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The senescence of immune cells has also emerged as a key hallmark of

immunological dysregulation and chronic inflammation in autoimmunity.

Senescent immune cells are irreversibly arrested in the cell cycle, exhibit

antimetabolic characteristics, and secrete pro-inflammatory mediators, all

together disrupting immune homeostasis. T cells, B cells, and innate immune

subsets, acquire a senescence-associated secretory phenotype (SASP), which

initiates tissue damage and sustains continuous inflammation in autoimmune

diseases. The accumulation of senescent immune cells undermines immune

surveillance, disrupts self-tolerance mechanisms, and enhances autoantibody

production, all of which contribute to the pathogenesis of autoimmune diseases,

including type 1 diabetes (T1D), systemic lupus erythematosus (SLE), and

rheumatoid arthritis (RA). Accumulating evidence reveals that metabolic stress,

chronic DNA damage, and persistent antigenic exposure in inflammatory

microenvironments induce immune cell senescence. Such senescent

condition more aggressively promotes disease pathogenesis by compromising

antigen presentation, disrupting cytokine signaling, and weakening the function

of regulatory T cells (Tregs). Targets of senolytic drugs, SASP inhibitors,

monoclonal antibodies (mAbs), and CAR T cell therapy currently have the

potential to accelerate autoimmune pathology. These treatments would be

directed specifically against the selective elimination or reprogramming of

senescent cells to restore immune homeostasis. This review examines the

mechanistic relationships between autoimmune development and immune cell

senescence, as well as recent advancements in senescence-directed therapy.

Understanding these pathways can provide new insights into autoimmune

pathogenesis and inform future therapeutic approaches to immune cell aging.
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1 Introduction

Autoimmune diseases result from immune system dysfunction

that mistakenly attacks healthy tissues, causing tissue destruction,

persistent inflammation, and impaired organ function (1, 2).

Although genetic susceptibility and environmental factors are

well-recognized etiological contributors, cellular senescence has

recently been identified as a significant driver of autoimmune

pathogenesis (3, 4). This relationship is largely mediated by

immunosenescence—the progressive deterioration and functional

dysregulation of immune responses associated with aging (5).

Importantly, immunosenescence and immune cell senescence are

distinct yet interconnected processes. Immunosenescence refers to

the systemic deterioration of immune responses with age, whereas

immune cell senescence involves individual immune cells

undergoing functional loss and permanent growth arrest {6 #318}.

Although these processes are interrelated, they have distinct

biological triggers and consequences.

Senescent immune cells, especially B cells, CD4+ and CD8+ T

lymphocytes, and innate immune cells, such as macrophages and

dendritic cells (DCs), acquire a distinctive secretory profile

associated with cellular senescence. These cells persistently release

inflammatory signaling molecules, such as tumor necrosis factor

(TNF)-a, interleukin-6 (IL-6), interferon (IFN)-g, and granulocyte-

macrophage colony-stimulating factor (GM-CSF), creating a

systemic pro-inflammatory environment characteristic of age-

related chronic inflammation (1, 2).

In the context of autoimmune pathogenesis, this inflammatory

milieu promotes three key pathological processes: stimulation of

self-reactive lymphocytes, breakdown of peripheral immune

tolerance, and functional impairment of regulatory T cell (Treg)

populations (7). Notably, senescent cells frequently develop

apoptotic resistance, enabling their prolonged survival and

sustained inflammatory signaling. This establishes a vicious cycle

wherein persistent inflammation promotes additional immune cell

senescence, exacerbating autoimmune progression. Also, age-

associated declines in DC antigen presentation efficiency and B

cell antibody diversity further compromise immune regulation (5).

This review summarizes the dynamic association between

immune cell senescence and autoimmune pathogenesis.

Deciphering the molecular mechanisms of immune cell aging offers

critical insights disease onset and new therapeutic opportunities. New

approaches to targeted strategies, such as senolysis, cellular metabolic

regulation and functional rejuvenation, have potential for the re-

establishment of immunological homeostasis and prevention of

autoimmune disease.
2 Immune cell senescence

Three key drivers accelerate immune cell senescence: failing

mitochondrial energy production, erosion of protective

chromosome ends (telomeres), and repeated immune activation

over time (8). These aged immune cells are particularly problematic

due to their resistance to apoptosis and simultaneous secretion of
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inflammatory signals known as senescence-associated secretory

phenotype (SASP). This creates a double-edged sword—the cells

persist abnormally while promoting chronic inflammation that

further disrupts immune function (9).
3 Role of senescent immune cells in
autoimmunity

Cellular senescence in immune cells is a key mechanism in

autoimmune pathogenesis. Profiling senescent immune subsets—

especially aging neutrophils, macrophages, dendritic cells, natural

killer (NK) cells, B lymphocytes, and T lymphocyte subsets—is

crucial in order to make them realize their pathophysiological

functions. Age-related cellular changes resulting from such

alterations cause: inefficient effector functions, disruption of

immune homeostasis, and gradual failure of surveillance

mechanisms (Figure 1) (10).
3.1 T cell senescence and autoimmunity
disorders

With age, T lymphocytes undergo significant phenotypic and

functional changes, resulting in increased populations of senescent

CD4+ and CD8+ T cells. These cells characteristically lose

costimulatory receptors (CD27/CD28) and gain NK-like markers,

including killer cell lectin-like receptor subfamily G member 1

(KLRG1) and CD57 (Figure 2) (11, 12). Senescent CD4+ T cells

adopt unconventional characteristics and interact with major

histocompatibility complex (MHC) class I molecules via non-

classical signaling pathways. Moreover, they regulate conventional

T cell signaling thresholds and boost proinflammatory responses by

c-Jun N-terminal kinase (JNK) activation (13). Besides these

cellular alterations, they also acquire severe metabolic

dysregulation—marked by excessive secretion of cytokines (14).

The overproduction of IFN-g disrupts immune regulation through

suppression of cytotoxic T-lymphocyte-associated protein 4

(CTLA-4), programmed death-ligand 1 (PD-L1), and indoleamine

2, 3-dioxygenase (IDO), weakening tolerance checkpoints (15).

Additionally, glucose transporter Glut1 and fatty acid transporters

FATP2/3 impairment and mitochondrial dysfunction further

compromise T cell fitness (16). Sustained exposure to cytokines

and DNA damage cause sustained activation of the extracellular

signal-regulated kinase (ERK) and P38 mitogen-activated protein

kinases (MAPKs) cascades, activate cell cycle regulators (P53, P21,

P16), which enforce cell cycle arrest and telomerase suppression—

hallmarks of senescence (17–19). CD28-CD8+ T cells maintain

cytotoxic capacity through perforin/granzyme release, regulated by

T box 21 (TBX21) and Eomes transcription factors and mammalian

target of rapamycin (mTOR) signaling (20–22). The rheumatoid

arthritis (RA) milieu polarizes CD4+ T cells to the pro-

inflammatory T helper (Th) 17 phenotype with increased

secretion of IL-17 and IL-22. In parallel, Tregs decrease in

number and function, limiting their transforming growth factor-b
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(TGF-b) and IL-10-mediated control of immune responses. This

imbalance of the Th17/Treg ratio interferes with immunological

tolerance mechanisms. This dysregulation is enhanced by IL-6 to

induce the generation of T follicular helper (Tfh) cells that strongly

stimulate autoreactive B lymphocytes to enhance autoantibody

production and tissue destruction (23, 24).

Clinical evidence strongly supports the role of senescent T cells

in autoimmunity. In RA (25, 26), type 1 diabetes (T1D) (27),

multiple sclerosis (MS) (28), Graves’ disease (GD) (29), and

granulomatosis with polyangiitis (30), CD4+CD28- T cells are

capable of infiltrating inflamed tissues and exacerbating immune-

mediated damage. These types of cells may exhibit high expression

levels of CX3C motif chemokine receptor 1 (CX3CR1), whose

ligand fractalkine is elevated in RA synovium (31) and

cerebrospinal fluid (CSF) of patients with MS (32). Telomere

shortening, another hallmark of senescence, occurs prematurely

in both naïve and memory T cells in RA patients—even as early as

in their twenties (33, 34). In systemic lupus erythematosus (SLE),

senescent CD8+ and CD57+ T cells are associated with disease
Frontiers in Immunology 03
severity and anemia (35). Together, these findings underscore the

central role of T cell senescence in the breakdown of immune

tolerance and the amplification of autoimmune inflammation.

