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Introduction: Vaccine platforms used in successful, licensed vaccines have

varied among pathogens. However, antibody level is still the main clinical

correlate of protection in most approved vaccines. Decisions as to the best

vaccine platform to pursue for a given pathogen may be informed through

improved understanding of the process of antibody generation and its temporal

dynamics, as well as the relationship between these processes and the type

of vaccine.

Methods: We have analyzed the dynamics of antibody generation for different

vaccine platforms against diverse pathogens, and developed a consensus

mathematical model that captures antibody dynamics across these diverse

systems. Initially, the model was fitted to a rich dataset of antibody and

immune cell concentrations in a SARS-CoV-2 vaccine experiment. We then

used concepts from machine learning, such as transfer learning, to apply the

same model to a variety of systems, involving different pathogens, vaccine

platforms, and booster dose use/timing, fixing most parameter values relating

to the dynamics of the immune system.

Results: The model includes B cell proliferation and differentiation, as well as the

generation of plasma cells, which secrete large amounts of antibody, and

memory B cells. Overall, the model describes antibody generation in all

systems tested well and shows that the main differences across platforms are

related to the dynamics of antigen presentation.

Discussion: This model can be used to predict antibody generation in pairs of

vaccine platform/pathogen, allowing for the use of in silico results to narrow

down experimental burden in vaccine development.
KEYWORDS

vaccine, antibody dynamics, B cell, memory, vaccine platform, SARS-CoV-2, ebola,
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1 Introduction

Over the past two decades multiple infectious diseases have

emerged causing outbreaks which resulted in thousands to tens of

millions of deaths worldwide (1). It is expected that these disease

emergences will become increasingly more frequent with human

activities impacting on climate, and in turn, wild ecosystems,

habitats, and biodiversity (1). Vaccines are a critical tool against

epidemics and pandemics, offering protection from clinical or

severe disease, and reducing pathogen transmission (2–4).

Approved vaccines span multiple platforms such as live

attenuated, protein subunit, mRNA, and viral vector vaccines,

with the most successful platform varying depending on the

pathogen (5). For example, mRNA vaccines, adenovirus vectored

vaccines, and protein subunit vaccines have been widely used to

mitigate infection with SARS-CoV-2 (6–10); in contrast, the leading

Ebola vaccine uses a vesicular stomatitis virus (VSV) vector (5, 11).

In the face of an emerging pathogen, decision support is needed to

suggest which platforms hold the most promise for a particular

pathogen. While this is a complex, multi-faceted problem,

mechanistic modeling of the adaptive immune response can

provide valuable quantitative insights into the underlying

processes of both humoral and cellular immune responses (12–

14), and in turn, inform selection of best vaccine candidates for a

given pathogen.

Mechanistic immune dynamics models have been used

successfully to study infections such as HIV (15–27), hepatitis B

virus (28–35), SARS-CoV-2 (12, 36–42), and others. Similar models

have also been used to evaluate the immune responses to

vaccination (43, 44). Antibody titers are often considered the

strongest correlate of vaccine-induced protection (5), and are

thus, frequently, an important variable in such dynamical models.

However, these models are usually designed and fitted specifically to

a single pathogen and vaccine platform, requiring rich longitudinal

datasets for reliable and accurate parameter estimation. To better

enable analysis of antibody dynamics on the small datasets more

likely to be available early in vaccine studies, we sought to develop a

consensus model that could be used both for multiple pathogens

and different platforms without the need to re-fit all model

parameters. Recently, Xu et al. proposed a single model structure

to capture the dynamics of the immune response to SARS-CoV-2

vaccines from two different platforms (Adenovirus and mRNA)

(43). However, the model used very limited data (just 4 to 5 data

points for each case), and did not specifically consider the

generation of long-lived cellular species, such as memory B and

long-lived plasma cells, which are crucial for the longevity of the

humoral immune response (45). Furthermore, the previous work

did not evaluate how the model would extend to vaccine responses

for pathogens beyond SARS-CoV-2.

Here, we develop and fit a consensus mathematical model to

antibody titer and memory B-cell data, when available, from

multiple vaccine platforms for two different pathogens: SARS-

CoV-2 and Ebola virus. We present a model structure that

explicitly considers identifiable cell groups contributing to lasting

immunity: memory B and long-lived plasma cells. We fit the model
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initially to a rich dataset from an adenovirus vectored SARS-CoV-2

vaccine study in rhesus macaques that contains longitudinal

measurements of both IgG titers and IgG+ memory B cell

frequency (46). To enhance the generalizability of the model, we

also simultaneously fit the model to longitudinal IgG titers from an

adenovirus vector Ebola vaccine study in cynomolgus macaques

(47). A third dataset, a SARS-CoV-2 mRNA vaccine study in

humans with longitudinal measurements for both receptor

binding site (RBD) specific IgG and IgG+ memory cells (8), serves

as a validation set in selecting the optimal consensus model. We

show that inclusion of both long-lived plasma cells and antibody-

dependent clearance of antigen improves the model fits, with

biologically relevant mechanisms, allowing the model to more

closely fit aspects of long-term longitudinal Ab titers - such as

biphasic Ab declines and inter-individual variability in responses to

booster doses. Finally, we apply the model to six additional datasets

from various SARS-CoV-2 or Ebola virus vaccine platforms. We

show that our consensus model is able to successfully capture the

IgG dynamics of each dataset by re-fitting only a small subset of

parameters related to antigen dynamics and long-lived plasma cell

dynamics, keeping core immune dynamics parameters fixed. In

addition to enabling the model to be applied to more sparse

datasets, the ability to fix core immune dynamics parameters

suggests a degree of similarity in the underlying processes (e.g.

cell transition rates) involved in the immune response to

vaccination and suggests that variability in antigen presentation

may be critical for differences in the early immune response

generated by different vaccines, platforms, or pathogens.
2 Methods

2.1 Data

The datasets analyzed in this study can be grouped into data

used to develop the core of the consensus model and data to which

the core consensus model was applied. All datasets were obtained

from the literature, using the data files published with the reference

where applicable, or digitized from the reference using Plot

Digitizer (48). The datasets are described in Table 1. Additional

information about the fitted vaccine datasets is contained in

Supplementary Table S4.
2.2 Mathematical models

We propose a simplified model of B cell activation by vaccine

antigen, followed by proliferation, affinity maturation, and

differentiation into plasma and memory cells. We assume that

antigen stimulates a set of B cells, which can belong to different

clones. The dynamics of these B cells, and the plasma cells and

memory cells they generate are given by Equations 1–7 below

dB1

dt
= r1

Ag
K + Ag

B1 − yB1 − dBB1  (1)
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dB2…7

dt
= r1

Ag
K + Ag

Bn + yBn−1 − yBn − dBBn  (2)

dB8

dt
= r2

Ag
K + Ag

B8 + yB7 − (m + p + dB)B8  (3)

dP
dt

= pB8 + p2M* − (dP + l)P  (4)

PL
dt

= lP − dLPL  (5)

dM
dt

= mB8 + m2M* + (rM − dM)M − fM
Ag

K
mM

+ Ag
M  (6)

dM*

dt
= fM

Ag
K
mM

+ Ag
M + r2

Ag
K
mM

+ Ag
M* − (m2 + p2

+ dB)M*  (7)

