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Introduction: The induction of mitochondrial permeability transition-driven

necrosis (MPTDN) is therapeutically relevant in various cancers. However, few

studies have explored the role of MPTDN-related genes (MPTDNRGs) in lung

adenocarcinoma (LUAD). Therefore, this study investigated the regulatory

mechanisms of MPTDNRGs in LUAD.

Methods: This study was based on The Cancer Genome Atlas-Lung

Adenocarcinoma (TCGA-LUAD), GSE31210, and MPTDNRGs. First, the genes

obtained from TCGA-LUAD were intersected through differential expression

analysis and weighted gene co-expression network analysis (WGCNA) to

obtain the candidate FCRLA gene. An FCRLA knockdown cell model was

constructed in vitro using LUAD cells, and cell-related phenotypic experiments,

including proliferation and apoptosis, were performed. The integrity of the

mitochondrial structure was observed using electron microscopy, and the

mitochondrial membrane potential was detected using a JC-1 probe.

Results: A total of 82 candidate genes were identified by intersecting 3,231

differentially expressed genes with 566 key module genes. Subsequently, three

prognostic genes (RASGRP2, CD79A, and FCRLA) were further screened. CD79A

and FCRLAwere significantly expressed in the LUAD group, whereas the opposite

was true for RASGRP2. In vitro studies indicated that FCRLA knockdown

significantly inhibited the proliferation of LUAD cells and induced necrosis in

these cells. Electron microscopy found that the mitochondrial structure was

disrupted after FCRLA knockdown. The JC-1 probe indicated that the
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1596179/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1596179/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1596179/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1596179/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1596179/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1596179/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1596179&domain=pdf&date_stamp=2025-08-13
mailto:zhigang_cai@hebmu.edu.cn
https://doi.org/10.3389/fimmu.2025.1596179
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1596179
https://www.frontiersin.org/journals/immunology


Sun et al. 10.3389/fimmu.2025.1596179

Frontiers in Immunology
mitochondrial membrane potential in the FCRLA-knockdown group was

significantly reduced, suggesting impaired mitochondrial function.

Discussion: RASGRP2, CD79A, and FCRLA have been identified as being

associated with MPTDN in LUAD cells. FCRLA knockdown may suppress

mitochondrial permeability transition through specific pathways, thereby

driving LUAD cell necrosis and providing potential targets for subsequent

LUAD treatment.
KEYWORDS

lung adenocarcinoma, mitochondrial permeability transition driven necrosis, FCRLA,
risk model, new strategy
1 Introduction

Lung cancer is a primary global health problem and remains the

most common cancer type and the foremost cause of cancer-related

deaths in China (1). The Agency for Research on Cancer reported

approximately 820,000 new lung cancer diagnoses and 715,000 lung

cancer-related deaths in China in 2020 (1, 2). Non-small cell lung

cancers (NSCLCs) are classified based on histopathological

characteristics. The most common histological subtype of NSCLC

is adenocarcinoma, which accounts for approximately 55–60% of

cases in Chinese patients (3). Notably, the 5-year overall survival for

all patients with all types of lung cancer is only approximately 19%.

In China, the incidence and mortality of lung cancer differ

substantially between different sexes, ages, and regions (4), with

great variability and heterogeneity among the different subtypes,

ranging from 24% for patients with NSCLC to 6% in small cell lung

cancer. Given this heterogeneity and the high incidence of lung

adenocarcinoma (LUAD), identifying prognostic markers for

LUAD is essential.

The mitochondria play a crucial role in regulating the

homeostasis of cancer cells and programmed cell death (5). When

mitochondria are damaged, stress or stimulation occurs, and the

permeability of the mitochondrial inner membrane increases

rapidly, leading to mitochondrial dysfunction and ultimately, cell

apoptosis (6). Mitochondrial permeability transition (MPT) plays a

role in mitochondria-mediated apoptosis (7). Several MPT

regulatory mechanisms are impaired in tumors compared to

surrounding tissues. MPT inhibition may be a mechanism that

protects the survival and proliferation of cancer cells (8). A study by

West China Hospital confirmed that targeting the opening of MPT

pores enhances nanoparticle drug delivery and mitigates cancer

metastasis (9). Furthermore, adenovirus-mediated mda-7

overexpression (10) resulted in the rapid induction of apoptosis

in both p53-resistant and p53-sensitive lung cancer cells. This

mechanism appears to involve the release of MPT pores, which

subsequently induces cell death. Thus, necrosis driven by MPT may

be an attractive strategy for developing novel cancer therapies.
02
This study identified prognostic genes associated with MPT-

driven cell necrosis in LUAD, based on transcriptome data, and

constructed related prognostic models using FCRLA, CD79A, and

RASGRP2. It verified whether the expression differed in the

prognostic model in tissues and LUAD cell lines. Bioinformatics

methods were used to explore the relationship between it and

immune infiltration, as well as the impact of immunotherapy.

Based on these results, FCRLA, which showed the greatest

correlation with the immune checkpoints, was selected for further

analysis. Genes of the Fc receptor - like (FCRL) family play a crucial

role in the pathogenesis and progression of cancer. FCRL is

regarded as a potential target for cancer treatment (11). These

findings supported our hypotheses. The effects of FCRLA

knockdown on tumor cell proliferation, apoptosis, mitochondrial

morphology, and mitochondrial membrane potential were studied.

Thus, a new prognostic model was established for patients with

LUAD, providing a theoretical basis for exploring the role of MPT-

driven necrotic genes in the development of LUAD. These results

are also of great significance for the prognosis and treatment of

patients, providing novel insights and directions for the treatment

of other cancers.
2 Materials and methods

2.1 Data collection

The training set was The Cancer Genome Atlas-Lung

Adenocarcinoma (TCGA-LUAD) dataset from the University of

California Santa Cruz Xena (https://xenabrowser.net/datapages/),

which was used to analyze 01A and 11A, containing 510 LUAD

tissues and 58 control paraneoplastic tissue samples, and 497

samples from the LUAD samples with survival information were

used to construct the risk model. The GSE31210 and GSE13213

datasets were downloaded as a validation set from the Gene

Expression Omnibus database (https://www.ncbi.nlm.nih.gov/geo/).