Targeting the pathways that drive T cell senescence, including

metabolic stress, SASP signaling, and checkpoint dysregulation,

holds promise for therapeutic intervention in a range of

autoimmune diseases.
3.2 B cell senescence and autoimmunity
disorders

While B lymphocytes are essential mediators of antibody-

mediated immunity, their functional and phenotypic

characteristics undergo substantial age-related modifications (36).

A particularly significant alteration is the progressive expansion of a

specialized B cell population—termed age-associated B cells (ABCs)

—characterized by surface expression of CD11c and the

transcription factor T-bet, along with downregulation of CD21
FIGURE 1

The impact of senescence on key immune cells and their contribution to autoimmune disease. Senescence leads to functional impairments in both
innate and adaptive immune cells, including B cells, NK cells, T cells, macrophages, and DCs. Notable changes include impaired activation and
function of immune cells, altered cell surface markers and secretion of inflammatory cytokines. These cumulative effects disrupt immune tolerance
and increase inflammatory responses, promoting the development of autoimmune disorders. NK, Natural killer; DC, Dendritic cell; Breg, Regulatory
B cell; BCR, B-cell receptor; IgA, Immunoglobulin A; IgG, Immunoglobulin G; NKG2D, Natural killer group 2D; CD, Cluster of differentiation; NKp30,
Natural killer protein 30; KIR, Killer cell immunoglobulin-like receptors; IFN‐g, Interferon‐gamma; IL-2, interleukin-2; Th17, T helper 17; SASP,
Senescence-associated secretory phenotype; TCR, T-cell receptor; MHC II, Major histocompatibility complex.
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and CD23 markers (37, 38). Unlike conventional B cell activation

through antigen receptor engagement, these atypical cells primarily

develop in response to endosomal pattern recognition receptors

(toll-like receptor (TLR)-7 and TLR-9 stimulation). Their

prevalence escalates with advancing age and is notably elevated in

autoimmune pathologies (39). Functionally, ABCs demonstrate

both autoreactive potential and enhanced antibody secretory

capacity (40). The aging process disrupts the delicate equilibrium

of transcriptional regulators governing B cell biology. Critical

factors including E2A (41) and paired box 5 (PAX5) (42), which

normally preserve B cell identity and repertoire diversity,

demonstrate diminished express ion (Figure 3) . This

transcriptional dysregulation promotes autoreactive tendencies

while compromising the capacity to mount responses against new

antigens. Furthermore, aging substantially reduces expression of X

box binding protein-1 (XBP-1) and B lymphocyte inducer of

maturation program 1 (Blimp-1) in B-1 cells—master regulators

of antibody production—as evidenced in studies of elderly

populations (43). Aged B cells exhibit extensive metabolic

changes, including mitochondrial impairment and increased

proinflammatory capacity. The senescent cells acquire a typical

secretory profile that is associated with increased levels of IL-10, IL-

6, and TNF-a. Such cytokine secretion maintains inflammatory

microenvironments and further impairs Tfh regulation, eventually

impeding key germinal center function such as antibody affinity

maturation and isotype switching (44). Circulating inflammatory
Frontiers in Immunology 04
mediators, particularly those originating from adipose tissue depots,

can promote senescence acquisition in peripheral B cell

populations. This mechanism establishes a direct connection

between metabolic dysregulation and age-related immune

dysfunction, linking pro-inflammatory adipokines to accelerated

immune aging (45, 46). The functional alterations in aged B

lymphocytes play a direct role in autoimmune disease

development. ABCs show increased propensity to develop into

self-reactive antibody producers, especially when exposed to IL-21

and IFN-g microenvironments that override normal tolerance

mechanisms. Concurrently, regulatory B cell populations

experience both numerical reduction and functional decline,

diminishing their critical immunosuppressive functions mediated

through IL-10 and -35 secretion (47). The growing imbalance

between pro-inflammatory ABCs and diminishing regulatory B

cell (Breg) populations erodes critical immune tolerance

mechanisms. This disequilibrium fosters persistent inflammatory

states characteristic of RA and SLE pathogenesis (11).

Multiple clinical investigations reveal significant expansions of

senescent B cell populations across autoimmune disorders. Patients

with SLE demonstrate elevated levels of CD19+CD11c+T-bet+

ABCs, which show positive correlation with both autoantibody

titers and clinical disease severity. RA cases similarly display

increased circulating CD95+ activated memory B cells that

participate in sustained joint inflammation. During acute lupus

flares, the continued presence of autoreactive naïve B cell
FIGURE 2

Senescent T-cells surface markers, signaling pathways and therapeutic targets. The figure illustrates the distinct expression pattern of surface
markers on senescent T-cells. In contrast to normal T-cells, senescent T-cells demonstrate elevated expression levels of CD45RA, NKG2D, PD-1,
CD57, Tim-3, and KLRG1, while displaying reduced levels of CD27 and CD28. Low levels of adenosine triphosphate and endogenous DNA damage
activate AMPK, inducing constitutive P38 expression in senescent T-cells. Moreover, glucose deprivation and genotoxic stress, which result in P38
activation, lead to a reduction in telomerase activity and the inhibition of T-cell proliferation, representing two key features of senescence.
Additionally, active P38 induces transcription factors STAT1/3 to boost levels of CKIs like P21 and P16 that halt T cell proliferation through inhibition
of cdk2 and cdk4/6, respectively. P38 could also increase transcription of NF-kB by mTOR induction. Senotherapeutics inhibit senescence by
suppressing SASP expression via targeting NF-kB, mTOR and P38. CD45RA, Cluster of differentiation 45 isoform R; NKG2D, Natural killer group 2D;
PD-1, Programmed cell death-1; KLRG1, Killer cell lectin like receptor G1; NF-kB, Nuclear factor kappa-light-chain-enhancer of activated B cells;
AMPK, Adenosine monophosphate-activated protein kinase; CKI, Cyclin-dependent kinase inhibitor; cdk2, Cyclin-dependent kinase 2; SASP,
Senescence-associated secretory phenotype; mTOR, Mammalian target of rapamycin; E2F, Early region 2 binding factor; RB, Retinoblastoma tumor
suppressor protein; T-cell immunoglobulin and mucin domain-containing protein 3; TNF-a, Tumor necrosis factor alpha; ROS, Reactive oxygen
species; STAT, Signal transducer and activator of transcription; RNPC1, Investigated RNA-binding region-containing protein 1.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1596686
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yin et al. 10.3389/fimmu.2025.1596686
populations highlights profound regulatory dysfunction.