Here, Ag is the concentration of protein antigen (see below),

which recruits naive B cells into the response and induces B cell

proliferation at saturating rate r1, with half-maximal saturation

constant K. The germinal center (GC) reaction is represented

simply by a progression (differentiation) of B cells through

different stages B2 to B8 at rate y, where they experience antigen-

dependent proliferation (required by affinity maturation), and at

each stage they can be lost at per capita rate dB. Equation 3

represents B8 cells that have undergone affinity maturation

(including somatic hypermutation) and isotype switched to IgG+

B cells and can exit the germinal center reaction. At this stage, we

allow the B cell proliferation rate of B8 cells to increase to r2, in
accordance with reports that mature B cells (and memory cells)

proliferate faster than naive (58). These cells can differentiate into
Frontiers in Immunology 03
plasma cells, P, at rate p, or into memory cells, M, at rate µ. Plasma

cells, P, may also be generated by differentiation from activated

memory cells, M∗, at rate p2. P can further differentiate into long-

lived plasma cells, PL, at per capita rate l, or die at per capita rate dP,
whereas PL are lost at a lower per capita rate, dL. An alternative fate

of cells exiting the germinal center reaction is differentiation into

resting memory cells, M, which proliferate and die at per capita

rates rM and dM, respectively. These cells can also be recruited into a
secondary response by antigen at saturating rate jM, with half-

maximal saturation constant K/mM. Memory cells activate more

readily than B cells in the primary response (58), thus their half-

maximal saturation constant is smaller by a factor mM. Memory

cells activated in a recall response, M∗, proliferate at saturating rate

r2, differentiate into plasma cells at rate p2, and can go back to long-

lived memory cells at rate µ2 or die at rate dB. Antibodies, A, can be

produced by plasma cells at per capita rate qP, by long-lived plasma

cells at per capita rate qL and by mature IgG+ B cells after

undergoing the germinal center reaction (B8 cells) at per capita

rate qB, although the latter contribute much less, and we assume a

102-fold reduced secretion rate compared to plasma cells (59). In

turn, antibodies are cleared from circulation at rate dA, and thus,

antibody dynamics is given by

dA
dt

= qPP + qBB8 + qLPL − dAA  (8)

We note that in some experiments measurements of B cell

populations are expressed as frequencies out of total B cell numbers.

If T represents the total concentration of B cells, which we assume to be

approximately constant during a vaccine immune response, as the

majority of B cells are not antigen specific, we can divide every equation

(Equations 1–7) by T, without changing any term or any parameter.

Thus, those equations are invariant whether we are referring to cell

concentrations (mL−1) or frequencies. Equation 8 would also remain

the same, but the interpretation of the antibody production rates qx
TABLE 1 Literature datasets used.

Use Pathogen Vaccine platform Data type Species Ref.

Platform dynamics SIV Ad vector mRNA C57BL/6 mice (49)

GFP mRNA mRNA/GFP positivity cynomolgus macaques (50)

Ebola VSV vector mRNA humans (51)

Construction
SARS-CoV-2 Ad vector

IgG titer,
IgG+ memory B

rhesus macaques (46)

EBOV Ad vector IgG titer cynomolgus macaques (47)

Validation SARS-CoV-2 mRNA
IgG concentration,
IgG+ Memory B

humans
(8)

Application SARS-CoV-2 mRNA IgG titer humans (52)

SARS-CoV-2 protein subunit IgG titer rhesus macaques (53)

SARS-CoV-2 protein subunit IgG titer rhesus macaques (54)

EBOV VSV vector IgG titer cynomolgus macaques (55)

EBOV protein subunit IgG titer humans (56)

EBOV protein subunit IgG titer C57BL/6 mice (57)
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where the subscript x could be P, B, or L, would be slightly different.We

should also note that we evaluated many different alternatives in

developing the model presented above, including different forms of

the antigen-driven activation of B cells, how many B cell stages to

include, whether to have long-lived plasma cells differentiate from

plasma cells or directly from mature B cells, whether we should

differentiate between memory cells (M) and activated memory cells

(M∗), or if memory cells should become activated B cells (B8) when

encountering antigen, and other choices. We do not present all of these

alternatives here, but a subset of them is presented in section 3.1. We

also evaluated models that included CD4+ T cell help, an important

process for efficient B cell memory formation (55, 60), however we

found we did not have enough data to constrain their this mechanisms

of action, as we found few datasets in the literature with longitudinal

measurements of antigen-specific CD4+ T cells, B cells, and Ab levels

following vaccination. CD4+ T cell help drives germinal center

formation and influences the proliferation rates of B cells in the

primary, and possibly the secondary, response to antigen (61–64).

Without explicit inclusion of CD4+ T cell help in the model, we

anticipate that the effect of T cell help will be absorbed into the values of

the different parameters, such as K or µ, which increase the B cell and

memory B cell expansion rates. While interactions with CD4+ T cells

may also influence the relative levels of plasma cells versus memory B

cells, the extent and mechanism of this dependence are not well

understood (61, 64), and therefore, in light of the data limitations

discussed, we assumed the relative rates of plasma cell and memory cell

generation are approximately constant.

As described above, the B cell response is induced by antigen,

and we are particularly interested in vaccine antigens. Different

vaccine platforms (e.g., vectored vaccines, protein subunit vaccines,

DNA, or mRNA vaccines) may lead to different dynamics of the

antigen, Ag, in the equations above. Therefore, we need to account

for these different possibilities, without including undue complexity,

for which we do not have data for parameterization. Thus, we

assume that either the antigen is delivered directly into the system,

as is the case with subunit vaccines, or that genetic material, R,

coding for the antigen is delivered, for example with vectored

vaccines (such as adenovirus-based vaccines) or with standard

mRNA vaccines. Further, the genetic material may be delivered in

a replication-competent form (e.g., vesicular stomatis virus vectored

vaccines or self-amplifying RNA) or not (e.g., adenovirus vectored

vaccines or mRNA vaccines). We also assume for simplicity that

different modalities of antigen presentation (e.g., with antigen

presenting cells, such as follicular dendritic cells (FDCs), free

protein or others) are averaged together into a single species, Ag,

representing all antigen seen by B cells. Antigen dynamics is

described by the equation

dAg
dt

= kt
R

KR + R
− dAgAg − kbAgA  (9)

where the term ktR/(KR+ R) represents antigen production from

the genetic template, R, using a saturation term with half-maximal

constant KR. Antigen can be cleared by antibody-independent

processes at rate dAg and is also cleared by forming antibody-

antigen complexes at rate kb. As these complexes are assumed to be
Frontiers in Immunology 04
cleared we do not consider them further. In the case of vaccine

modalities where the antigen is injected directly into the system, kt= 0

and the bolus of antigen is simply cleared from circulation. The

genetic template of for antigens produced by the host has dynamics

governed by

R(t) =
R0e

rt , t < Toff 

R0e
rToff e−dR(t−Toff ) , Toff ≤ t 

(
(10)

where R0 is the initial amount of the genetic template

introduced by vaccination, r is the replication rate of the genetic

material, Toff is the end of the period during which the process of

replication is active, and dR is the clearance rate of the genetic

material. For non-replicating cases, such as mRNA vaccines, r = 0

and Toff = 0. The exponential form is chosen to mirror the

exponential-like growth observed for many viruses (65–68), since

these replicative vaccines are based on viral vectors.

Some vaccination protocols include multiple vaccine boosters.

We account for this in our antigen dynamics, by either adding a

bolus of antigen at appropriate times, when this is administered

directly (such as with subunit vaccines), or by accounting for these

boosters in a modified R equation given by

R(t) =

R0e
rt t < Toff ,

R0e
rToff e−dR(t−Toff ) Toff ≤ t < Tboost ,

R0e
rToff e−dR(t−Toff ) + R02e

r(t−Tboost ) Toff ≤ t < Tboost + Toff 2

R0e
rToff e−dR(t−Toff ) + R02e

rToff2

e−dR(t−(Tboost+Toff 2))
(T

boost
+ Toff 2) ≤ t

8>>>>>>>>><
>>>>>>>>>:

(11)

where Tboost and Toff2 have straightforward meaning. For

further boosters, this idea is replicated.
2.3 Model fitting to data and parameter
estimation