The GSE31210 dataset contained 246 LUAD samples with survival
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information from 226 cases, whereas the GSE13213 dataset contained

117 LUAD samples. In addition, 39 MPT-driven necrosis-related

genes (MPTDNRGs) were derived from the M17902, M3873, and

M16257 gene sets in the Gene Set Enrichment Analysis-Molecular

Signatures Database (https://www.gsea-msigdb.org/gsea/msigdb).
2.2 Differential expression analysis

Differentially expressed genes (DEGs) between LUAD and

control samples were analyzed using the R package DESeq2

(version 1.40.2) (12) in TCGA-LUAD with a filter of |log2fold

change (FC)| > 1 and P.adjust < 0.05. Afterwards, volcano plots and

heat maps were visualized using the R packages ggplot2 (version

3.4.2) (13) and circlize (version 0.4.15) (14), respectively.
2.3 Weighted gene co-expression network
analysis

Module genes associated with MPTDNRGs ARGs were

identified using weighted gene co-expression network analysis

(WGCNA). First, the scores of MPTDNRGs in all samples were

calculated using the single-sample gene set enrichment analysis

algorithm of the R package GSVA (version 1.48.3) (15). The

Wilcoxon test was then performed to compare the LUAD and

control groups and determine whether a significant difference

existed. The samples were then clustered using the R package

WGCNA (version 1.72-1) (16) to identify any outliers that

needed to be excluded. The soft threshold (b) was determined

when the mean connectivity tends to 0 after eliminating outlier

samples; this ensures that the genes interact in a way that best fits

the scale-free distribution. The minimum number of genes per gene

module was set to 200 in accordance with the standards of the

dynamic tree-cutting algorithm. Finally, the MPTDNRGs score was

used as the phenotypic trait, and each module was subjected to

Pearson’s correlation analysis (|Cor| > 0.3 and P-value < 0.05). The

selected key module had the highest correlation, and the key

module genes were used for subsequent analyses. The LUAD

samples were divided into high- and low-score groups based on

the MPTDNRGs scores, and the Kaplan–Meier (KM) survival curve

was drawn between the groups using the R package Survminer

(version 0.4.9) (17).
2.4 Enrichment analysis and construction
of protein–protein interaction network

The R package Eulerr (version 7.0.0) (18) was used to intersect

DEGs and key module genes to identify candidate genes. To identify

common functions and related pathways, the R package

clusterProfiler (version 4.8.2) (19) (P.adjust < 0.05) was used to

perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) enrichment analyses of candidate genes, and

the R package Treemap (version 2.4-4) (20) was used to visualize
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the enrichment results. In addition, a protein–protein interaction

(PPI) network was constructed for the candidate genes using the

STRING database (https://cn.string-db.org/) (confidence score>

0.4) to explore potential interactions between the candidate genes.
2.5 Screening for prognostic genes

In the TCGA-LUAD, the candidate genes were subjected to

univariate Cox analysis to screen the candidate prognostic genes

with HR ≠ 1 and P < 0.05. Then, the candidate prognostic genes

satisfying the PH hypothesis test (P > 0.05) were entered into the

least absolute shrinkage and selection operator regression analysis

to identify the optimal log (Lambda) values and their corresponding

genes, which were defined as the prognostic genes, and the

Wilcoxon signed rank test was used to verify the expression of

prognostic genes in TCGA-LUAD.
2.6 Building and validating the risk model

Prognostic gene expression and overall survival information were

used to construct a risk model for TCGA-LUAD. To further assess

the effectiveness of the risk model, a calibration curve was constructed

to evaluate its predictive accuracy. Receiver operating characteristic

(ROC) curves for 1, 3, and 5 years were plotted using the survival

ROC of the R package (version 1.0.3.1) (21). The following formula

was used to obtain the risk score for prognostic genes:

Risk score =on
n=1(coefi ∗Xi)

The samples were then divided into high- and low-risk groups,

based on the median risk score. The KM curves of the two risk groups

were drawn using the Survminer R package (version 0.4.9) (17), and

the log-rank test (P < 0.05) was used to compare survival differences

between the two groups. Furthermore, to evaluate the universality of

the risk model, the GSE31210 and GSE13213 datasets were used to

verify its accuracy. The risk model divides high and low risk groups

using the same cutoff value sur_cut$cutpoint, and the cutoff value was

calculated using the function “survminer” (0.5.0) (https://CRAN.R-

project.org/package=survminer) to obtain the best cutoff point.
2.7 Independent prognostic analysis

The risk score and clinical features (node, stage, sex, age, tumor)

were analyzed using univariate Cox analysis to obtain independent

candidate prognostic factors (HR ≠ 1 and P < 0.05). After meeting

the PH hypothesis test (P > 0.05), a multivariate Cox analysis was

performed to identify independent prognostic factors (HR ≠ 1 and

P < 0.05). Subsequently, the R package rms (version 6.7-0) (22) was

used to construct a nomogram model based on independent

prognostic factors, and the predictive ability of the nomogram

model was assessed using ROC, calibration, and decision curve

analysis (DCA). The GSE13213 dataset was used for external

verification. To further investigate the relationship between
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clinical features and risk score, the difference in risk score was

calculated, and a Kruskal–Wallis test was performed among the five

clinical feature subgroups mentioned above (P < 0.05).
2.8 Analysis of enrichment of risk groups