Experimental models further demonstrate that CD19+CD138+ B

cell subsets play pivotal roles in driving neuroinflammation in the

lymph nodes of mice with induced autoimmune encephalomyelitis

(48). Patients with RA consistently demonstrate elevated peripheral

blood levels of CD95+ activated memory B cells (23). These clinical

observations underscore the pathogenic role of B cell senescence in

autoimmune pathogenesis and reveal promising opportunities for

therapeutic intervention through senescent B cell modulation.
3.3 NK cell senescence and autoimmunity

NK cells serve as critical effectors of innate immunity, specializing

in the rapid detection and destruction of virally infected and cancerous

cells without requiring prior antigen exposure. These lymphocytes

develop directly from hematopoietic stem cells through a thymus-

independent differentiation pathway, distinguishing them from

adaptive T lymphocytes (49). Human NK cells are broadly

categorized into two functionally distinct subsets according to CD56

surface density: The CD56bright population demonstrates superior

cytokine-secreting capacity and predominates during developmental

stages, while CD56dim cells exhibit enhanced cytotoxic potential and

progressively increase with aging to become the major circulating
Frontiers in Immunology 05
subset (50). With increasing age, NK cell populations experience

marked functional and phenotypic alterations. Although their

absolute numbers are augmented, competency is compromised by

diminished expression of cytokine receptor (IL-2R, IL-15R, IL-21R)

and reduced sensitivity to these essential survival cues (51). Senescent

features—such as restricted proliferative capability, reduced cytotoxic

function, and deregulated cytokine production—characterize aged

NK cells. While less well explored than lymphocyte senescence,

senescence of NK cells also contributes to immune dysfunction and

can entail the gain of a pro-inflammatory secretory phenotype, marked

by increased TNF-a and IFN-g release. Although these cytokines

provide protective mechanisms, chronic overproduction promotes

inflammatory tissue pathology. Other age-related impairments—

including reduced receptor repertoire diversity, signaling competence,

and degranulation capacity—collectively limit NK cell-mediated

immune surveillance in the elderly (52). Aged NK cells play a

significant role in autoimmune disease development through their

impaired ability to maintain immune equilibrium. A striking example

occurs in RA, where aging CD4+ T cells lacking CD28 expression

aberrantly acquire NK cell characteristics, including CD161 and KIRs.

These transformed T cells develop cytotoxic capabilities resembling

innate immune effectors and actively migrate to synovial tissue, where

they perpetuate inflammatory damage (53). RA patients developing

vascular manifestations (e.g., vasculitis) demonstrate increased co-
FIGURE 3

Overview of key surface markers, signaling pathways and therapeutic targets of senescent B cells, ABCs and plasma cells. ABC, Age associated B cell;
CD, Cluster of differentiation; BAFF-R, B cell activating factor receptor; TACI, Transmembrane activator and calcium modulator and cyclophilin
ligand (CAML) interactor; BLyS, B lymphocyte stimulator; APRIL, A proliferation-inducing ligand; FasL (Fas ligand or CD95L); FasR, Fas receptor; PD-1,
Programmed cell death protein; PD-L1, Programmed death-ligand 1; T-bet, T-box expressed in T cells; Bcl-2, B-cell lymphoma/lymphoma 2; BCMA,
B-cell maturation antigen; NF-kB, Nuclear factor kappa-light-chain-enhancer of activated B cells.
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expression of the activating receptor KIR2DS2 with its HLA-C ligand

(54). The NKG2D receptor similarly contributes to autoimmune

pathology in both RA and T1D by amplifying cytotoxic effector

functions that drive tissue injury (55, 56). Clinical evidence further

underscores NK cell involvement in autoimmunity—SLE patients

show significant NK cell depletion in peripheral blood, which

strongly associates with elevated IFN-a levels and increased disease

severity (57, 58). While numerically decreased in SLE, NK cells display

abnormal functional hyperactivity characterized by excessive IFN-g
production. This cytokine overexpression drives autoimmune

amplification, as evidenced by murine models where sustained IFN-g
exposure precipitates lupus-like pathology (59). In aging individuals,

the loss of balance between NK cell cytotoxic activity and

immunoregulatory capacity emerges as a key contributor to failed

self-tolerance and sustained inflammatory autoimmunity (60).
3.4 Macrophages and neutrophil
senescence in autoimmunity disorders

Innate immune cells, including monocytes, macrophages, and

neutrophils play crucial roles in the promotion of inflammation and

immunomodulation (61). These groups undergo considerable

functional changes during aging that impair host defense while

enhancing chronic low-grade inflammation (62–64). Of particular

interest is the age-related expansion of in proinflammatory monocyte

subsets (CD14+CD16+ intermediate and CD14dimCD16bright non-

classical) bearing characteristics of cellular senescence such as

telomere shortening and constitutive cytokine production (65, 66).

Non-classical monocytes also elevate chemokine receptors that

encourage them to be recruited into regions of inflammation (67).

Aged macrophages favor proinflammatory M1 polarization

phenotypes elicited by enhanced production of IL-8 and TNF-a
(68). Aged neutrophils also exhibit enhanced survival, enhanced

oxidative burst, and greater expression of cell surface-activating Fcg
receptors (69). In young NOD mice, active infiltration of innate and

adaptive immune cells—especially neutrophils, macrophages,

plasmacytoid DCs, and B lymphocytes—into islet tissue is caused by

killing of pancreatic b cells (70). Senescent aged immune cells

accumulate a typical secretory profile with increased release of

inflammatory mediators (IL-1b, TNF-a, IL-6, IL-8) and chemokines.

In addition, aging greatly impairs monocyte function by three main

deficits: compromised TLR signaling responses, reduced MHC class II

presentation, and dysregulation of interferon production (IFN-g, IFN-
a), which are required for antiviral defense (71). Epigenetic remodeling

in aged monocytes, such as modified DNA methylation patterns,

histone reorganization, and disruption of transcription factor

signaling—IRF, forkhead box protein P3 (FOXP3), nuclear factor

kappa-light-chain-enhancer of activated B cells (NF-kB), and

signal transducer and activator of transcription (STAT)—causes

significant changes in inflammatory gene expression (72). This

molecular reprogramming contributes to defective production of key

immunemediators (IFN-g, IFN-a, chemokine C-Cmotif ligand (CCL)

20, IL-1b and CCL8), impairing antiviral immunity and leukocyte

recruitment (73). Senescent macrophages also have activated TAM
Frontiers in Immunology 06
receptor kinases (Axl, Mer, Tyro3) that suppress innate immune

activation by inhibitory signaling (74). SASP in T1D increases

pathologic reactive oxygen species (ROS) production, cellular

acidification, and proinflammatory M1 polarization through

sustained NF-kB activation (75). Pathological events in MS also

involve senescent microglia that acquire an impaired ability to clear

cellular debris while acquiring a neurotoxic secretory phenotype. The

subsequent accumulation of myelin breakdown byproducts is

detrimental to the maturation of oligodendrocyte precursors, and

oxidative stress causes mitochondrial dysfunction and axonal

degeneration (76). Neutrophils that age also display marked

metabolic changes such as glycolytic dependence, diminished

phagocytosis, and pathologic NETosis—all of which contribute to

autoimmune disease and tissue damage (77). Senescent abnormal

NK cells participate in autoimmune disease pathogenesis by

various mechanisms. Hyperproduction of TNF-a and IL-1b by

proinflammatory M1 macrophages with increased expression of

CXCR3, CCR5, and CCR8 chemokine receptors supports T1D-

induced killing of pancreatic b-cells (78). RA is a result of a vicious

cycle in which senescent synovial fibroblasts produce inflammatory

mediators causing recruitment of macrophages and their M1

polarization with increased IL-8 and TNF-a production (68). RA

neutrophils play a role in perpetuating joint injury through three such

key pathological mechanisms: impaired apoptotic clearance, excessive

oxidative burst activity, and dysregulated neutrophil extracellular trap

formation (69, 77). Aberrant apoptosis and metabolic dysfunction

distinctly influence autoimmune pathogenesis. SLE exhibits enhanced

apoptotic clearance that promotes autoantigen exposure and

subsequent autoantibody generation. Conversely, RA demonstrates

impaired apoptotic pathways that prolong inflammatory cell

survival and sustain tissue-damaging enzyme release (69, 77).

Metabolically reprogrammed neutrophils in both disorders display

increased glycolytic flux coupled with diminished antioxidant

capacity, resulting in pathological oxidative stress that amplifies

immune activation (77). Notably, the frequent co-occurrence of

atherosclerosis in SLE patients stems from proinflammatory

M1 macrophage activity, evidenced by elevated circulating levels of

TNF-a, IFN-g, IL-6 and IL-12—establishing a direct connection

between immunosenescence and cardiovascular risk (69).
4 Therapeutic implications for
targeting senescent immune cells in
autoimmune diseases

Current therapeutic strategies in autoimmune diseases often

lack specificity. Restoring immune balance by targeting senescent

immune cells is of particular interest, where complex networks of

aged immune cells converge to drive autoimmune pathology.