To fit the model to the data, we used a non-linear mixed-effect

modeling approach with the software Monolix version 2024R1

(Lixoft SA, Antony, France) (69). We either fit the model to

antibody data or simultaneously to antibody and memory B cell

frequencies, when available (more details below). We modeled the

measured antibody levels (y) in a log10 scale and the frequencies of B

cells (z) on an linear scale, for individual i at time j as yij =

log10A(tj) + sAand zij = (B8 +M +M*) + sB, respectively, with sA

∼ N(0,s 2
A)and sB ∼ N(0,s 2

B), the error for the logged antibody

levels and B cell frequencies, respectively (Note that IgG+ “memory

B cells” reported in He et al. (46) were gated based on CD27

expression, which is also expressed by cells exiting the germinal

center (70, 71), and thus, we fit the sum B8 + M + M∗, which

represent frequencies as described above. Though plasma cells are

also often CD27 positive, He et al. gated plasma cells out via absence

of CD20, so they were not included in the summation.) In the

mixed-effect approach, we assume that a model parameter, hi, is
drawn from a distribution with a fixed part q, which is the value of
frontiersin.org
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the parameter in the population, and a random term ji, which is

assumed to be normally distributed with zero mean and standard

deviation sq. Typically, we assume that the parameters follow a

lognormal distribution, which ensures their positivity. Model fitting

allows estimation of the population parameters and the variances of

the distribution of each parameter. We fixed some model

parameters at literature values (see Tables 2, 3), because this

reduces the number of parameters and makes it easier to

determine the remaining parameters (e.g., more consistent across

individuals and scenarios). The initial value of the first B cell stage,

B0, is fitted for each dataset, and values of R0 or Ag0 are fixed

according to the antigen template or protein antigen dosages

reported with the datasets. We fix R0 and Ag0, because R0 (Ag0)

trade-off against KR(K) in the term R
KR+R

in Equation 9 Ag
K+Ag in

Equation 1), and so these initial conditions can not be well

determined. Fixing these values allows the model to differentiate

between individuals with different doses (at least when fitting them

simultaneously) and also estimate the parameters KR and K. We

anticipate that bio-availability may differ between vaccine

platforms, however, this effect is again largely absorbed into the

KR or K parameters. All other initial values are set to 0. For the He

et al. (46) and Goel et al. (8) datasets, both IgG+ antibody titers and

memory B cell frequencies are available and we fitted them

simultaneously. For the other datasets, we fitted the antibody

titers only (see Table 1).

Monolix maximizes the likelihood using the Stochastic

Approximation Expectation Algorithm (SAEM), which is very

efficient for a wide range of models (69). As with other

algorithms for non linear models, the user provides initial guesses

for the parameters. To avoid solutions which could be sub-optimal

due to the starting guesses, in each case, we run the estimation

starting from more than twenty different initial parameter guesses

(making use of the automated assessment feature in Monolix). On a

Mac laptop (M1Max chip, 32GBmemory), assessments of 20 initial

guesses took between 30 min and 5 hours, depending on the

number of parameters fitted and the size of the dataset. From all

these, the fit with the lowest log-likelihood was selected for

each dataset.

To constrain our model better, when possible (i.e., if data were

available), we fitted the sub-model of antigen dynamics

(Equations 9–11) to data of specific vaccine platforms. To this

end, we used data on SIV mRNA expression in the draining lymph

node from an adenoviral vector vaccine study (49), data from VSV

RNA in blood after an Ebola vaccine using the VSV platform (51),

and both mRNA levels and GFP positivity (protein levels), fitted

simultaneously, for an mRNA vaccine study (50). Thus, for these

three platforms, we fitted that part of the model first, and fixed the

corresponding parameters when fitting the antibody data using

the other equations. Note that these antigen dynamics parameters

were fixed to the estimated ones, even if the mRNA in those

studies was not the same as in the vaccine of interest. For example,

we used adenoviral mRNA expression of a SIV vaccine antigen as

a proxy for mRNA expression of SARS-CoV-2 spike in

adenoviral vaccines.
Frontiers in Immunology 05
TABLE 2 Description of model parameters.

Parameter Description Fitting

R0, R02,… Antigen template dose From study

Ag0, Ag02,… Protein antigen dose From study

Tboost ,Tboost2 Time of booster dose From study

Toff, Toff2 Duration of template replication From template
dynamics fits

r Template replication rate From template
dynamics fits

dR Template decay rate From template
dynamics fits

r1 Max proliferation rate of activated
B cells

Fixed

r2 Max proliferation rate of GC-
experienced B cells

Fixed

dP Death rate of short-lived plasma cells Fixed

dA Decay rate of IgG Ab Fixed

p Differentiation rate to PCs Core

µ Differentiation rate to resting
memory, M

Core

dB Death rate of activated B cells Core

qP, qL Ab production rate from P, PL Core*

y Transition rate between B cell stages Core

rM - dM Net turnover of resting memory
B cells

Core

fM Resting memory B cell activation rate Core

p2 PC formation from activated memory Core

µ2 Memory cell formation from activated
memory cells

Core

mM Memory cell half-maximal activation
reduction factor

Core

kt Translation rate Core

l Differentiation rate of P to PL Fitted**

dL Decay rate of PL Fitted**

B0 Initial reactive B cell frequency Fitted

KR Template concentration for half-
maximal translation

Fitted

dAg Protein antigen decay rate Fitted

kb Ab-Ag complex formation rate Fitted

K Ag concentration for half-
maximal proliferation

Fitted
“From study” parameters are taken from the journal article reporting each dataset (see
Supplementary Table S4).
“From template dynamics fits” are fixed at the values in Supplementary Table S1 from the
corresponding platform.
“Core” parameters are fitted initially on the “construction” datasets and fixed for all
remaining fits.
*Re-fitted for special cases as specified in the text (i.e., different Ab and memory B cell units).
**Re-fitted when follow-up is long enough to capture the second phase of antibody decay.
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2.4 Parameter sensitivity

Sensitivity of various cell- and antibody- dynamic metrics (e.g.,

peak magnitude, peak times and time to decay to 50% of peak

magnitude) to model parameters was assessed in R (version 4.3.2).

We performed 5 × 104 simulations with random variations of model

parameters within the distributions estimated in the maximum

likelihood fit of the He et al. (46) data. We evaluated correlations

between these metrics and the simulation parameters using the Hmisc

package (72) to calculate correlations and the corrplot package (73) to

visualize the correlations.We also performed random forest regression

using the randomForest package (74) to predict antibody peak level

(“Apeak.mag”) and the time to decay to 50% of the peak antibody level

(“Apeak50.time”) from the parameters of the simulation. The

importance of each parameter for a given mathematical model was

determined using the caret package in R (75).
2.5 Statistical analysis

We also compared model parameters using R package Hmisc

package (72) to perform a Student t test to assess significance in
Frontiers in Immunology 06
differences between the means of individual-level parameters

estimated by Monolix. Calculated p-values were adjusted using a

Bonferroni multiple test correction.
3 Results

3.1 Determining model structure

Our model structure (Equations 1–11) is built with two specific

aims in mind (1): making the model immunologically relevant with

measurable cell populations, and (2) using a generalizable structure

to bridge vaccine platforms and antigens in an interpretable way. In

pursuit of these aims, we evaluated various model structures to

determine a robust ODE system which would capture the relevant

processes involved in the humoral immune response in an

interpretable and transferable manner. To develop the model

presented in section 2, we considered both immunological

relevance and fit quality, as determined by the Corrected Bayesian

Information Criteria (BICc) in Monolix (76).

Our model structure captures the basic progression of B cells

from activation to antibody production and memory cell formation.

Upon binding a cognate antigen, naive B cells begin to proliferate.

These activated, proliferating B cells are generally thought to

differentiate towards one of two primary fates: plasma cells or

memory B cells. Plasma cells produce large amounts of antibody

and are generally short-lived. However, a small subset of plasma

cells become long-lived plasma cells (PL), which can persist for

decades and are critical for long-term immune protection (77). Still,

we initially considered a model without long-lived plasma cells, but

preliminary fits indicated that the model was unable to capture the

two-phase decay observed in the long-term dynamics of antibody

titers (see Supplementary Table S2 and supplementary

information). This is corroborated by previous work which has

directly linked the two-phase decay of antibody titers to the half-life

of short-lived and long-lived plasma cells (78, 79), suggesting the

need for both cell types to capture longitudinal antibody dynamics.