For a deeper understanding of the potential biological

mechanisms and pathways involved between the two risk groups,

the R package DESeq2 was used to perform differential analysis

between the two risk groups. Based on the log2FC value as a sorting

criterion, Gene Set Enrichment Analysis (GSEA) enrichment

analysis based on the KEGG pathway background gene set

“c2.cp.kegg.v2023.1. Hs.symbols” in MSigDB (https://www.gsea-

msigdb.org/gsea/msigdb) was performed using the R package

clusterProfiler (P < 0.05). The variability in the enriched

pathways between the two risk groups was compared using Gene

Set Variation Analysis (GSVA). First, on the basis of the

background gene set “h.all.v2023.1. Hs.symbols.gmt” in MSigDB

(https://www.gsea-msigdb.org/gsea/msigdb), the R package GSVA

(version 1.48.3) (15) was used to calculate the GSVA score for each

sample in the risk groups. The individual enriched entries were then

analyzed for differences between the two risk groups using the

limma package (version 3.56.2) (23), with P.adjust < 0.05 as

the threshold.
2.9 Immunological correlation analysis

The tumor microenvironment is valuable for the diagnostic and

prognostic assessment of tumors. First, the relationship between the

risk score and six immune infiltrating cell types (macrophages, CD8

T cells, neutrophils, B cells, CD4 T cells, and dendritic cells) was

assessed based on the Tumor Immune Estimation Resource

database (https://cistrome.shinyapps.io/timer/) (|cor| > 0.3 and P

< 0.05). Second, variability in 16 immune cells, 13 immune-related

functional aspects (24), 11 immune checkpoints (25), and three

scores (StromalScore, ImmuneScore, and ESTIMATEScore) were

compared between the two risk groups based on the TCGA-LUAD

dataset. Three scores, immune-related function scores, and immune

cell types of LUAD samples were calculated using the single-sample

gene set enrichment analysis algorithm of the R package GSVA

(version 1.48.3) (15) and the R package estimates (version 1.0.13)

(26), respectively. Ultimately, correlations between prognostic genes

and differential immune checkpoints, as well as the relationship

between the three scores and the risk score, were explored using

Spearman’s correlation analysis (|cor| > 0.3, P.adjust < 0.05).
2.10 Construction of the FCRLA
knockdown cell model and experimental
grouping

Human LUAD cell lines A549 and NCI-H1975 were purchased

from Procell Life Science & Technology Co., Ltd. (Wuhan, China).
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RPMI 1640 medium (G4532, Servicebio, China) was supplemented

with 10% fetal bovine serum (G8003, Servicebio) and 1% penicillin–

streptomycin (G4003, Servicebio) and prewarmed at 37°C. The cells

were thawed in liquid nitrogen and placed in a 37°C water bath

(Shanghai Jingqi Instrument Co., Ltd., China) for 3 min, followed

by the addition of fresh RPMI 1640 medium. The cells were then

incubated in a cell culture incubator (Herocell 180, RADOBIO,

China) at 37°C with 5% CO2 overnight. The culture medium was

refreshed every two days. Cells in the logarithmic growth phase

were used for subsequent experiments.

A549 and NCI-H1975 cells in the logarithmic growth phase

were selected to construct FCRLA-knockdown LUAD cell lines.

Specific siRNAs targeting FCRLA were designed and synthesized.

Lipid-based transfection reagents were used to transfect siRNAs

into A549 and NCI-H1975 cells, according to the manufacturer’s

instructions. After 72 h of transfection, the expression levels of

FCRLA were detected using RT-qPCR and western blotting to verify

knockdown efficiency. The siRNA sequences are listed in

Supplementary Table S1. In the model validation experiment for

FCRLA knockdown, three groups were used: control, si-NC, and si-

FCRLA. Three groups, namely si-NC, si-FCRLA, and si-FCRLA + 1

mmol/L cyclosporin A (HY-B0579, MedChemExpress, China), were

used in the experiment to verify the association between knocking

down FCRLA and the MPT pathway. Cyclosporin A effectively

inhibited cyclophilin D (CypD) protein expression, and its

concentration was determined as previously described (27).
2.11 CCK8 assay

A549 and NCI-H1975 cells in the exponential growth phase

were obtained and incubated with trypsin solution (G4013,

Servicebio) for 3 min, followed by centrifugation at 1200 × g for 3

min. The trypsin solution was discarded, and fresh medium was

added to resuspend the cells. Cell density was calculated using a cell

counter (G8003, Servicebio). The cells were seeded at a density of 3

× 103 cells/well in 96-well plates and incubated overnight. After

treating the cells according to the requirements of the different

groups, the cells were incubated for an additional 48 h. Then, 10 mL
of CCK8 solution (CA1210, Servicebio, China) was added to each

well, and the cells were placed in a 37°C, 5% CO2 cell incubator for

3 h. The 96-well plates were then removed, and the OD value at 450

nm was measured using a microplate reader (ReadMax 1900Plus,

Flash, China).
2.12 EDU staining

The cells were transfected, digested, centrifuged, and cell counts

were performed as previously described. Cells were seeded in six-

well plates at a density of 1 × 105 cells/well and incubated overnight.

The next day, EDU working solution (E-CK-A377, Elabscience

Biotechnology Co., Ltd, China) was added to the cell culture

medium, and the cells were incubated for an additional 2 h. After

incubation, the medium containing EDU was aspirated, and the
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cells were washed with phosphate-buffered saline (PBS). Next, the

cell fixative was added and incubated for 30 min. DAPI (C1005,

Beyotime, China) was added, and the cells were incubated in the

dark for an additional 5 min. They were then washed with PBS.

After washing with PBS, the cells were observed and photographed

using a confocal microscope (STELLARIS, Leica, Germany).
2.13 Hoechst 33342/PI staining

Cells were processed as previously described, seeded in six-well

plates at a density of 1 × 105 cells/well, and incubated overnight. The

next day, the cell culture medium was aspirated, and the cells were

washed with PBS. Next, the cell fixative (P1110, Servicebio) was added,

and the cells were incubated for 30 min. Then, Hoechst 33342

(BL116A, Biosharp, China) staining solution was added and

incubated in the dark for 10 min, followed by the addition of PI

staining solution and incubation in the dark for an additional 5 min.