Precision modulation of these molecular pathways is employed by

current emerging therapies. The ensuing review integrates

preclinical and clinical data from model systems in the context of

devising novel approaches for understanding and intervening in the

role of aged immune cells in autoimmune pathophysiology.
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4.1 Targeting cellular senescence with
senotherapeutics

Emerging senotherapeutic agents represent a novel class of

small-molecule interventions designed to counteract cellular

senescence in age-related immune disorders. These compounds

operate through two distinct mechanisms: senomorphic agents,

which modulate the SASP to reestablish immune equilibrium, and

senolytic drugs, which preferentially clear senescent cell populations

(Table 1). Such targeted approaches offer the potential to disrupt the

chronic inflammatory cycles and restore immune function in

autoimmune pathogenesis.

4.1.1 Development of senolytics
Cellular senescence triggers resistance to apoptosis through

several pro-survival mechanisms, such as phosphoinositide 3-

kinase (PI3K)/protein kinase B (Akt) pathway, B-cell lymphoma 2

(Bcl-2) protein networks, and cell cycle regulators (P21, P53,

FOXO4). Senolytic drugs interfere with these protective pathways

by selectively targeting these molecular protectants, as illustrated in

preclinical autoimmune models (Table 1). This specificity allows for

the elimination of pathologic senescent immune cells without

destroying healthy cells (138).

4.1.1.1 Dasatinib and quercetin

Dasatinib and quercetin (D+Q) senolytic combination drug is

among the most promising therapeutic agents for senescent cell

therapy. Dasatinib, an approved Food and Drug Administration

(FDA) tyrosine kinase inhibitor, triggers apoptotic cell death in

senescent cells through multi-pathway inhibition of pro-survival

cues. Experimental evidence shows its ability to suppress Treg

expansion by CTLA-4, FOXP3, and glucocorticoid-induced TNF

receptor (GITR) downregulation, and arrest cell cycle progression

in culture cells (139). Preclinical studies demonstrate dasatinib’s

therapeutic potential across autoimmune models. In RA, treatment

reestablished the Treg/Th17 equilibrium while ameliorating clinical

disease manifestations (140). The compound similarly improved

outcomes in experimental autoimmune encephalomyelitis (EAE)

through dual mechanisms: suppression of microglial/macrophage

activation with consequent reduction in TNF-a and matrix

metalloproteinase (MMP)-2 production, and limitation of

inflammatory cell central nervous system (CNS) infiltration

(Table 1) (141).

Quercetin, a plant flavonoid with dual senotherapeutic effects,

regulates important cell pathways such as PI3K and Bcl-2 signaling

cascades (142). Treatment with quercetin in murine lupus models

was associated with kidney protection through the downregulation

of inflammatory markers (TGF-b1, TNF-a, Bcl-2-associated

protein x (Bax), IL-6) and counts of senescent T cell and

follicular helper T cell subsets (143). The medication also reduced

pathology of RA through neutrophil recruitment inhibition and

various pro-inflammatory cytokines (monocyte chemotactic

protein (MCP)-1, IFN-g, TNF-a, IL-17, IL-6) (144). Notably, in

senescent macrophage-induced experimental colitis, dietary

quercetin supplementation enhanced disease conditions by
Frontiers in Immunology 07
re-establishing heme oxygenase (HO-1)-dependent macrophage

function—reinstating their anti-inflammatory potential without

compromising antimicrobial function (Table 1) (95–97). Such

broad-spectrum immunomodulation indicates that quercetin can

restore mucosal immune homeostasis through site-specific

macrophage reprogramming (98).

4.1.1.2 Bcl-2 family inhibitors

Senescent cells tend to overexpress anti-apoptotic Bcl-2 family

members (Bcl-xL, Bcl-2), making them more refractory to normal

clearance pathways (145). In SLE, IL-15-induced upregulation of

these survival proteins in CD4+ T cells drives the proliferation of

dysfunctional lymphocytes that perpetuate inflammatory loops.

Preclinical interventions that take advantage of this vulnerability

have been found to be promising (Table 1). The senolytic drug

ABT-263 (Navitoclax), which effectively depletes senescent CD4+ T

cells, senescent B cells (CD19+CD11c+T-bet+), and Tfh cells,

significantly reduced these populations in lupus-prone MRL/lpr

mice. The mechanisms involved were accompanied by

improvements in renal function, decreased proteinuria, and

modulation of disease overall, establishing Bcl-2 inhibition as a

valid means of autoimmune regulation (81). Therapeutic actions of

senolytics on Bcl-2 are highly context-dependent across

autoimmune diseases. Though therapeutic in lupus models, ABT-

263 worsens disease in EAE through elimination of protective

senescent microglia and macrophages—highlighting the

requirement for cell-type specificity and narrow treatment

windows (80). The more potent inhibitor ABT-737 (which targets

Bcl-2, Bcl-xL, and Bcl-w) was employed for the treatment of SLE by

inhibiting the proliferation of lymphocytes that drives disease (82).

Most notably, localized ABT-737 delivery in murine cutaneous

lupus models preferentially killed senescent immune infiltrates

within lupus lesions (83). These findings overall indicate that

whereas Bcl-2 family inhibition is beneficial, extreme caution

must be exercised with regard to the tissue microenvironment

and specific immune targets.
4.1.1.3 HSP90 inhibitor

Heat shock proteins (HSPs), and HSP90 in particular, are

essential molecular chaperones for protein folding and stability.

Recent evidence indicates that they play a key role in immune cells

aging and autoimmune pathogenesis. Senescent immune cells have

the unique characteristic of being prone to overexpressing HSP90 as

an adaptive form of cytoprotection, enhancing resistance to

apoptosis and promoting pathologic persistence (146). HSP90

induces immune cell survival via senescence by stabilizing critical

regulators of apoptosis. HSP90 chaperone protein maintains the

structural integrity and activity of essential signaling molecules such

as Bcl-2 anti-apoptotic proteins, Akt survival kinases, and NF-kB
transcription factors—all generally overexpressed in old

lymphocytes. Through preventing degradation of client proteins,

HSP90 re-establishes pro-survival signaling networks that define

senescent immune populations (147). Autoantibodies and

autoreactive T cells targeting HSPs have been reported in a

number of autoimmune diseases, such as MS (148), inflammatory
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TABLE 1 Senolytics and senomorphics and their mechanisms of action on autoimmune diseases.

Class Compound Mechanism Autoimmune disease

Senolytics

Tyrosine
kinase inhibitor

Dasatinib -Inhibits pathways that support survival of
senescent cells

RA (79)

Bcl-2
family inhibitor

ABT-263 (Navitoclax) -Inhibits Bcl-2, Bcl-XL and Bcl-W
-Activates the pro-apoptotic pathways

MS (80), SLE (81)

ABT-737 -Inhibits Bcl-2, Bcl-XL and Bcl-W
-Activates the pro-apoptotic pathways

RA (82), SLE (82), CLE (83)

HSP90 inhibitor 17-DMAG (Alvespimycin) -Inhibits HSP90
-Increase in CD8+ T cells
-Inducing apoptosis in senescent cells
- Reduces follicular B cells

SLE (84)

17-AAG (Tanespimycin) -Inhibits HSP90
-Degrades the proteins involved in cell
proliferation and survival

Lupus (85), Epidermolysis bullosa
acquisita (86)

Geldanamycin -Inhibits HSP90
-Degrades the proteins involved in cell
proliferation and survival

RA (87, 88)

Ganetespib (STA-9090) -Inhibits HSP90
-Disrupts PI3K/Akt/NF-kB, Raf/MEK/ERK
and JAK/STAT3 pathways

SLE (89, 90)

SNX-7081 -Inhibits HSP90
-Disrupts PI3K/Akt/NF-kB and Raf/MEK/
ERK pathways

RA (91)

P53 Modulators Nutlin-3a -Inhibits P53/MDM2 interaction RA (92), SLE (93)