Differentiation into PL has been suggested to occur from activated

memory B cells (80), or as a function of B cell receptor (BCR)

affinity (81, 82), though recent studies suggest they may develop

from short-lived plasma cells which are able to migrate to a niche

supporting long-term survival (81, 83–85). Therefore, in our model,

we assume that activated B cells may differentiate into short-lived

plasma cells or memory cells, and that a fraction of short-lived

plasma cells (PCs) then go on to persist as PL. We assume that PLs

produce antibody at the same rate as Ps (qP= qL), as without data on
the relative levels of PL and P cells, the relationship between qP and
qL would be difficult to constrain.

Memory B cells can be further divided into activated memory

cells (M∗), which rapidly proliferate and differentiate into plasma

cells (58), and resting memory cells,M, which persist in the body for

long periods of time, ready to re-activate and initiate a recall

immune response upon re-exposure to antigen. Although, we

initially tried models with only one population of memory cells,

we found that models with two populations (M andM∗) performed
TABLE 3 Fixed and core fitted model parameters.

Parameter Value [s.e.] Unit Reference

r1 2.5 d−1 (58, 90)

r2 4.0 d−1 (58, 60, 91, 92)

dP 0.35 d−1 (93)

dA NHP: 0.050 d−1 (94)

human: 0.033 d−1 (95)

mouse: 0.087 d−1 (96)

p 0.023 [0.017] d−1

µ 0.050 [0.015] d−1

dB 0.14 [0.045] d−1

qP, qL 1.2 ×107 [5.6 ×106] EU/
day

y 0.27 [0.07] d−1

rM - dM -0.011 [0.0014] d−1

fM 0.95 [0.11] d−1

p2 1.8 [0.4] d−1

µ2 4.1 [1.0] d−1

mM 3237 [2.1] unitless

kt 3255 [13.8] [Ag]/d

l SARS-CoV-2: 0.0058 [0.0013] d−1

Ebola: 0.0049 [0.0015] d−1

dL SARS-CoV-2: 0.0032 d−1

Ebola: 0.000038 d−1
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1596518
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wilding et al. 10.3389/fimmu.2025.1596518
better, in part because the activated memory cells can re-seed the

resting memory compartment. Thus, we include them separately in

our model accounting also for differences in proliferation rates and

differentiation potential. In addition, both types of cells were

measured in the He et al. data analyzed in this study (46).

Another important consideration for our model is to accurately

capture the timing of affinity maturation and antibody class-

switching. The antibody response generally begins with IgM. As

the immune response progresses, B cells undergo class-switching to

produce IgG or IgA antibodies, most commonly in the context of a

germinal center reaction. IgG antibodies typically have longer half-

lives than other classes, such as IgM or IgA, and are the most

frequent correlate of vaccine-induced protection (5). In the study by

He et al. (46), IgG+ memory B cells were gated by their expression of

CD27, which may also be expressed on germinal center B cells (70,

71). Therefore, we wanted to include two separate classes of B cells

in our model to represent B cells before and after class-switching in

the GC. Class-switching typically takes between 15–21 days after

vaccination (60), and we evaluated a version of the model which

employs the “linear chain trick” to narrow the distribution of

“switch times” for the B cells and avoid prediction of class-

switched cells too early. This approach is a variation of the well

recognized method in ODE models, both for within host models

(65, 66, 86, 87) and epidemiology models (88), in which adding

transitional “stages” to an ODE model narrows the distribution of

residence times as the number of “stages” increases, generating an

Erlang distribution rather than the exponential distribution

characteristic of traditional first-order kinetics (65, 66, 88). We

tried models with 2, 5, 8, 10, and 15 B cell “stages,” and found that

an 8 stage model was appropriate to generate good fits. Relative

quality of fits for the models with 2 stages and 8 stages are shown in

Supplementary Table S2. Other transitions in the model are left as

exponential type transitions, as is commonly used in within-host

models, for simplicity and because we do not have data to constrain

the additional parameter required for alternative transition types,

such as the Erlang distribution previously discussed (65, 66, 88).

Finally, we also experimented with different model structures

for the antigen dynamics. From a simple exponential increase

followed by a decrease for replicating antigens, or just an

exponential decrease for non-replicating antigens, to the more

detailed final model in Equations 9 and 11. In addition, we also

analyzed the effect of existing antibody on the immune response

after vaccination. Antibody may reduce the available vaccine

antigen by binding to it and accelerating its clearance (7, 89).

Thus, we evaluated whether inclusion of a reaction between

existing Ab and the vaccine Ag would enhance the model’s fit to

the data. We found that adding an Ab-Ag binding/clearance term

markedly improved the fit of the model (Supplementary Table S2).

This is consistent with experimental results which have found that

the fold-increase of antibody titers after boosting is inversely

correlated with pre-boost antibody titers (7). The addition of the

Ab-Ag binding/clearance term therefore improves the model by

providing biologically-relevant flexibility in fitting the variability of

post-boost Ab titer increases.
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Consideration of these different biological factors and statistical

comparison of the different model structures led us to our final

model presented in detail in the Methods section, and which we use

for the remainder of our analysis. A model schematic is shown

in Figure 1.
3.2 Parameter estimation and model
validation

We constructed our model primarily using a rich dataset of

longitudinal SARS-CoV-2 receptor binding domain (RBD)-specific

IgG titers and IgG+ memory B cells after an adenovirus vaccination

protocol in rhesus macaques (see He et al. (46)). This dataset

contains frequent measurements of those two quantities for up to

343 days after a primary vaccine dose, including two time points

after a booster was given. We only included the post-boost data

from macaques that received a homologous booster dose. An

adenovirus-based vaccine delivers the DNA template of the

antigen (here RBD), which is transcribed into mRNA and then

translated into the antigen protein. Thus, to further constrain our

model, we first independently estimated the dynamics of mRNA

transcripts coding for the vaccine antigen (Supplementary Figures

S1–S3; Supplementary Table S1). This was done by fitting the

growth and decay rates in Equation 10 to measurements of

mRNA transcripts in the draining lymph node previously

reported for several adenovirus vectors (49). We then assumed

that mRNA dynamics is approximately independent of the type of

DNA delivered by the adenovirus vector (i.e., whether it codes for

SIV or SARS-CoV-2) and fix these estimated parameters (shown in

Supplementary Table S1) while fitting the antibody and memory B

cell dynamics model to the He et al. dataset (46).

To improve the robustness of our model, we estimated its

parameters by fitting the IgG+ memory B cell and IgG titer data

from the adenovirus based SARS-CoV-2 vaccine study (46), and

simultaneously the IgG titer data from an adenovirus-based Ebola

study (47). We hypothesized that antigen dynamics parameters may

vary by pathogen, and therefore we allowed different values for

decay of protein antigen (dAg), and antigen levels for half-maximal

proliferation, (K) for the two studies. Furthermore, based on

preliminary results showing potential differences in long-lived

plasma cell generation (l) and decay (dL), these parameters were

also allowed separate values by pathogen in parameterizing our core

model. However, the other parameters were fit to a common

population estimate for both studies, with random effects. we

found that there were no significant differences between

parameters for NHPs receiving two different doses of the Ad-

vectored SARS-CoV-2 vaccine. Most parameters also showed no

significant difference between the Ad-vectored SARS-CoV-2

vaccine and Ad-vectored Ebola vaccine, with the exception of

three parameters: dL, K, and dAg as shown in Figure 2, and

confirming our preliminary results. Therefore, in further fits and

analyses shown below, we kept most parameter fixed at the values

from these initial fits (which we term “core immune parameters”,
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see Table 2), except for: initial reacting B cells (B0); parameters

relating to antigen dynamics (dAg, kb, K, and [for template-based

vaccines] KR); and dL and l (as discussed in section, 3.3), which

were re-fitted whenever the time frame of the data was long enough

to capture this decay rate. In cases where a dataset did not include

long enough follow-up data to estimate l and/or dL, those

parameters were fixed at the values from the training model with

the same pathogen (i.e. the Ad-vectored SARS-CoV-2 vaccine or

Ad-vectored Ebola vaccine).

As a validation (“out of sample”) test to mitigate over-fitting of

the model to these two initial datasets, and to explore the robustness

of the parameter estimates, we tested our fits, with core parameters

fixed, against a third dataset after mRNA vaccination in humans from

(8) (not including individuals with previous SARSCoV-2 infection).