The cells were washed with PBS, and after washing, they were observed

and photographed for analysis under a confocal microscope.
2.14 Flow cytometry to detect cell
apoptosis

Cells were processed as previously described, seeded in six-well

plates at a density of 2 × 105 cells/well, and incubated overnight. The

next day, the cell culture medium was aspirated, the cell pellet was

obtained as described previously, and the cells were centrifuged

after digestion. PBS was added to resuspend the cells, and the cells

were incubated in the cell fixative for 5 min. According to the

operation instructions for the apoptosis kit (C1062M, Beyotime),

the cell fixative was discarded, Binding Buffer was added to

resuspend the cells, 5 mL of FITC Annexin V reagent was added,

and the cells were incubated at room temperature in the dark for 15

minutes. Then, 10 mL of PI staining solution was added, and the

cells were incubated in the dark for 5 min. After incubation, flow

cytometry was used for detection, and apoptosis was analyzed.
2.15 JC-1 mitochondrial membrane
potential fluorescent probe

A suitable number of cells was cultured in 12-well plates with

coverslips. After the cells were cultured overnight and allowed to

return to their normal state, drug treatment was performed. The

culture supernatant was aspirated per the manufacturer’s

instructions (C2006, Beyotime). The cell fixative (P1110,

Servicebio) was added for incubation for 20 min, 0.5% Triton X-

100 (P0096, Beyotime) was added for permeabilization for 20 min,

and the cells were sealed with a mounting solution containing anti-

fluorescence quencher (P0131, Beyotime). The results were

observed and photographed for analysis under a laser

confocal microscope.
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2.16 Transmission electron microscopy

Each group of cells was treated as previously described. They

were then fixed with 2.5% glutaraldehyde for 2 h, followed by

fixation with 1% osmium tetroxide for 1 h. Subsequently, they were

dehydrated using a series of ethanol gradients. The samples were

then placed in a mixture of embedding agent and propylene oxide

(1:1) for permeation for 2 h, and subsequently placed in pure

embedding agent for permeation for an additional 5 h. The samples

were placed in an embedding mold for sectioning (60 nm).

Uranium acetate and lead citrate staining were performed, and

the morphological changes in mitochondria in the cells were

observed using transmission electron microscopy (JEM-

1400FLASH, Tokyo, Japan).
2.17 RT-qPCR experiment

Total RNA was extracted from cells in each group according to

the manufacturer’s instructions for the Trizol kit (R0011,

Beyotime). cDNA was synthesized using the cDNA synthesis kit

(D7170L, Beyotime) at 37°C for 15 min and 85°C for 5 s. Specific

primers for each factor were designed, and the reaction system was

prepared according to the manufacturer’s instructions for

BeyoFast™ SYBR Green qPCR Mix. The reaction program of the

fluorescence quantitative PCR instrument (4351405, Thermo Fisher

Scientific, Waltham, MA, USA) was set as follows: 95°C for 2 min,

followed by 40 cycles of 95°C for 15 s and 60°C for 15 s. After the

reaction, the CT value data were retained for subsequent statistical

analysis. The relative expression of mRNA was calculated using the

DDCt method (28). The primer sequences are detailed in

Supplementary Table S1.
2.18 Western blot experiment

After treating the cells according to different grouping

requirements, cell pellets were obtained, and RIPA lysis buffer

(P0013E, Beyotime) was added. The mixture was incubated on ice

for 30 min. The protein concentration in each group was

determined using a BCA protein quantification kit (P0009,

Beyotime). The protein solution was transferred to a water bath

(E0530; Beyotime) at 99°C and incubated for 15 min. An equal

amount of 30 mg of protein from each group was added to the

electrophoresis tank, and electrophoresis was performed at a

constant voltage of 120 V for 2 h. Proteins in the gel were

transferred to a polyvinylidene fluoride membrane at a constant

current of 260 mA for 1 h. The membrane was incubated with skim

milk powder (P0216; Beyotime) for 2 h and incubated overnight

with the corresponding primary antibody solution. The following

day, the sections were incubated with the secondary antibody

solution for 2 h, washed three times with TBST solution (ST673,

Beyotime) for 30 min each, incubated with a chemiluminescent

hypersensitive solution for 10 s, and then placed in a
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chemiluminescence imaging exposure system to obtain images. The

gray values of the bands were statistically analyzed using ImageJ

software (version 1.5.2a), and the ratio of the target gene to b-actin
was used as an indicator of the relative expression of the target gene

protein. FCRLA (1:1000, E-AB-53172, Elabscience Biotechnology

Co., Ltd), b-actin (1:1000, ab8226, Abcam, China), CypD (1:1000,

ab231155, Abcam); goat anti-rabbit IgG H&L (1:10000, ab205718,

Abcam), and goat anti-mouse IgG H&L (1:10000, ab205719,

Abcam) antibodies were used.
2.19 Statistical analysis

Data analysis of online databases was performed using the R

software (https://www.r-project.org/) for statistical analysis.

Differences between groups were analyzed using the Wilcoxon

test or the Kruskal–Wallis test, with P-adjusted values < 0.05

representing a significant difference. In vitro cell experiments

were analyzed using GraphPad Prism 9.5.0. One-way analysis of

variance was used to evaluate all in vitro cell experiments, followed

by post-hoc comparison using Tukey’s post-hoc significant

difference test. All experiments were repeated at least three times.
3 Results

3.1 Acquisition of DEGs and key modular
genes

A total of 3,231 DEGs were identified between the LUAD and

control groups, including 1,818 upregulated genes and 1,413

downregulated genes (Figures 1A, B). MPTDNRGs scores indicated

that the LUAD group had a significantly higher score than the control

group (Figure 1C). WGCNA was performed using the MPTDNRGs

score as a trait to identify genes associated with MPTDNRGs.