Natural
Compounds

Quercetin -Inhibits anti-apoptotic pathways in
senescent cells, PI3K and Bcl-2 family

T1D (94), RA (95–97), Colitis (98)

Fisetin -Inhibits PI3K/Akt and Bcl-2 family SLE (99)

Baicalin -Inhibits NF-kB, MAPK, STAT3 T1D (100, 101), RA (102)

Icariin -Inhibits NF-kB, MAPK, JAK/STAT3, and
NLRP3 inflammasome

T1D (103), MS (104)

Genistein -Inhibits NF-kB, MAPK and JAK/STAT3
-Regulates cytokine production
-Promotes Treg cells

T1D (103), RA (105)

Epigallocatechin-3-gallate -Inhibits NF-kB, MAPK and JAK/STAT3
-Suppresses Th1 and Th17
-Activates Nrf2
-Modulates B cell proliferation

SLE (106), Psoriasis (107)

PPAR-a Agonists Fenofibrate -Inhibits inflammatory responses and IFN-g
and promotes IL-4 secretion

MS (108), Psoriasis (109)

Gemfibrozil -Inhibits NF-kB
-Inhibits Th1/Th17 response
-Modulates microglia and astrocytes

T1D (110), MS (111)

Senomorphics

Rapamycin -Blocks mTOR, Nrf2, NF-kB T1D (112, 113), RA (114, 115), SLE (116), JIA
(117), Sjögren syndrome (118)

Metformin -Activates AMPK, PI3K/Akt
-Inhibits mTOR, NF-kB

T1D (119), RA (120), MS (121)

Resveratrol -Inhibits NF-kB
-Inhibits Th17 activity

IBD (122), Crohn's disease (123)

(Continued)
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bowel disease (IBD) (149), SLE and RA (146), denoting a

pathological role for these stress proteins in breaking immune

tolerance. Clinical investigations identify the increased expression

of HSP90 in renal tissue and also in the circulation of SLE patients,

where it promotes the survival of senescent CD4+ T cells and ABCs

selectively. These senescent lymphocytes produce IL-6 as part of

their SASP, generating a pro-inflammatory microenvironment that

supports three pathologic pathways of especial significance:

paracrine senescence transmission to adjacent immune cells,

abnormal B lymphocyte activation, and autoantibody

overproduction. Importantly, IL-6 also upregulates HSP90

expression, creating a self-perpetuating inflammatory loop that

abrogates immune regulation and maintains disease activity in

SLE (150). Pharmacologic HSP90 inhibition has been an

attractive senotherapeutic option. Geldanamycin analogues, 17-

DMAG (alvespimycin), and 17-AAG (tanespimycin) are cytotoxic

to senescent immune subsets with specificity (Table 1). Initial

findings prove that 17-DMAG specifically kills disease-causing

lymphocyte populations in lupus models such as follicular B cells

and double-negative T cells (CD4-CD8-), thus improving immune

imbalance in aging models (84). Mechanistically, HSP90 drives

senescence via amplification of pro-inflammatory signal

transduction pathways. The preclinical agent SNX-7081

suppressed RA pathology in animal models by disrupting NF-kB
activation and resulting SASP-associated cytokine production

(TNF-a, IL-17, IL-6, IL-8), leading to the suppression of joint

inflammation (Table 1) (91).

4.1.1.4 P53 modulators

Therapeutic modulation of p53 signaling pathways is a new

treatment strategy for immune senescence in autoimmunity. Being

the master guardian of genomic integrity and cell fate choice, p53

has multi-dimensional immunomodulatory roles—maintaining

immune homeostasis at basal states but causing lymphocyte

dysfunction under conditions of chronic inflammation. In

autoimmune pathogenesis, dysregulation of p53 facilitates

pathological persistence of immune cells via two mechanisms:

disrupted apoptosis signaling and ectopic activation of survival
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pathways, thus perpetuating inflammatory loops (151). A number

of studies have also detected anti-p53 autoantibodies in a number of

autoimmune diseases, such as SLE, autoimmune hepatitis,

granulomatosis, and GD. Such observations suggest generalized

immune recognition of structurally or functionally aberrant p53

proteins in a variety of autoimmune pathologies. Such a pathway

would be likely to underlie two related disease mechanisms:

senescent immune cell accumulation with aberrant p53 signaling,

and subsequent loss of immune tolerance to this essential tumor

suppressor protein. All together, these mechanisms form a self-

reinforcing feedforward loop that maintains autoimmune activity

by initiating chronic inflammatory signaling and defective

apoptotic elimination of pathogenic lymphocytes (152). Increased

p53 protein and certain genetic mutations (at positions 213 and

239) have been found in RA synovium, and these are associated

with increased IL-6 release—a key driver of senescence-associated

inflammation (153). This finding has generated therapeutic promise

for p53-modulating strategies. Of new directions, the murine

double minute 2 (MDM2) inhibitor Nutlin-3a is of special

interest by inhibiting p53 ubiquitination and proteasomal

degradation and thus augmenting its tumor suppressor activity

(154). Preclinical studies show that Nutlin-3a can selectively

eliminate senescent cells that are dependent on aberrant p53

pathways for survival. In models of arthritis induced by collagen,

treatment with this MDM2 inhibitor elicited three major

therapeutic effects: inhibition of pro-inflammatory cytokine

networks, reduction of clinical arthritis scores, and inhibition of

synovial inflammation. These studies unveil its dual potential to

deplete simultaneously pathogenic senescent immune subsets and

reduce SASP-driven tissue damage (92). The MDM2/p53 regulatory

axis shows particular dysregulation in pediatric SLE, where elevated

MDM2 activity drives pathological mesangial cell proliferation and

disrupts normal B cell compartmentalization (93). Nutlin-3a

demonstrates therapeutic potential by specifically interrupting this

pathogenic signaling cascade. This class of p53-stabilizing

compounds offers precise targeting of senescent immune

populations while sparing healthy cells, positioning them as

promising candidates for senolytic therapy (Table 1).
TABLE 1 Continued

Class Compound Mechanism Autoimmune disease

Senomorphics

Aspirin -Inhibits the differentiation of naive T cells
into Th17 and Th1 cells
-Restores Tregs

RA (124), MS (125), SLE (126)

P38 MAP
Kinase Inhibitor

SB203580 -Inhibits P38 MAP Kinase MS (127), Lupus (128)

Tim-3 -Inhibits P38 MAP Kinase RA (129), Autoimmune hepatitis (130)

JAK/
STAT Inhibitor

Ruxolitinib -Inhibits JAK/STAT and decreases the
proportion of Th17 cells

CLE (131), Psoriasis (132)

Baricitinib -Inhibits JAK/STAT pathway MS (133), Psoriasis (134)

Cdk7 Inhibitor BS-181 -Inhibits IL-1b, IL-6, IL-8, and RANKL via
NF-kB suppression

RA (135–137)
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4.1.1.5 Natural compounds

Plant-derived senotherapeutic agents like fisetin have been

proposed as potential modulators of age-related immune

dysfunction modulators in autoimmunity. Fisetin and other

bioactive molecules selectively target senescent immune subsets

and inhibit pro-inflammatory secretory profiles, possibly halting

the vicious cycles perpetuating chronic inflammation (155). In

lupus-prone MRL/lpr mice, fisetin administration produced three

key therapeutic benefits: (1) amelioration of renal fibrosis, (2)

clearance of senescent T lymphocytes, and (3) downregulation of

senescence-associated inflammatory mediators (99). These

preclinical results establish fisetin as a multifaceted senolytic

agent with potential to influence autoimmune disease

progression (Table 1).

Emerging research reveals multiple plant-derived compounds

with senotherapeutic properties across autoimmune conditions,

underscoring the central role of cellular senescence in

pathogenesis (Table 1). The soy isoflavone genistein demonstrated

dual metabolic and immunomodulatory benefits in T1D models,

likely mediated through modulation of SASP components (100).