We chose this dataset because it contained data both for antibody

levels and specific IgG+ memory B cells. The core parameter set

which performed best overall for both the “construction” and

“validation” datasets is shown in Table 3, with the scores for the

tested parameterizations in Supplementary Table S3. While

variability in assays used and units reported complicates direct

comparison of antibody titers, most parameters in our model are

rates with units of only “per time,” and should therefore be applicable

across datasets with different parameters. An exception is kb, which is

a second order rate constant with units of 1
Time�Concentration, and will

depend on whether the Ab unit is concentration or titer. This

parameter is re-fit for all datasets. Additionally, because the mRNA
Frontiers in Immunology 08
vaccination dataset used for validation reported different units for

both IgG+ antibodies and the B cell frequency, the value for qPwas re-
fit, though the ratios of qL and qB to qP were maintained (1:1 and

0.01:1, respectively). The model described both the memory B cell

dynamics and the IgG dynamics from the training and validation

datasets very well, as shown in Figures 3–5.
3.3 Sensitivity analysis for antibody peak
value and antibody half-life

Since an intended application of our model is to evaluate

multiple datasets with minimal re-fitting, we evaluated which

parameters were most influential for various model metrics, such

as peak antibody titer and time to decay to half of the peak antibody

value. We performed 5 × 104 simulations, varying all model

parameters with random effects within their fitted distributions

from Table 2. From these simulations, we calculated metrics

describing the simulated curves - peak time, peak magnitude, and

time to decay to 50% of the peak value - and calculated the values of

those metrics for each major species (GC-experienced activated B

cells, short-lived plasma cells (P), total memory cells (M + M∗),

long-lived plasma cells (PL), and antibody). In order to evaluate

which parameters are more influential and may need re-fitting

based on observed differences in longitudinal Ab titer

characteristics between studies, platforms, pathogens, and hosts,
FIGURE 1

Model schematic. B cell types are shown as circles, and differentiation, proliferation, or death rates are indicated by solid arrows. Secretion is
indicated by dashed arrows. Other types of interactions (e.g., inhibition, uptake, or presentation) are indicated by dotted lines. Note that in our
implemented model Bn=B8.
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we evaluated correlations between these metrics and the simulation

parameters, as shown in Figure 6A. Unsurprisingly, these

correlation results show that the decay rate of long-lived plasma

cells has a strong negative correlation with the ratio of final level

over peak level for these cells (“LLPratio”). Similarly, the peak time
Frontiers in Immunology 09
(“Bpeak.time”) and time to decay to 50% of peak (“Bpeak50.time”)

for IgG+ activated B cells are strongly negatively correlated with the

B cell stage transition rate, y. Perhaps less intuitive is the

observation that some parameters defining antigen dynamics,

such as kt or kb, are also strongly correlated with the magnitude
FIGURE 2

Distribution of parameters for individual NHPs in each study/dose group (dB, dA, dP, qP, and KR were not allowed to vary between individuals).
Significant differences are indicated such that “*” indicates p< 0.05,”**” indicates p< 0.01 and “****” indicates p< 0.0001 after Bonferroni test
correction. Units of all parameters shown are d−1 except for: kt([Ag]/d), kb([A]

−1d−1), and K ([Ag]).
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of the response. Furthermore, we made use of a random forest (RF)

regression model to evaluate the importance of each parameter in

the prediction of antibody peak magnitude (“Apeak.mag”) and the

time to decay to 50% of the antibody peak (“Apeak50.time”), which

are important parameters in comparing vaccines. Figure 6B shows

the sensitivity analysis, and predictor parameters for the antibody

decay rate and antibody peak value in the RF regression model.

Four of the top seven most important predictors of antibody peak

value involve antigen dynamics (e.g., kb, kt, dR, dAg). By contrast, the
parameter describing the rate of long-lived plasma cell production,

l, is highly predictive of the time to 50% antibody titer decay. The

value of l is also strongly correlated with the ratio of the final

antibody titer (at 300 days) over the peak antibody titer. Therefore,

whenever adequate data were available, the value of l was re-fit for

subsequent datasets.

Interestingly, the Ebola protein subunit vaccine in mice produces

an earlier Ab peak than seen in other studies which are all performed

in non-human primates or humans. We hypothesized that this may

have to do with differences in B cell maturation rates for small and
Frontiers in Immunology 10
short-lived versus large and long-lived hosts (92). Our previous

correlation analysis (see Figure 6A) suggested that the parameter y
is largely responsible for the timing of the IgG+ B cell peak, so we

reasoned that re-fitting that parameter for the mouse dataset would

allow the model to accommodate earlier B cell peak times, and

thereby better capture the Ab peak timing. While the model

adequately fits this data without changing core immune

parameters, the model fit is improved if y is re-fit for the mouse

model (see Supplementary Figure S9). Additional studies are needed

comparing the same vaccine platform/pathogen combination across

multiple host species to evaluate if the time to the Ab peak differs in

different species. However, given the small size and shorter lifespan of

mice, it is not unreasonable for the B cell kinetics to vary significantly

between mice and NHPs or humans (92). Since this is the only mouse

study included in our present analysis we cannot yet verify that re-

fittingy improves the model fit for other mice datasets, and therefore,

parsimoniously, we focus the remainder of our analyses on the best fit

of this Ebola subunit vaccine in mice with the same value for y as the

datasets in other species.
FIGURE 3

Individual fits to the IgG Ab titer and IgG+ memory B cell frequency data from He et al. (46).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1596518
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wilding et al. 10.3389/fimmu.2025.1596518
3.4 Testing the model with independent
published datasets

Considering (1) the consistency of the core model parameters

between datasets used, and (2) the importance of antigen dynamics

and long-lived plasma cells in predicting key antibody dynamics

metrics, we next tested our model on a variety of published datasets

reporting longitudinal IgG titers following vaccination against

either SARS-CoV-2 or Ebola, fixing “core” parameters and re-

fitting only antigen dynamics and PL-related parameters. The

datasets to which we applied the model are described in Table 1.

Datasets included three SARS-CoV-2 vaccine candidates for two

platforms (protein subunit and mRNA), and three Ebola vaccine

candidates for two platforms [protein subunit and replicating viral

vector (VSV)]. The fits to the Ab levels of individual (or, for Fries

et al., mean level across individuals) macaques, mice, or humans are

shown in Supplementary Figures S5–S10. Antibody titer curves

generated by the estimated population parameters for each dataset

are shown in Figures 7, 8. In all cases, the model described the data

with high accuracy while re-fitting only 3–7 parameters for each fit,

of which one is the initial cells recruited into the response, B0, and 2

to 4 relate to Ag dynamics. Supplementary Table S5 reports the

estimated parameters by study and Supplementary Figure S4 shows

a comparison of these parameters, normalized to the maximum

value for each parameter. In that figure, we can see that some

parameters are very consistent across most studies, such as B0 or

log10 kB. To further compare parameters across platforms and
Frontiers in Immunology 11
pathogens, we grouped studies according to vaccine platform type

(Figure 9A) or pathogen (Figure 9B). Unfortunately, few platforms

were tested on both pathogens. However, where comparable

platforms were tested across both pathogens, most fitted

parameters showed greater variation between platforms than

between pathogens. For example, the AdV-based SARS-CoV-2

vaccine and AdV-based Ebola vaccine we evaluated had similar

estimated parameter values for the Ab-mediated antigen clearance

rate (kb), the initial activated B cell fraction (B0), and the decay rate

of presented antigen dAg, while values of those same parameters

varied widely within either SARS-CoV-2 vaccines or Ebola vaccines.