Clustering of the TCGA-LUAD samples revealed no outlier samples

(Figure 1D). When R2 = 0.9, as well as b = 5, the scale-free distribution

of the interaction between genes was maximized (Figure 1E). Based on

dynamic tree cutting, nine modules were obtained (Figure 1F). The

pink module, which contained 566 key module genes, showed the

highest correlation with MPTDNRGs scores (Cor = 0.6, P < 0.001)

(Figure 1G). Based on the MPTDNRGs scores, LUAD samples were

divided into high- and low-expression groups, and the KM curve

showed that the survival status of the two expression groups differed

significantly (Figure 1H).
3.2 Identifying and analyzing candidate
genes

A total of 82 candidate genes were identified by intersecting the

DEGs with key module genes (Figure 2A). Candidate genes were

enriched to identify related pathways and common functions,

revealing a total of 294 GO entries and eight KEGG pathways. In

GO, candidate genes were primarily enriched in mononuclear cell
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differentiation, the external side of the plasma membrane,

chemokine activity, and other functional categories (Figure 2B)

(Supplementary Table S2). In KEGG, AOC1 was significantly

upregulated in tryptophan metabolism, whereas ITGAL and

RASGRP2 were significantly downregulated in Epstein–Barr virus

infection and chemokine signaling pathways, respectively

(Figure 2C) (Supplementary Table S3). In addition, a PPI

network was constructed between the candidate genes to clarify

their interactions at the protein level (Figure 2D). The network

comprised 335 interactions between 60 candidate genes, with CD19

exhibiting the highest number of interaction pairs, including CD19-

CD79A, CD19-BLK, and other pairs.
3.3 Significant differences between the
LUAD and control groups in prognostic
gene expression

Univariate Cox regression analysis identified 25 candidate

prognostic genes (Figure 3A), of which 19 met the PH hypothesis

test. Least absolute shrinkage and selection operator regression

analysis was used to further investigate three prognostic genes:

RASGRP2, CD79A, and FCRLA (Figures 3B, C).
3.4 Better efficacy of the risk model

Based on the expression levels of the three abovementioned

prognostic genes, a risk-scoring model was constructed for patients

with LUAD. After dividing the patients into high- and low-risk

groups based on the median risk value, the samples were divided

into high- and low-risk groups. Both the risk (Figure 4A) and KM

curves (Figure 4B) showed that individuals in the low-risk group

had a lower mortality rate than those in the high-risk group; in the

high-risk group, the prognostic genes were poorly expressed

(Figure 4C). The AUC value of the ROC curve reached 0.6 at 1,

3, and 5 years (AUC1 = 0.62, AUC3 = 0.60, and AUC5 = 0.60)

(Figure 4D), indicating that the risk model efficiency was enhanced.

In other words, prognostic genes may be effective in predicting the

survival status of patients with LUAD. Notably, the generalizability

of the risk model was further validated using GSE31210, yielding

consistent results with TCGA-LUAD (Figures 4E–G,

Supplementary Figures S1A–C). GSE31210 ROC curve AUC

values were 0.69, 0.60, and 0.64 at years 1, 3, and 5, respectively,

and the slope of the calibration curve was close to 1 (Figure 4H).

GSE13213 ROC curve AUC values were 0.71, 0.69, and 0.69 at years

1, 3, and 5, respectively (Supplementary Figure S1D).
3.5 Enhanced predictive power of the
nomogram model

Multivariate Cox regression analysis identified clinical stage

(stage) and risk score (risk score) as independent prognostic factors

(Figures 5A, B). Based on this, a nomogram model integrating these
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FIGURE 1

Differential gene analysis. (A) Volcano plot of differential genes in the differentially expressed genes (DEGs) dataset. (B) Heatmap analysis of DEGs. (C)
Intergroup differences in the mitochondrial permeability transition-driven necrosis-related gene (MPTDNRG) scores. (D) Using the weighted gene
co-expression network analysis (WGCNA) package in R, samples were clustered based on gene expression information in the training set, and the
clustering situation was visualized. (E) Optimal soft threshold screening. (F) Dynamic shearing tree module. (G) Heatmap of the correlations between
modules and traits. (H) Patient samples were divided into high- and low-score groups based on the MPTDNRGs score, and a Kaplan–Meier (KM)
survival curve was generated between the groups using the Survminer package in R. *P < 0.05, ****P < 0.0001.
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factors was constructed (Figure 5C) for individualized prediction of

the survival rate of patients with LUAD. The slope of the calibration

curve was close to 1 (Figure 5D), indicating a high degree of

consistency between the predicted and actual survival rates.

Decision curve analysis also showed that the model had a clinical

net benefit at 1, 3, and 5 years (Figure 5E). The AUC value of the

ROC curve reached 0.6 at 1, 3, and 5 years (GSE31210: AUC1 =
Frontiers in Immunology 08
0.62, AUC3 = 0.60, and AUC5 = 0.61; GSE13213: AUC1 = 0.894,

AUC2 = 0.811, and AUC3 = 0.747) (Figure 5F). These results

suggest that the nomogram model exhibits better predictive ability.

Moreover, the relationship between clinical features (N, stage, sex,

T, and age) and risk score was further investigated, and analysis of

variance showed that the risk score differed significantly between

subgroups for each clinical feature (Figure 6).
FIGURE 2

Identification of candidate genes. (A) The intersection of DEGs and module genes from WGCNA was obtained using the Eulerr package in the R
language. (B) Gene Ontology (GO) enrichment analysis chord diagram of the candidate genes. (B–1) BP, (B–2) CC, (B–3) MF. (C) Chord diagram of
the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of candidate genes. (D) Protein–protein interaction (PPI) network of
candidate genes.
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3.6 Differential enrichment pathways
between risk groups

To analyze the biological basis of risk grouping, GSEA and

GSVA were performed to investigate the relevant signaling

pathways and potential biological mechanisms underlying the

differences between the two risk groups. GSEA showed that in the

low-risk group, the hematopoietic cell lineage pathways, the

intestinal immune network for IgA production, and cytokine–

cytokine receptor interaction pathways were significantly

enriched. In contrast, ribosomes were primarily enriched in the

high-risk group (Figure 7A, Supplementary Table S4). The GSVA

enrichment results and differential analysis between the two risk

groups revealed nine downregulated pathways, including

angiogenesis and inflammatory response, whereas only the Wnt

beta-catenin signaling pathway was upregulated (Figures 7B, C,

Supplementary Table S5).
3.7 Two risk groups differed in their
response to immunization