The bioactive flavonoid icariin, derived from Epimedium species,

exhibited comparable therapeutic effects in rodent models through

two primary mechanisms: potentiation of cellular antioxidant

defenses and suppression of NF-kB-mediated inflammatory

signaling. This dual action effectively modulates the SASP by

targeting its central transcriptional regulator (103). Baicalin (101),

and baicalein (156), flavonoids, have strong anti-inflammatory and

neuroprotective properties in model systems. Baicalein maintained

motor function and decreased demyelination in EAE mice,

documenting to reverse neuroinflammation mediated by

senescent immune cells. Expanding on these results, a double-

blind, placebo-controlled trial showed that EGCG, a green tea

polyphenol, improved remission in IBD patients (157). Although

its direct senolytic action on human beings is a yet-to-be-

established fact, EGCG’s immunomodulatory effects has a

potential in inhibiting immune senescence.

4.1.1.6 PPAR-a agonists

Recent investigations reveal unexpected immunomodulatory

properties of peroxisome Proliferator-Activated Receptor (PPAR)-

a activating compounds, expanding their therapeutic potential

beyond metabolic regulation. The fibrate class of drugs—

particularly gemfibrozil, ciprofibrate and fenofibrate—

demonstrates significant capacity to modify immune responses in

multiple sclerosis and related conditions (Table 1) (158). These

effects appear particularly relevant to inflammation driven by aging

immune cells. Experimental data show ciprofibrate acts to regulate

central elements of neuroinflammation, such as suppression of

autoreactive T cell clones and regulation of overactivated

microglia. Therapy is associated with typical changes in cytokine

release profiles, e.g., reduced IFN-g and increased IL-4 levels,

indicating a switch towards Th2-mediated response. Simultaneous

studies show that fenofibrate is capable of suppressing activation of

the Th17 pathway, whereas gemfibrozil shows more generalized

immunomodulation within human lymphocyte subsets (108).
Frontiers in Immunology 10
These collective actions position PPAR-a agonists as potential

modifiers of immune aging processes in autoimmune pathogenesis.

4.1.1.7 Cdks inhibitors

Cyclin-dependent kinases (Cdks), crucial regulators of cell

division and gene expression, have gained attention as potential

therapeutic targets for autoimmune disorders due to their role in

senescence pathways. In autoimmune conditions, aberrant cell cycle

control promotes premature aging of immune cells—particularly T

lymphocytes—resulting in chronic inflammatory states and

impaired immune regulation (159). Pharmacological modulation

of Cdks offers a strategic approach to interrupt two key pathological

processes in autoimmunity: the progressive accumulation of

senescent immune cells and their deleterious secretory profile. By

targeting Cdk activity, therapeutic interventions could break the

self-perpetuating cycle of inflammation and tissue damage

characteristic of chronic autoimmune conditions.

The Cdk4/6-RB-E2F axis plays a pivotal role in cell cycle

regulation through phosphorylation-mediated release of

transcriptional activators. In autoimmune pathogenesis,

pharmacological inhibition of this pathway (e.g., via compounds

such as TCK-276) may constrain pathological immune cell

expansion. Preclinical arthritis models demonstrate TCK-276’s

therapeutic potential, with treatment yielding both clinical

improvement (reduced articular inflammation) and histological

preservation (decreased joint destruction)—likely through

selective suppression of proliferative, senescent-like immune

populations (160, 161). At the molecular level, Cdk4/6 inhibitors

functionally mimic endogenous cell cycle regulators P16 and P21,

which serve as both biomarkers and critical controllers of

senescence programs. Interestingly, RA synovial tissue exhibits

reduced P21 expression compared with osteoarthritic joints.

Experimental restoration of P21 via adenoviral vectors potently

suppresses two key mediators of senescence-associated

inflammation: IL-6 secretion and matrix metalloproteinase-1

production (162–164). Translational research has confirmed the

clinical potential of Cdk4/6 modulation in the treatment of

autoimmune diseases. A phase 1b randomized controlled trial

evaluating TCK-276 in patients with RA met its primary

endpoint, demonstrating statistically significant improvements in

disease activity compared with placebo. These findings link

preclinical mechanisms to human treatment outcomes and

support Cdk inhibition as a viable strategy for immune

modulation in active disease states (Supplementary Table 1,

Figure 2) (165). Emerging research highlights Cdk7 as a novel

regulator of inflammatory T cell responses in psoriasis. Patients

show increased Cdk7 activity in circulating CD4+ T cells, with

expression levels tracking closely with symptom severity. Research

reveals that disrupting Cdk7 signaling—through genetic approaches

or small molecule inhibitors—attenuates disease development in

mouse models of psoriasis-like inflammation. This therapeutic

effect coincides with reduced production of inflammatory

signaling molecules (Table 1) (166). Collectively, pharmacological

Cdk inhibitors represent a promising class of senescence-targeting

therapeutics with dual mechanisms of action: direct regulation of
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immune cell proliferation and mitigation of senescence-driven

inflammatory cascades. Their capacity to address both cell cycle

dysregulation and pathological secretory phenotypes position them

as versatile candidates for treating autoimmune conditions

characterized by accelerated immune cell aging.

4.1.2 Development of senomorphics
An alternative pharmaceutical approach focuses on xenomorphic

compounds that counteract the deleterious effects of aging-related

secretions while preserving cell viability. These agents prevent both

the induction of aging and the production of inflammatory mediators

throughmultiple pathways, includingNF-kB,mTOR, IL-1a, and P38
MAPK signaling. Current research has identified several promising

xenomorphic candidates with applications in the management of

autoimmune diseases (Table 1).

4.1.2.1 Rapamycin

The macrolide compound rapamycin demonstrates dual

therapeutic properties as both an immunomodulator and

senescence pathway regulator. By selectively inhibiting mTOR

signaling, this clinically validated agent simultaneously suppresses

immune cell activation and attenuates senescence-associated

inflammatory responses, offering a unique pharmacological

approach to age-related immune dysfunction (167). Rapamycin

exerts its therapeutic effects primarily through mTOR pathway

suppression, targeting a master regulator of cellular metabolism

that becomes pathologically overactive in aged immune cells. This

inhibition leads to significant downregulation of characteristic

SASP—particularly the pro-inflammatory cytokines—that play

fundamental roles in autoimmune disease progression (168–170).

This functional reprogramming preserves cellular viability while

fundamentally altering secretory behavior—transforming pro-

inflammatory immune cells into more regulated phenotypes that

contribute to immune homeostasis rather than perpetuate

inflammatory cycles (167). Notably, rapamycin enhances

autophagic flux—a critical cellular recycling process that becomes

deficient in aged immune cells. This restoration of protein and

organelle turnover helps maintain proper immune cell function and

metabolic homeostasis, addressing a fundamental defect in

senescent cell physiology (171).

Rapamycin’s immunomodulatory action is also seen in

senescent cell populations in autoimmune settings. In EAE

models, treatment concurrently diminished CNS infiltration of

inflammatory IL-17+ T cells and boosted the percentage of Tregs

—mitigating age-associated Treg deficiency undermining immune

tolerance (172). Murine lupus models likewise demonstrated the

ability of rapamycin to normalize lymphocyte function, the treated

animals having significantly reduced autoantibody levels and

reduced activation markers on T and B cell compartments (173).

These combined observations place mTOR inhibition as a means to

reverse senescence-induced immune dysregulation. Combination

therapy using rapamycin and modified IL-2 constructs

demonstrates synergistic effects in autoimmune conditions,

particularly by reinforcing Treg cell function. In models of T1D

and primary biliary cholangitis, this dual approach markedly
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improved Treg survival and functional stability—effectively

counteracting the progressive regulatory decline characteristic of

aging immune systems (112). Therapeutic application of rapamycin

and rapalogues is also broadened to other autoimmune conditions

with chronic immune activation and accelerated immune aging.