When considering these parameters, different platforms appear to

have differing strengths and weaknesses; the VSV Ebola vaccine had

the highest value of kbof the datasets fitted, while the decay rate of

presented antigen (dAg) was generally higher for protein subunit-

based vaccines, though the value changed substantially between

different subunit formulations. Similarly, long-lived plasma cell

generation rates (l) were similar between the two pathogens

within the AdV platform. However, as fewer studies included

long enough follow-up time points to estimate this parameter and

dL, the effects of platforms versus pathogens on long-lived plasma

cell dynamics are less clear. In general, AdV and subunit vaccines

were more efficient at generating long-lived plasma cells (higher l)
than the mRNA vaccine for SARS-CoV-2, and the estimated long-

lived plasma cell generation rate (l) for the two subunit vaccines for
Ebola were higher than most estimates for the AdV-based Ebola

vaccine. By contrast, decay rates of long-lived plasma cells generally
FIGURE 4

Individual fits to the IgG Ab titer data from Callendret et al. (47).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1596518
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wilding et al. 10.3389/fimmu.2025.1596518
FIGURE 5

Individual fits to the IgG concentration and IgG+ memory B cell frequency data from Goel et al. (7).
FIGURE 6

Sensitivity analysis for antibody dynamics. (A) Correlations between fit metrics - such as peak timing, peak ratios, etc. - and fit parameters. “Peak”
metrics refer to the maximum levels of a species (PL, P, A, etc), while “final” metrics refer to the level at the end of the simulated time (315 days), and
“ratio” metrics refer to the final value divided by the peak value. Ellipse width correlates with the Bonferronicorrected p-value, with low p values
corresponding to very thin ellipses. Empty squares correspond to correlations where p >0.01 after Bonferroni correction. Ellipse color indicates the
correlation coefficient according to the scale shown. (B) Importance of model parameters, by random forest regression, for prediction of the peak
antibody titer and the time to decay to half the peak value.
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seemed to be higher for SARS-CoV-2 vaccines than for Ebola

vaccines, however the datasets analyzed for subunit-based

vaccines for SARS-CoV-2 did not include long-enough follow-up

to estimate this parameter.
4 Discussion

In fitting a mathematical model of vaccine-induced antibody

dynamics to both IgG titers and memory B cell data, we can gain
Frontiers in Immunology 13
potential insights into the immune response to vaccination. We

showed that differing Ab dynamics between multiple platforms and

pathogens could be described with our model by re-fitting only a

small subset of the model parameters - those having to do with the

dynamics of presented antigen and with the generation and

longevity of long-term immune cells. The ability to fix most core

immune dynamics parameters supports our hypothesis that many

underlying immune processes, such as transition rates between

types of immune cells involved in the acute response to vaccination,

are consistent between vaccine platforms and antigens. Our
FIGURE 8

Fits to published Ab titer data from Ebola vaccines. Units are not directly comparable between studies as assays vary.
FIGURE 7

Fits to published Ab titer data from SARS-CoV-2 vaccines. Units are not directly comparable between studies as assays vary. Fits to the SARS-CoV-2
ferritin subunit vaccine (53) and the SARS-CoV-2 mRNA vaccine study by Goel et al. (8) are not shown due to unit differences (AU/mL and µg/mL,
respectively).
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consensus mathematical model suggests that plasma cells are

produced far more rapidly from activated memory cells than

from other activated IgG+ B cells, in agreement with experimental

data (58). It is interesting to note that the estimated parameter

values for the relative production of memory cells versus plasma

cells in our model indicate a higher production rate of memory cells.

This result was consistent across all of the best-scoring model

parameterizations for the “construction” and the “validation”

datasets. While we might expect a more even split between

plasma cells and memory cells (97), the skewness towards

development of memory cells over plasma cells is consistent with

previous reports which have found that robust long-term immunity

is better with “repetitive antigens”, such as mumps and measles

(98). In our model, repeated exposure to an antigen, e.g. by boosting

or potentially activation of early memory cells, would improve

production of long-lived plasma cells by allowing memory cell-

derived short-lived plasma cells another chance to become long-

lived plasma cells.

Using our mechanistic model calibrated with both longitudinal

specific IgG titers and memory B cell frequencies, we are able to

accurately capture the dynamics of the IgG titers in response to

vaccines for two different pathogens, with four unique platform types,

and three host species. In addition to facilitating fits to more sparse

datasets by fixing the core immune parameters, use of a common

model structure facilitates comparison between different datasets. We

noted that, for most parameters, The results of our fits suggest that
Frontiers in Immunology 14
SARS-CoV-2 mRNA vaccines may be less efficient at generating

long-lived plasma cells than the Ad26-SARS-CoV-2 vaccine

(Figure 9A). This result is consistent with reports that long-lived

plasma cells do not establish in the bone marrow following mRNA

SARS-CoV-2 vaccination (45). Indeed, mRNA vaccines appear to be

the least efficient at generating long-lived plasma cells. However,

long-lived plasma cell decay rates also seem to differ between SARS-

CoV-2 vaccines and Ebola vaccines (Figure 9B), with SARS-CoV-2

vaccines generally having lower rates of long-lived plasma cell

generation and higher decay rates of long-lived plasma cells. These

results suggest some antigen-specific effects on long-lived plasma cell

generation and maintenance. However, all SARS-CoV-2 vaccines

with long-enough follow up to re-fit dLwere template-based vaccines

(AdV and mRNA); longer-term follow up with other platforms, such

as protein subunit vaccines may lead to better estimates of long-lived

plasma cell decay rates. Efficiency of long-lived plasma cell generation

is difficult to compare between the two pathogens due to a seemingly

strong influence from the vaccine platform. Additional studies, with

similar protocols testing the same vaccine platform across multiple

antigens and hosts, could help to determine whether such differences

are the result of platform or host species differences, or antigen

choice. Our results also showed kb values were highest for the VSV-

vector vaccine, suggesting that antibody-mediated clearance of

vaccine antigen may play a more significant role in the B-cell-

mediated immune response to VSV-vectored vaccines than

other vaccines.
FIGURE 9

Comparisons of fitted values. Individual parameter values grouped by vaccine platform (A) and by pathogen (B). Parameter units shown are d−1

except for: kb([A]
−1d−1) and B0 (%, specific B cell frequency). Fitted values for KRand K are not plotted due to differences in units between the studies.

Some parameters for specific studies were fitted without random effects, and thus do not show variability.
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We were able to fit varied datasets modifying mostly the

antigen-related parameters, suggesting that much of the difference

in immune response between vaccine platforms is related to antigen

dynamics and antigen presentation. Our model is, thus, well-

positioned to investigate effects of prolonging antigen duration or

promoting better antigen presentation on enhancing immune

responses in future work. Our results also indicate that

experimental studies comparing antigen dynamics between

different vaccine platforms may provide insight into whether

differences in immune responses are induced by the differences in

antigen format, adjuvants, or administration methods between

vaccine platforms. Finally, we also note high variability in some

parameters associated with antigen dynamics, such as dAg, kb, and
B0, particularly within the subset of protein subunit-based vaccine

platforms. This is reasonable due to the very heterogeneous nature

of this vaccine platform; studies grouped into this platform vary in

adjuvants, antigen structure (e.g. different fusion proteins), size (e.g.

trimers, multimers), and administration route (intramuscular

versus subcutaneous). Targeted studies systematically exploring

these variables may help to elucidate their effects on antigen

dynamics and the downstream immune response.

Our modeling approach has some limitations. Clearly the

model proposed is a simplification of the complex processes

involved in generating an immune response to a vaccine. For

example, we do not explicitly model the details of the germinal

center reaction (see (99) for a recent detailed model of this process).

We also do not model CD4+ T-cell help, which is very important

especially in B-cell memory formation. These choices are based on

not having enough data to parameterize a more complex model; for

instance, there is little data on help provided by CD4+ T cells in the

vaccination studies we used here; or on choosing to keep a level of

simplification commensurate with the data we want to describe.

Thus, we do not model the details of the affinity maturation process

but they are implicit in our model in a simplified way, such as the B1
to B8 cascade for the GC reaction. Another limitation is that the

datasets are typically not consistent in terms of assays used, units

used, and time of follow-up. In this regard, we note that rate

parameters should be independent of the units of measurement,

and most of our parameters are such rates. In addition, our mixed-

effect approach borrows information across the different datasets,

mitigating issues of different times of follow-up. However, better

data, more frequent with longer follow-up and a larger dynamic

range would help modeling efforts.