The correlations between the prognostic genes and the infiltration

levels of various immune cells were investigated to evaluate the

characteristics of the tumor immune microenvironment reflected by
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prognostic genes. The analysis revealed a significant correlation

between the risk score and the infiltration levels of the five types of

immune cells (excluding macrophages) (|cor| > 0.3, P < 0.05)

(Figure 8A). Notably, an analysis of immune-related differences

between the two groups at risk revealed that, except for natural

killer cells and immune-related functions (type I interferon

response), the remaining immune-related functions, immune cells,

and immune checkpoints were expressed at higher levels in the low-

risk group than in the high-risk group (Figures 8B–D). Spearman’s

correlation analysis revealed the highest correlation between the

prognostic gene FCRLA and the immune checkpoint BTLA (cor =

0.7358 and P < 0.001) (Figure 8E). Additionally, StromalScore,

ImmuneScore, and ESTIMATEScore were also higher in the low-

risk group than in the high-risk group (Figure 8F). A clear correlation

existed between the risk score and all three scores (|cor| > 0.3 and P <

0.05), with the highest correlation observed with the Immune Score

(cor = -0.71) (Figure 8G).
3.8 FCRLA knockdown inhibits the
proliferation of lung cancer cells

Based on the association between the risk score and the tumor

immune microenvironment revealed by the immune infiltration

analysis, the role of mitochondrial dysfunction in LUAD cells and
FIGURE 3

Candidate genes were selected based on DEG and MPTDNRG feature modules. (A) Univariate Cox regression analysis was performed for the 82
candidate genes. With HR ≠ 1 and a P < 0.05 as the criteria, 25 genes were screened, and the results are shown in a forest plot. (B) Least absolute
shrinkage and selection operator regression analysis was performed on 19 genes screened using the univariate Cox + PH assumption test. (C)
Expression of three prognostic genes in lung adenocarcinoma (LUAD) and control samples.
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FIGURE 4

Construction of a prognostic risk model. (A) Using the median value of the risk score as the boundary, the samples were divided into two groups:
high- and low-risk. After ordering the prognostic risk scores from low to high, a risk curve was constructed (TCGA dataset). (B) KM curve of the risk
model (TCGA dataset). (C) Heatmap of prognostic gene expression in high- and low-risk groups (TCGA dataset). (D) The survivalROC package of R
language was used to draw the receiver operating characteristic (ROC) curve. Based on the obtained prognostic risk score model, 1, 3, and 5 years
were considered time nodes. (E) Based on the validation set, risk scores were sorted from low to high, and a risk curve was plotted. (F) Using the
median value of the risk score as the boundary, the samples were divided into two groups: high- and low-risk. Differences in survival between the
high- and low-risk groups were compared using a log-rank test. (G) Heatmap of prognostic gene expression in high- and low-risk groups. (H) ROC
and survival curve drawing of the GSE31210 dataset of the Gene Expression Omnibus database. The calibration curve, with the predicted probability
on the x-axis and the actual probability on the y-axis, indicates that the closer the slope of the calibration curve is to 1, the better the predictive
performance of the model.
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its relationship with FCRLA expression were further explored. As

the energy center of cells, the functional state of the mitochondria is

closely related to the immune response. Next, an in-depth analysis

was conducted to examine the effect of mitochondrial dysfunction

on the proliferation and necrosis of LUAD cells. To verify the

accuracy of the bioinformatics prediction results, the changes in the

expression level of FCRLA mRNA in human normal lung epithelial

cells BEAS-2B and lung cancer cells A549 and NCI-H1975 were

determined. FCRLA and CD79A were highly expressed in lung

cancer cells, whereas RASGRP2 was expressed at low levels. This

finding was consistent with the bioinformatic results (Figure 9A).

FCRLA expression in lung cancer cells was knocked down using

siRNA to further verify the specific effects of FCRLA on lung cancer
Frontiers in Immunology 11
cells. All three siRNA sequences exhibited inhibitory effects on

FCRLA mRNA and protein to varying degrees, indicating that a

successful FCRLA knockdown cell line was constructed (Figures 9B,

C). Si-FCRLA-2 knockdown was the most apparent. Therefore, in

subsequent experiments, Si-FCRLA-2 was selected as the FCRLA

knockdown sequence.

To further determine the effect of FCRLA on the phenotype of

lung cancer cells, its effect on the proliferative ability of these cells

was investigated using CCK8 and EDU staining. No significant

difference was observed between the si-NC and NC groups,

confirming that the transfection reagent did not affect cell

proliferation. After FCRLA knockdown, the proportion of EDU

decreased significantly, and cell proliferation was significantly
FIGURE 5

Construction of an independent prognostic model. (A) The six clinical characteristics of age, sex, stage, T, N, and risk score (risk model score) were
simultaneously included in the univariate Cox analysis. Screening was performed with a P-value of < 0.05. (B) The stage and risk score obtained from
the screening of univariate Cox + PH assumption tests were included in the multivariate Cox prognostic analysis. Screening was performed with a P-
value of < 0.05. (C) Using the rms package of the R language, scoring was performed based on Stage and RiskScore. Each factor corresponds to a
score, and the sum of the scores of each factor corresponds to the total score (total points). Subsequently, the 1-, 3-, and 5-year mortality rates
were predicted based on the total score. The higher the score, the higher the mortality rate. Finally, the prediction results were drawn using a
nomogram. (D) Calibration curve of the nomogram. (E) Decision curve analysis (DCA) curve of the nomogram model. (F) ROC curve.
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inhibited. The CCK8 results also showed that cell viability decreased