Therapeutic benefits have been observed in Sjögren syndrome

(118), juvenile idiopathic arthritis (JIA) (117) and RA (114),

wherein not only are the overactive immune responses

suppressed but also the pathologies of senescence below them can

be addressed. Most notably in RA, rapamycin targets pathologic

aging of fibroblast-like synoviocytes and autoreactive lymphocytes-

the key cellular propagators of irreversible joint damage (174, 175).

The simultaneous modulation of immune and senescence

pathways by rapamycin is a unique therapeutic strategy—selective

reprogramming rather than elimination of senescent immune cells.

This dual mechanism has the potential to mediate autoimmunity

with the immunological triad of age-related disease and

inflammation and cellular senescence. As outlined in Table 1,

preclinical models position rapamycin as an autoimmune model

for immune cell senescence therapies.

4.1.2.2 Metformin

Beyond its established role in glucose regulation, metformin

also exerts significant immunomodulatory effects that are able to

influence cellular aging pathways (119). The primary action of the

drug is the activation of AMP-activated protein kinase (AMPK)

with subsequent inhibition of mTOR signaling—an action central

to senescence regulation and suppression of inflammatory

mediators (176). Through such metabolic crosstalk, metformin

seems to counteract the pro-inflammatory milieu induced by

senescent subsets of immune cells in MS (177), RA (178), and

SLE (179), as reported in Table 1.

Several lines of evidence suggest that metformin reverses aging

T cell function via metabolic reprogramming. The three senescence-

associated defects that the drug acts on are diminished

mitochondrial effectiveness, hyperproduction of ROS, and

deregulated NF-kB signaling—all reducing pro-inflammatory

secretory profiles (180). In EAE models, metformin shows

neuroprotection, with reduced CNS demyelination, regulated

microglial function, and less invasion by senescent immune cells

(121). Besides, metformin possesses microbiome-modulating

activity that can play a role in immune regulation. The

medication restores microbial diversity—across the board

perturbed in autoimmunity and aging—with potential to curb

gut-derived initiators of systemic inflammation that drive

immune aging (181).

4.1.2.3 Resveratrol

The bioactive polyphenol resveratrol (present in many plant

species) has antioxidant and immunomodulatory effects that could

be potentially therapeutic for autoimmune and age-related immune

diseases (Table 1) (182). Mechanistically, it interferes with NF-kB
activation pathways by blocking IL-1 signaling pathways, thereby

impairing the formation of senescence-associated inflammatory

mediators. In addition, resveratrol was found to favorably
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modulate immune polarization by inhibiting pro-inflammatory

Th17 reactions while enhancing immunoregulatory T cell

populations—remedying an underlying imbalance common to

both immune aging and autoimmune disease pathogenesis (183).

Experimental investigations reveal resveratrol’s therapeutic

potential across multiple autoimmune models. In RA studies

using C57BL/6 mice, treatment produced three significant

improvements: decreased articular inflammation, reduced

nociceptive responses, and suppression of neutrophil extracellular

trap generation—all critical factors in autoimmune-mediated joint

destruction (184). Demyelination studies using cuprizone-induced

animal models demonstrate resveratrol’s neurorestorative capacity,

with treatment enhancing oligodendrocyte-mediated myelin

regeneration. These findings suggest therapeutic potential for MS

by addressing the core pathological feature of axonal insulation loss

(185). Collectively, these observations position resveratrol as a

promising candidate for reducing aging-related immune

dysfunction and its inflammatory consequences. Despite its

therapeutic potential, clinical application faces significant

pharmacological challenges—including limited aqueous solubility,

extensive first-pass metabolism, and less than optimal systemic

absorption—that currently limit its translational application (122).

Innovative drug delivery approaches overcome the pharmacological

limitations of resveratrol. For example, encapsulation of b-
lactoglobulin nanoparticles enhances both solubility (200%

increment) and therapeutic potency, such that treated models

show enhanced production of IL-10—a biomarker of successful

immune reprogramming (186). Advanced delivery systems using

chitosan nanocomposites enable site-specific release of resveratrol

in the colon, demonstrating particular promise for IBD

management (123). This targeted approach simultaneously

addresses two pathological drivers: SASP activity and T cell

imbalance. Resveratrol’s multifaceted immunomodulatory

properties establish it as a prototype for plant-derived

therapeutics targeting immune cell aging in autoimmunity.
4.1.2.4 Aspirin

The nonsteroidal anti-inflammatory drug (NSAID) aspirin exerts

its pharmacological effects by selectively inhibiting the

cyclooxygenase (COX) enzyme, a key regulator of thromboxane

and inflammatory prostaglandin production. This mechanism

underlies both its anti-inflammatory properties and cardiovascular

benefits (187). Although aspirin remains a historically important

therapy for RA symptom management (124), its clinical use has

declined due to adverse gastrointestinal and cardiovascular effects,

with newer COX-2 selective agents now favored. However, preclinical

research reveals unexpected immunomodulatory properties,

positioning aspirin as a potential modifier of immune aging

processes (Table 1). EAE studies demonstrate aspirin’s capacity to

redirect CD4+ T cell differentiation—suppressing the development of

pathogenic Th1/Th17 cells while enhancing FOXP3+ Treg cell

generation through CREB-dependent IL-11 production (125).

Ongoing clinical investigations continue to uncover aspirin’s

secondary benefits for autoimmune patients. Retrospective data

indicate prophylactic low-dose administration may reduce
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cardiovascular risk in SLE populations (126)—particularly relevant

given their chronic inflammation and accelerated vascular disease

progression, both exacerbated by senescence-associated immune

dysfunction. These observations highlight aspirin’s potential as a

multipurpose therapeutic when judiciously implemented in

immunocompromised populations.

4.1.2.5 P38 MAP kinase inhibitors

Autoimmune inflammation is also tightly controlled by certain

signaling molecules, among which IL-1 and IL-6 are of special

interest. Both of these cytokines are regulated by certain enzymes

referred to as MAPKs, which transmit extracellular stress signals to

intracellular function. The p38 MAPK pathway has been found to

be particularly dysregulated in autoimmune diseases such as RA

(188) and IBD (189). After overactivation, it results in the release of

inflammatory mediators from senescent cells, becoming involved in

a vicious cycle of chronic inflammation that injures the tissues

during autoimmunity and regular aging.

Experimental research using the p38MAPK inhibitor SB203580

has revealed significant disease-modifying effects. In murine models

of spontaneous lupus (MRL/lpr strain), oral treatment with this

inhibitor produced measurable renal benefits, including decreased

urinary protein excretion and structural preservation of renal tissue

(128). SB203580 exhibited neuroprotection in models of EAE,

retarding disease progression by two mechanisms: suppression of

myelin loss by Th17-mediated mechanisms and disruption of ROS

accumulation—both of which are central drivers of immune-

associated neural degeneration (127). The same pathway may also

underlie pemphigus vulgaris epidermal blistering, where the

pathogenic autoantibodies induce p38-mediated tissue damage

(190). Further studies point to the immunoregulatory receptor

Tim-3 regulating p38 signaling to mediate autoimmune hepatitis

development in animal models via the inhibition of pathological

Th17 activity (130). These findings together emphasize p38

MAPK’s bipotential role in acute autoimmune as well as chronic

senescent immune cell-mediated inflammation. Pharmacological

inhibition of p38 MAPK provides a dual-action therapeutic strategy

to mitigate the SASP and target central autoimmune mechanisms,

as summarized in Table 1. This dual-action potential makes p38

inhibitors very promising for the therapeutic treatment of age-

aggravated autoimmune diseases.