In conclusion, our work has shown that immune responses to

vaccination can be successfully mapped onto a common consensus

mathematical model structure. Furthermore, our work suggests that

many immune dynamics parameters can be held constant between

pathogens, hosts, and vaccine platforms. Additional, controlled

comparisons between vaccine antigens, vaccine platforms, or

hosts may enable identification of platform-, antigen-, or host-

specific parameters which could then be pieced together to predict

the success of untested combinations of antigen/platform.
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34. Gonçalves A, Lemenuel-Diot A, Cosson V, Jin Y, Feng S, Bo Q, et al. What drives
the dynamics of HBV RNA during treatment? J Viral Hepat. (2021) 28:383–92.
doi: 10.1111/jvh.13425

35. Hershkovich L, Cotler SJ, Shekhtman L, Bazinet M, Anderson M, Kuhns M, et al.
HBV serum RNA kinetics during nucleic acid polymers based therapy predict
functional cure. Antiviral Res. (2025) 234:106061. doi: 10.1016/j.antiviral.2024.106061

36. Phan T, Zitzmann C, Chew KW, Smith DM, Daar ES, Wohl DA, et al. Modeling the
emergence of viral resistance for SARS-CoV-2 during treatment with an anti-spike
monoclonal antibody. PloS Path. (2024) 20:e1011680. doi: 10.1371/journal.ppat.1011680
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1596518/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1596518/full#supplementary-material
https://doi.org/10.1038/s41579-021-00639-z
https://doi.org/10.3390/vaccines9050433
https://doi.org/10.1073/pnas.2101718118
https://doi.org/10.1016/j.addr.2020.06.019
https://doi.org/10.1002/eji.202250022
https://doi.org/10.1002/eji.202250022
https://doi.org/10.1016/j.cell.2022.04.009
https://doi.org/10.1126/sciimmunol.abi6950
https://doi.org/10.1126/sciimmunol.abi6950
https://doi.org/10.1038/d41586-021-00268-9
https://doi.org/10.1038/d41586-021-00268-9
https://doi.org/10.1016/S0140-6736(20)31605-6
https://doi.org/10.1080/14760584.2019.1698952
https://doi.org/10.1080/14760584.2019.1698952
https://doi.org/10.1128/jvi.01623-24
https://doi.org/10.1371/journal.ppat.1006478
https://doi.org/10.3389/fimmu.2024.1420284
https://doi.org/10.3389/fimmu.2024.1420284
https://doi.org/10.1002/sim.v27:23
https://doi.org/10.1371/journal.pcbi.1011518
https://doi.org/10.1093/ve/vead084
https://doi.org/10.1016/j.jtbi.2023.111490
https://doi.org/10.1016/j.jtbi.2023.111490
https://doi.org/10.1371/journal.pcbi.1009713
https://doi.org/10.1371/journal.pcbi.1004492
https://doi.org/10.1371/journal.pcbi.1004492
https://doi.org/10.1016/j.epidem.2024.100780
https://doi.org/10.1371/journal.pcbi.1012129
https://doi.org/10.1038/s41467-023-42435-8
https://doi.org/10.1038/s41467-023-41521-1
https://doi.org/10.3390/microorganisms7030069
https://doi.org/10.1097/COH.0000000000000896
https://doi.org/10.1097/COH.0000000000000896
https://doi.org/10.1038/s41540-024-00407-8
https://doi.org/10.1128/JVI.00492-20
https://doi.org/10.1128/JVI.00492-20
https://doi.org/10.3390/microorganisms12050900
https://doi.org/10.1007/s11538-024-01284-2
https://doi.org/10.1007/s11538-024-01284-2
https://doi.org/10.1111/imr.2018.285.issue-1
https://doi.org/10.1038/s41598-020-80594-6
https://doi.org/10.1073/pnas.0603626104
https://doi.org/10.1111/jvh.13425
https://doi.org/10.1016/j.antiviral.2024.106061
https://doi.org/10.1371/journal.ppat.1011680
https://doi.org/10.3389/fimmu.2025.1596518
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wilding et al. 10.3389/fimmu.2025.1596518
37. Byrne C, Schiffer JT. Ensemble modeling of SARS-CoV-2 immune dynamics in
immunologically naїve rhesus macaques predicts that potent, early innate immune
responses drive viral elimination. Front Immunol. (2024) 15:1426016. doi: 10.3389/
fimmu.2024.1426016

38. Esmaeili S, Owens K,Wagoner J, Polyak SJ,White JM, Schiffer JT. A unifyingmodel
to explain frequent SARS-CoV-2 rebound after nirmatrelvir treatment and limited
prophylactic efficacy. Nat Commun. (2024) 15:5478. doi: 10.1038/s41467-024-49458-9

39. Goyal A, Reeves DB, Schiffer JT. Multi-scale modelling reveals that early super-
spreader events are a likely contributor to novel variant predominance. J R Soc
Interface. (2022) 19:20210811. doi: 10.1098/rsif.2021.0811

40. Iyaniwura SA, Ribeiro RM, Zitzmann C, Phan T, Ke R, Perelson AS. The kinetics
of SARS-CoV-2 infection based on a human challenge study. Proc Natl Acad Sci U.S.A.
(2024) 121:e2406303121. doi: 10.1073/pnas.2406303121

41. Murphy QM, Lewis GK, Sajadi MM, Forde JE, Ciupe SM. Understanding
antibody magnitude and durability following vaccination against SARS-CoV-2. Math
Biosci. (2024) 376:109274. doi: 10.1016/j.mbs.2024.109274

42. Owens K, Esmaeili S, Schiffer JT. Heterogeneous SARS-CoV-2 kinetics due to
variable timing and intensity of immune responses. JCI Insight. (2024) 9:e176286.
doi: 10.1172/jci.insight.176286

43. Xu Z, Song J, Zhang H, Wei Z, Wei D, Yang G, et al. A mathematical model
simulating the adaptive immune response in various vaccines and vaccination
strategies. Sci Rep. (2024) 14:23995. doi: 10.1038/s41598-024-74221-x

44. Hodgson D, Liu Y, Carolan L, Mahanty S, Subbarao K, Sullivan SG, et al.
Memory B cell proliferation drives differences in neutralising responses between
ChAdOx1 and BNT162b2 SARS-CoV-2 vaccines. medRxiv [Preprint]. (2025) 16.
doi: 10.3389/fimmu.2025.1487066

45. Nguyen DC, Hentenaar IT, Morrison-Porter A, Solano D, Haddad NS,
Castrillon C, et al. SARS-CoV2-specific plasma cells are not durably established in
the bone marrow long-lived compartment after mRNA vaccination. Nat Med. (2025)
31:235–44. doi: 10.1038/s41591-024-03278-y

46. He X, Aid M, Chandrashekar A, Yu J, McMahan K, Wegmann F, et al. A
homologous or variant booster vaccine after Ad26. COV2. S immunization enhances
SARS-CoV-2–specific immune responses in rhesus macaques. Sci Transl Med. (2022)
14:eabm4996. doi: 10.1126/scitranslmed.abm4996

47. Callendret B, Vellinga J, Wunderlich K, Rodriguez A, Steigerwald R, Dirmeier U,
et al. A prophylactic multivalent vaccine against different filovirus species is
immunogenic and provides protection from lethal infections with Ebolavirus and
Marburgvirus species in non-human primates. PloS One. (2018) 13:e0192312.
doi: 10.1371/journal.pone.0192312

48. PlotDigitizer. PlotDigitizer: version 3.1.6 (2024). Available online at: https://
plotdigitizer.com (Accessed March 20, 2024).