significantly after FCRLA knockdown. These results indicate that

FCRLA knockdown inhibited the proliferation of lung cancer

cells (Figure 9D).
3.9 FCRLA knockdown inhibits necroptosis
in LUAD cells

To further confirm FCRLA as a mitochondria-driven necroptosis-

related gene, the relationship between FCRLA and necroptosis was

established in LUAD cells by performing necroptosis-related

phenotypic experiments and observing changes in mitochondrial

structure. In the detection of necroptosis, the si-FCRLA group

showed significant differences compared to the si-NC group. Flow

cytometry and FITC/PI double staining indicated that the proportion

of necroptosis in the si-FCRLA group was significantly higher than that

in the si-NC group (Figure 10A). Hoechst 33342/DAPI double staining

indicated that cells in the si-FCRLA group showed apparent

necroptosis characteristics, such as nuclear chromatin condensation

and fragmentation, whereas such characteristics were less pronounced

in the si-NC group (Figure 10B). Electron microscopy revealed that the

mitochondrial structure of cells in the si-FCRLA group showed

damage, such as mitochondrial swelling and cristae disorder, whereas

the mitochondrial structure of the si-NC group was relatively intact

(Figure 11A). In addition, JC-1 detection results showed that the

mitochondrial membrane potential in the si-FCRLA group was

significantly lower than that in the si-NC group, indicating

mitochondrial dysfunction and further confirming the promotion of
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necroptosis. The siNC group showed no significant difference

compared to the siNC group in each test (Figure 11B). FCRLA

knockdown significantly enhanced the protein expression of CypD,

and this effect was reversed by the addition of cyclosporin A

(Figure 11C). These results suggest that FCRLA can protect against

necrosis in LUAD cells, and this process may be closely linked to

mitochondrial function.
4 Discussion

MPT-driven necrosis is defined as CypD-mediated

programmed cell death, specifically necrosis. MPT-driven necrosis

may lead to heart and neurological diseases, such as cerebral

ischemia (29), and is associated with the prognosis of various

tumors, including prostate cancer (30) and leukemia (31).

However, the relationship between the MPTDNR lncRNAs and

LUAD remains unclear. This study identified DEGs between 3,231

LUAD and adjacent samples. Taking the MPTDNRGs score as the

phenotypic trait, the MPT-driven necrosis-related genes identified

in the WGCNA analysis were intersected with the DEGs, resulting

in 82 candidate genes. Using univariate Cox regression analysis and

least absolute shrinkage and selection operator regression analysis,

three prognostic genes were determined. Additionally, in vitro

downregulation of FCRLA in LUAD cells induces necrosis.

The three prognostic genes identified in this study were

RASGRP2, CD79A, and FCRLA. RASGRP2, a small guanosine

triphosphatase of the RAS family (GTPases, including RAS and

Rap), is a pivotal regulator of cell signaling.
FIGURE 6

Risk score and clinical characteristics. A correlation analysis was performed between five clinical characteristics (age, sex, stage, T, and N) and the
risk score. Differences in risk scores were calculated among the different clinical characteristic subgroups and subjected to the Kruskal–Wallis test.
*P < 0.05, **P < 0.01, ****P < 0.0001.
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RASGRP2 was expressed at low levels in LUAD and was

associated with the prognosis of patients with LUAD. In vitro

cytological experiments demonstrated that RASGRP2 inhibited

the proliferation of LUAD cells by regulating mitochondria-

dependent apoptosis (32), consistent with the present findings.

The primary trigger factor for RASGRP2 activation is calcium

(33), and changes in mitochondrial permeability are associated
Frontiers in Immunology 13
with alterations in calcium ion concentrations. Mitochondrial

permeability changes result from the accumulation of Ca2+ ions

in the mitochondrial matrix, leading to the opening of the MPT

pore, rendering it highly permeable to solutes and low-molecular-

weight substances (34). This may be the mechanism by which

RASGPR2 mediates MPT pore-driven cell necrosis. CD79A

(CD79a) is a crucial component of the B-cell receptor complex,
FIGURE 7

Enrichment analysis. (A) Gene Set Enrichment Analysis (GSEA) enrichment analysis in high- and low-risk groups (B) Gene Set Variation Analysis
(GSVA) heatmap between high- and low-risk groups. (C) GSVA enrichment analysis between high- and low-risk groups.
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participating in the activation, proliferation, and differentiation of B

cells in conjunction with CD79B (CD79b). In lung cancer, CD79A

expression is primarily associated with regulating the tumor

immune microenvironment. High CD79A expression may be

related to the abundance of tumor-infiltrating B cells, suggesting

its essential role in tumor immune surveillance and immune

responses (35).

FCRL molecules belong to a large receptor family, homologous to

the receptors of the immunoglobulin Fc portion. FCRLA is a prognostic

gene in malignant tumors, such as ovarian (36), breast (37), and

colorectal cancer (38). In this study, Spearman’s correlation analysis

was conducted between prognostic genes and 11 immune checkpoints.

The correlation between FCRLA and the immune checkpoint BTLA

was the highest. Analysis of the correlation between the risk score and
Frontiers in Immunology 14
immune-infiltrating cells revealed a negative correlation with 15

immune cells and 12 immune cell functions. The immune cell and

function scores of the low-risk group were lower than those of the high-

risk group, indicating that the antitumor immune response levels in the

high-risk group were lower than those in the low-risk group. Analysis

of the gene expression levels of 11 conventional immune checkpoints

revealed a negative correlation between the high- and low-risk groups.

The expression levels of immune checkpoint genes in the high-risk

group were low, with the strongest correlation observed between

FCRLA and the immune checkpoint BTLA. Additionally, the

immune, stromal, and microenvironment scores confirmed that the

risk score had the strongest correlation with the immune score.

GSEA revealed that the top five pathways in the low-risk group

were cytokine–cytokine receptor interaction, intestinal immune
FIGURE 8

Immune infiltration analysis. (A) Correlation between the risk score and the infiltration levels of six immune cells (B cells, CD4 T cells, CD8 T cells,
neutrophils, macrophages, and dendritic cells), and scatter plots. (B) Box plots of 16 immune cell types in the high- and low-risk groups. (C) Box
plots of 13 immune-related functions in high- and low-risk groups. (D) Expression of immune checkpoint genes in high- and low-risk groups. (E)
Heatmap of the correlation between the prognostic genes and immune checkpoints. (F) Box plots of tumor microenvironment scores. (G) Scatter
plot of the correlation between the risk score and tumor microenvironment score. ***P < 0.001, ****P < 0.0001.
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network for IgA production, hematopoietic cell lineage pathways,

and chemokine signaling pathway. These signaling pathways are

closely associated with processes such as tumor invasion, migration,

and inflammatory immune responses. Growth factors and reactive

cytokines produced during chronic inflammatory processes may

lead to carcinogenesis (39). Cytokines exert their biological effects
Frontiers in Immunology 15
by binding to their corresponding receptors on the cell surface.

