This approach

implements the LIME technique for interpreting results and achieves

an accuracy of 88.75%. The researchers in (23) present the ensemble

learning model comprising a parallel depth-wise separable CNN,

Extreme Learning Machine (ELM), and L1 Regularized ELM. This

model records an accuracy of 87.75%, and the model’s decisions are

explained with the help of SHAP, denoting the essential features and

representing them with Grad-Cam. The study in (58) proposes the

Dual-Resolution Attention Capsule Network (DRA-CN) to improve

the classification of histopathological images. This approach employs

the attention-based approach to enhance categorical learning and

presents dynamic routing optimization that helps better generalize

the model. This technique presents an accuracy of 97.5% with any

interpretability features or without implementing any XAI technique.

Hu. et al. in (59) employed the RESNET50 model on the

histopathological images for detecting gastric cancer. This approach

recorded an accuracy of 96.09% in the absence of interpretations of

results. This approach showed enhanced performance in contrast to

the traditionalMLmodels. The need for an XAI technique for ensuring

transparency and trust is missing in this approach. The detailed

summary of the comparative analysis is presented in Table 5.

Our proposed fusion model, fusing VGG16, RESNET50, and

MobileNetV2, recorded an accuracy of 97.81%, surpassing various

state-of-the-art methodologies for detecting GC using

Histopathological images in the GasHisSDB dataset. Several

approaches presented in the comparative analysis lack the

employment of the XAI technique, which ensures trust in the

model’s decisions. Some methods have employed XAI techniques for

result interpretation, but the accuracy achieved by those models is very

low compared to our approach. Integration of different architectures

facilitates robust feature extraction with enhanced classification

accuracy. Our proposed model extracts the high-level global features

and the fine-tuned local features that enhance performance. With the
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addition of LIME, the clinicians receive the highlighted sections of the

Images that help them validate the model’s predictions. This allows

them to discover the facts behind the model’s predictions and creates a

feeling of trust for them toward AI-driven cancer detection systems.
6 Conclusion

The proposed fusion methodology, fusing VGG16, RESNET50,

and MobileNetV2, for analyzing histopathological images for gastric

cancer detection delivers promising results and presents an accuracy

of 97.81% which is higher compared to the individual models-

VGG16 (91%), RESNET50(88%), and MobileNetV2 (89%). The

proposed methods present superior results in contrast to state-of-

the-art methods for GC detection. The proposed model leverages the

strength of the individual models, extracting the high-level and the

low-level features. With the incorporation of LIME, the model

achieves the trust of medical professionals in cancer diagnostics as

LIME presents the highlighted sections of the Images contributing

towards the model’s decision. Our method offers a well-balanced

solution that promotes precision and transparency, in contrast to

previous models that are either less accurate or lack interpretability.

Explainability add-ons are handy in practical healthcare cases because

one needs to understand how the model arrived at certain decisions.

However, some challenges still exist in handling the training

methods and the imaging conditions, which cause problems in

modeling the generalization across different datasets. We plan to

include more generalization features in the Future, making our

model acceptable to diverse datasets. In the Future, we plan to

employ more advanced feature selection techniques and optimize

our model to reduce computational time while preserving accuracy

and performance. In the Future, we also plan to implement the

federated learning approach to ensure privacy and explore self-

supervised and unsupervised learning techniques for more accurate

and comprehensive AI-driven cancer detection systems.
TABLE 5 Comparative analysis.

Reference Architecture Accuracy Explainability (Yes or No) Explainability Method

(53) EfficientB0 + DenseNet-201 95% No NA

(54) Deep Belief Network 96% No NA

(51) VGG16 96% No NA

(55) EfficientNetV2B0-CatBoost 93.9% Yes GradCAM

(56) Enhanced EMD Convolutional Neural
Network (EECNN)

94.5% No NA

(57) ResNet with Involution operations 91% No NA

(46) DenseNet-201 88.75% Yes LIME

(23) Ensembled Approach (ELM, PD-CNN) 87.75% Yes SHAP and Grad-CAM

(58) Dual-Resolution Attention Capsule Network (DRA-CN) 97.50% No NA

(59) RESNET50 96.09% No NA

Proposed
Approach

(VGG16 + RESNET50 + MobileNetV2) 97.81% Yes LIME
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