49. Quinn KM, Zak DE, Costa A, Yamamoto A, Kastenmuller K, Hill BJ, et al.
Antigen expression determines adenoviral vaccine potency independent of IFN and
STING signaling. J Clin Invest. (2015) 125:1129–46. doi: 10.1172/JCI78280

50. Hassett KJ, Rajlic IL, Bahl K, White R, Cowens K, Jacquinet E, et al. mRNA
vaccine trafficking and resulting protein expression after intramuscular administration.
Mol Therapy-Nucleic Acids. (2024) 35(1):102083. doi: 10.1016/j.omtn.2023.102083

51. Dahlke C, Kasonta R, Lunemann S, Krähling V, Zinser ME, Biedenkopf N, et al.
Dose-dependent T-cell dynamics and cytokine cascade following rVSV-ZEBOV
immunization. EBioMedicine. (2017) 19:107–18. doi: 10.1016/j.ebiom.2017.03.045

52. Röltgen K, Nielsen SC, Silva O, Younes SF, Zaslavsky M, Costales C, et al.
Immune imprinting, breadth of variant recognition, and germinal center response in
human SARS-CoV-2 infection and vaccination. Cell. (2022) 185:1025–40. doi: 10.1016/
j.cell.2022.01.018

53. Joyce MG, King HA, Elakhal-Naouar I, Ahmed A, Peachman KK, Macedo Cincotta
C, et al. A SARS-CoV-2 ferritin nanoparticle vaccine elicits protective immune responses in
nonhuman primates. Sci Transl Med. (2021) 14:eabi5735. doi: 10.1126/scitranslmed.abi5735

54. Liang JG, Su D, Song TZ, Zeng Y, Huang W, Wu J, et al. S-Trimer, a COVID-19
subunit vaccine candidate, induces protective immunity in nonhuman primates. Nat
Commun. (2021) 12:1346. doi: 10.1038/s41467-021-21634-1

55. Marzi A, Engelmann F, Feldmann F, Haberthur K, Shupert WL, Brining D, et al.
Antibodies are necessary for rVSV/ZEBOV-GP–mediated protection against lethal
Ebola virus challenge in nonhuman primates. Proc Natl Acad Sci USA. (2013)
110:1893–8. doi: 10.1073/pnas.1209591110

56. Fries L, Cho I, Kröhling V, Fehling SK, Strecker T, Becker S, et al. Randomized,
blinded, dose-ranging trial of an Ebola virus glycoprotein nanoparticle vaccine with matrix-
m adjuvant in healthy adults. J Inf Dis. (2020) 222:572–82. doi: 10.1093/infdis/jiz518

57. Powell AE, Xu D, Roth GA, Zhang K, Chiu W, Appel EA, et al. Multimerization of
Ebola GPΔmucin on protein nanoparticle vaccines has minimal effect on elicitation of
neutralizing antibodies. Front Immunol. (2022) 13:942897. doi: 10.3389/fimmu.2022.942897

58. Tangye SG, Avery DT, Deenick EK, Hodgkin PD. Intrinsic differences in the
proliferation of naive and memory human B cells as a mechanism for enhanced secondary
immune responses. J Immunol. (2003) 170:686–94. doi: 10.4049/jimmunol.170.2.686

59. Phad GE, Pinto D, Foglierini M, Akhmedov M, Rossi RL, Malvicini E, et al.
Clonal structure, stability and dynamics of human memory B cells and circulating
plasmablasts. Nat Immunol. (2022) 23:1076–85. doi: 10.1038/s41590-022-01230-1
Frontiers in Immunology 17
60. Janeway CAJr, Travers P, Walport M, Shlomchik MJ. B-cell activation by armed
helper T cells. Immunobiology: Immune System Health Disease 5th edition (Garland
Science). New York. (2001).

61. Syeda MZ, Hong T, Huang C, Huang W, Mu Q. B cell memory: from generation
to reactivation: a multipronged defense wall against pathogens. Cell Death Discov.
(2024) 10:117. doi: 10.1038/s41420-024-01889-5

62. Zuccarino-Catania GV, Sadanand S, Weisel FJ, Tomayko MM, Meng H,
Kleinstein SH, et al. CD80 and PD-L2 define functionally distinct memory B cell
subsets that are independent of antibody isotype. Nat Immunol. (2014) 15:631–7.
doi: 10.1038/ni.2914

63. Kim ST, Choi JY, Lainez B, Schulz VP, Karas DE, Baum ED, et al. Human
extrafollicular CD4+ Th cells help memory B cells produce Igs. J Immunol. (2018)
201:1359–72. doi: 10.4049/jimmunol.1701217

64. Inoue T, Kurosaki T. Memory B cells. Nat Rev Immunol. (2024) 24:5–17.
doi: 10.1038/s41577-023-00897-3

65. Khoury DS, Aogo R, Randriafanomezantsoa-Radohery G, McCaw JM, Simpson
JA, McCarthy JS. Within-host modeling blood-stage malaria. Immunol Rev. (2018)
285:168–93. doi: 10.1111/imr.12697

66. Best K, Perelson AS. Mathematical modeling of within-host Zika virus dynamics.
Immunol Rev. (2018) 285:81–96. doi: 10.1111/imr.2018.285.issue-1

67. Ke R, Zitzmann C, Ho DD, Ribeiro RM, Perelson AS. In vivo kinetics of SARS-
CoV-2 infection and its relationship with a person’s infectiousness. Proc Natl Acad Sci.
(2021) 118:e2111477118. doi: 10.1073/pnas.2111477118

68. Baccam P, Beauchemin C, Macken CA, Hayden FG, Perelson AS. Kinetics of
influenza A virus infection in humans. J Virol. (2006) 80:7590–9. doi: 10.1128/
JVI.01623-05

69. Lavielle M. Mixed effects models for the population approach: models, tasks,
methods and tools. Boca Raton: Chapman and Hall/CRC (2014).

70. Weisel F, Shlomchik M. Memory B cells of mice and humans. Annu Rev
Immunol. (2017) 35:255–84. doi: 10.1146/annurev-immunol-041015-055531

71. Zografou C, Vakrakou A, Stathopoulos P. Short-and long-lived autoantibody-
secreting cells in autoimmune neurological disorders. Front Immunol. (2021)
12:686466. doi: 10.3389/fimmu.2021.686466

72. Harrell FEJr., Dupont C.Hmisc: harrell miscellaneous (2024). Available online at:
https://hbiostat.org/R/Hmisc/ (Accessed December 2024).

73. Wei T, Simko V. Visualization of a correlation matrix (2024). Available online at:
https://cran.r-project.org/web/packages/corrplot/corrplot.pdf (Accessed December
2024).

74. Liaw A, Wiener M. Classification and regression by randomForest. R News.
(2002) 2:18–22.

75. KuhnM. Building predictive models in R using the caret package. J Stat Software.
(2008) 28:1–26. doi: 10.18637/jss.v028.i05

76. Burnham K, Anderson D. Model selection and multimodel inference. New York:
Springer (2004).

77. Liu X, Yao J, Zhao Y, Wang J, Qi H. Heterogeneous plasma cells and long-lived
subsets in response to immunization, autoantigen and microbiota. Nat Immunol.
(2022) 23:1564–76. doi: 10.1038/s41590-022-01345-5

78. Slifka MK, Antia R, Whitmire JK, Ahmed R. Humoral immunity due to
long-lived plasma cells. Immunity. (1998) 8:363–72. doi: 10.1016/S1074-7613(00)
80541-5

79. Hammarlund E, Thomas A, Amanna IJ, Holden LA, Slayden OD, Park B, et al.
Plasma cell survival in the absence of B cell memory. Nat Commun. (2017) 8:1781.
doi: 10.1038/s41467-017-01901-w

80. LeBien TW. Tedder TF. B lymphocytes: how they develop and function. Blood.
(2008) 112:1570–80. doi: 10.1182/blood-2008-02-078071

81. Tellier J, Nutt SL. The secret to longevity, plasma cell style. Nat Immunol. (2022)
23:1507–8. doi: 10.1038/s41590-022-01340-w

82. Wong R, Bhattacharya D. Basics of memory B-cell responses: lessons from and
for the real world. Immunology. (2019) 156:120–9. doi: 10.1111/imm.2019.156.issue-2

83. Burt P, Cornelis R, Geißler G, Hahne S, Radbruch A, Chang HD, et al. Data-
driven mathematical model of apoptosis regulation in memory plasma cells. Cells.
(2022) 11:1547. doi: 10.3390/cells11091547

84. Khamyath M, Melhem H, Balabanian K, Espéli M. New insights into the
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