After binding to their receptors, cytokines initiate complex

intermolecular interactions within cells, ultimately leading to

changes in gene transcription. The tumor necrosis factor receptor

superfamily is a superfamily of cytokine receptors. Targeting

regulatory T cells expressing the TNFR2 receptor is a safe and
FIGURE 9

FCRLA knockdown inhibits the proliferation ability of LUAD cells. (A) The relative expression levels of FCRLA, CD79A, and RASGRP2 mRNA in BEAS,
A549, and NCI-H1975 cells were detected using RT-qPCR. (B) Changes in the relative expression levels of FCRLA mRNA 48 h after transfection with
siRNA-1, 2, 3 interference sequences in A549 and NCI-H1975 cells were detected using RT-qPCR. (C) Relative FCRLA protein expression levels in
A549 and NCI-H1975 cells 48 h after transfection with siRNA-1, 2, 3 interference sequences were detected using western blotting. (D) Changes in
the proliferation ability of A549 and NCI-H1975 cells after different treatments were detected by EDU staining and CCK8 experiments (200×, scale
bar: 100 mm). Compared between the two groups, *P < 0.05, ***P < 0.001, ****P < 0.0001, ns represents no statistical significance between the two
groups.
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effective method for stimulating antitumor immunotherapy (40).

The seven helical surface molecules bound by chemokines belong to

two families, conventional and atypical chemokine receptors. The

most extensively studied function of chemokine networks is cell

migration, particularly leukocyte migration. Notably, cancer cells

derived from non-leukocytes can evolve to express conventional

chemokine receptors and respond to chemokines, promoting local

invasion, spreading to draining lymph nodes, and metastasizing to

distant tissues (41). In vitro experiments confirmed that

downregulating FCRLA expression significantly inhibited the

proliferation of LUAD cells, induced necroptosis in LUAD cells,

and disrupted the stability of the mitochondrial membrane

potential, resulting in damage to mitochondrial structure and
Frontiers in Immunology 16
morphology. Therefore, FCRLA may induce necrosis in LUAD

cells through mitochondrial-driven pathways.

The innovation of this study lies in integrating the TCGA and

Gene Expression Omnibus databases to identify MPTDNRGs

associated with the prognosis of LUAD. Specifically, a prognostic risk

model was constructed based on three key genes (RASGRP2, CD79A,

and FCRLA), and FCRLA knockdown induced necrosis in LUAD cells

by impairing mitochondrial function. This finding not only provides

novel insights into the molecular mechanism of LUAD progression but

also proposes potential therapeutic strategies targeting the MPT-driven

pathway. Additionally, the correlation between FCRLA and immune

checkpoints was investigated, revealing its potential role in regulating

the tumor immune microenvironment. However, this study has some
FIGURE 10

FCRLA knockdown induces necrosis in LUAD cells. (A) Changes in cell necrosis after treatment with each group of LUAD cells were detected using
flow cytometry with FITC/PI double staining. (B) Changes in cell necrosis after treatment of each group in LUAD cells were detected using PI/
Hoechst33342 cell viability staining (100×, Scale bar: 50 mm). Compared between the two groups, ****P < 0.0001, ns represents no statistical
significance between the two groups.
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limitations. First, experimental validation was limited to in vitro cell

models, and the in vivo effects of FCRLA knockdown on tumor growth

and necrosis remain unclear. Second, the specific molecular

mechanism by which FCRLA regulates MPT and necrosis in LUAD
Frontiers in Immunology 17
cells requires further investigation. Finally, the clinical relevance of the

prognostic risk model should be verified in larger cohorts and ethnic

populations. Future studies should focus on addressing these

limitations through in vivo experiments, clarifying the detailed
FIGURE 11

FCRLA knockdown leads to mitochondrial damage in lung cancer cells. (A) The changes in mitochondrial structure and morphology after treatment
of each group in LUAD cells were observed using electron microscopy (10000×, scale bar: 1 mm). (B) The changes in mitochondrial membrane
potential in A549 and NCI-H1975 lung cancer cells were detected using the JC-1 fluorescent probe (200×, Scale bar: 50 mm). (C) After FCRLA
knockdown in A549 and NCI-H1975 cells, the cells were treated with cyclosporin A for 24 h, and the relative expression level changes of CypD
protein were detected using western blotting. Compared between the two groups, **P < 0.001, ***P < 0.001, ****P < 0.0001.
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molecular pathways involved, and validating the applicability of this

model in clinical settings.

In conclusion, this study identified FCRLA as a key regulator of

MPTDN in patients with LUAD. FCRLA knockdown inhibits LUAD

cell proliferation and induces necrosis by impairing mitochondrial

function. These findings, supported by bioinformatic analysis and in

vitro experiments, highlight the potential of FCRLA as a prognostic

biomarker and therapeutic target. Future studies should validate these

results in vivo and explore the detailedmechanisms of action of FCRLA

in LUAD progression.
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SUPPLEMENTARY FIGURE 1

Validation of the prognostic risk model in the GSE13213 dataset. (A) Risk curve
showing the distribution of risk scores from low to high in the GSE13213

dataset. (B) Kaplan–Meier (KM) survival curve comparing the survival
differences between high- and low-risk groups. (C) Heatmap displaying the

expression levels of prognostic genes (RASGRP2, CD79A, and FCRLA) in high-
and low-risk groups. (D) Receiver operating characteristic (ROC) curves for 1,

3, and 5 years, demonstrating the predictive accuracy of the risk model.
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