4.1.2.6 JAK/STAT inhibitors

The Janus kinase (JAK)/STAT signaling axis functions as a

principal orchestrator of immune activation, with pathway

dysregulation now recognized as a fundamental driver of

autoimmune pathology (191). Chronic JAK/STAT activation

maintains the pathological secretory behavior of senescent

immune cells, creating self-perpetuating inflammatory cycles that

drive tissue damage (192). Pharmacological interruption of this

pathway demonstrates therapeutic potential, as shown by

ruxolitinib’s capacity to reduce pathogenic Th17 populations and

suppress inflammatory mediators in EAE models, resulting in

measurable clinical improvement (193). Animal studies of

cutaneous lupus erythematosus (CLE) demonstrate ruxolitinib’s
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capacity to suppress disease-promoting cytokine networks,

suggesting an ability to interrupt the inflammatory feedback

cycles that sustain autoimmune tissue damage (131). This

preclinical evidence translates to clinical benefit, with topical

ruxolitinib formulations showing measurable therapeutic effects in

CLE patients (Table 1) (194). Psoriasis pathogenesis involves the

accumulation of senescent T cell and chronic inflammation, both of

which respond to JAK pathway inhibition. Clinical studies reveal

significant improvement in psoriatic symptoms with both

ruxolitinib (targeting JAK1/2) and tofacitinib (JAK1/3 selective),

demonstrating reduced cutaneous inflammation and visible lesion

clearance (Supplementary Table 1) (132). The JAK inhibitor

tofacitinib, formulated for both systemic and localized delivery,

has demonstrated clinical efficacy in refractory RA across phase III

trials, including patients with inadequate response to conventional

therapies such as methotrexate or biologic agents (Supplementary

Table 1) (132, 195). This class of therapeutics provides combined

advantages for autoimmune management by simultaneously

disrupting pro-inflammatory signaling cascades and potentially

counteracting the pathological effects of senescent immune

populations that sustain disease activity.
4.2 Immunotherapy approaches

The treatment of autoimmune diseases calls for novel

therapeutic strategies in light of their multifactorial etiology.

Immunotherapeutic agents have emerged as central tools with

their ability to modulate immune activity in a specific manner by

various mechanisms. The present review covers the existing

immunomodulatory modalities, including antibody-targeted

biologics, checkpoint regulators, and adoptive cell therapies.

Supplementary Table 1 highlights notable clinical trial findings

that demonstrate the therapeutic effectiveness of these modalities

for the treatment of autoimmune diseases.

4.2.1 Monoclonal antibodies
Engineered antibody therapies have also been developed as

targeted medicine for autoimmune disease with the potential for

selective manipulation of pathogenic immune populations that have

accumulated during immune aging. These biologics achieve

targeted immune modulation by two main mechanisms: direct

cell clone depletion of autoreactive cells and functional

reprogramming of senescent lymphocytes. This double feature

improves treatment specificity with the possibility to leave behind

protective immunity (196). The B-cell activating factor (BAFF)-

specific monoclonal antibody belimumab illustrates this therapeutic

principle in SLE. By competitively blocking BAFF receptor

interactions (TACI, BR3, and BCMA), it disrupts critical survival

signals for autoreactive B cell populations - including those

developing senescence markers. This targeted intervention

selectively removes pathogenic B cell clones while maintaining

normal humoral immunity, effectively reducing autoimmune

pathology (197–200). B-cell targeting antibodies like rituximab

demonstrate broad therapeutic effects through CD20-mediated
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depletion of pathogenic B lymphocyte populations. This includes

elimination of dysfunctional B cells displaying SASP that contribute

to inflammatory pathology in SLE (201). Rituximab therapy

achieves rapid peripheral B-cell depletion in RA patients, with

≥95% reduction in CD20+ lymphocytes and concomitant

decreases in CRP/ESR levels detectable by day 14 post-infusion

(202). The agent demonstrates comparable lympholytic efficacy in

systemic vasculitides, with phase III trials documenting sustained

CD19+ cell counts <5 cells/mL in 89% of granulomatosis with

polyangiitis and microscopic polyangiitis patients through 6-

month follow-up (203). The therapeutic depletion of B

lymphocytes holds particular significance in cellular senescence,

given the pathological accumulation of senescent B-cell populations

in autoimmune disorders. These dysfunctional cells perpetuate

chronic inflammatory states through two principal mechanisms:

sustained secretion of pro-inflammatory cytokines, and progressive

erosion of immune tolerance pathways (204). The evolution of anti-

CD20 biologics has yielded engineered monoclonal antibodies

(obinutuzumab, veltuzumab, ofatumumab, ublituximab)

demonstrating three key advancements over predecessor

molecules: optimized effector function through Fc domain

modifications, reduced neutralizing antibody formation via

humanized frameworks, and prolonged in vivo persistence.

Veltuzumab exemplifies this progress—while maintaining

rituximab’s target specificity, its humanized variable regions

confer both extended circulation time (t½ increased 2.3-fold in

clinical studies) and decreased human anti-chimeric antibody

(HACA) responses, significantly improving its safety profile (205).

Emerging clinical evidence also positions corelizumab as a potent

anti-CD20 intervention for MS, demonstrating significant

reductions in both relapse frequency (43.7% vs placebo, p<0.001)

and disability progression (34% reduction in 12-week CDP) in

phase III trials (206). This therapeutic effect appears mediated

through selective clearance of senescent CD27+ memory B-cell

subsets known to drive neuroinflammation via IL-6 and GM-CSF

secretion (207, 208). The mechanistic link between B-cell

senescence and autoimmunity further validates anti-CD20

biologics as precision tools for cellular senescence modulation.

Ofatumumab exemplifies this approach in RA, where

subcutaneous administration achieved ACR50 responses in 41.2%

of TNF-a refractory patients (207) and reduced synovial ectopic

lymphoid structures by 68% (208), suggesting direct targeting of

pathogenic B-cell niches.

Ofatumumab exhibits unique CD20 binding characteristics

compared to rituximab, engaging both the small (residues 72-82)

and large (residues 142-182) extracellular loops of the target protein

through its distinct epitope recognition. This bivalent interaction

induces enhanced membrane-bound complement component C1q

recruitment, achieving 8-fold greater complement-dependent

cytotoxicity in vitro (p<0.01). Furthermore, the antibody’s

sustained membrane proximity facilitates direct B-cell lysis

through lipid raft destabilization, independently of FcgR-mediated

effector functions (209). Senescent B cells were revealed to play a

role in autoimmune diseases by inducing immune dysregulation

through pro-inflammatory chronic signaling. Thus, based on their
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pathogenic function, treatments, such as ofatumumab, have great

promise for reversing cellular senescence effects. Obinutuzumab,

another anti-CD20 monoclonal antibody, has been revealed to be

effective in clinical manifestations in SLE, the most notable effect

being observed in lupus nephritis. Clinical studies show that

obinutuzumab not only decreases the risk of worsening kidney

function but also has better complete renal response rates compared

to placebo (210). These observations indicate obinutuzumab greatly

decreases autoreactive and conceivably senescent B cells, which play

a central role in initiating chronic inflammation in SLE. At the same

time, ublituximab, a monoclonal antibody originally developed to

treat chronic lymphocytic leukemia, is being repurposed for

relapsing MS, a disease also characterized by immune aging

defects. In ULTIMATE I and II phase III trials, ublituximab

significantly decreased annualized relapse rates and MRI lesion

activity compared to teriflunomide in patients with relapsing MS

(211). These findings suggest that ublituximab exerts its therapeutic

effects, at least in part, through modulation of immune senescence

pathways involved in MS pathogenesis.

CD22 has emerged as an additional therapeutic target for B-cell

mediated disease. The humanized anti-CD22 monoclonal antibody

epratuzumab has been shown to cause clinically relevant reductions

in B-lymphocyte levels in the circulation and titers of IgM, while

preserving intact T-cell levels and other immunoglobulin isotypes

(212). This pattern of depletion is of particular interest because

CD22 functions as a gatekeeper of B-cell receptor signaling

thresholds. Such bispecific immunotherapy can provide such new

benefits in treating age-related B-cell hyperreactivity in

autoimmune diseases. More importantly, new forms of bispecific

antibodies against both CD22 and CD20 epitopes (with the help of

epratuzumab and veltuzumab derivatives) were also found to be

more effective in the inhibition of membrane proteins that are

important for B-cell activation and chemotaxis. Such combination

therapy is more potentially therapeutic with dual antigen

targeting (213).

Emerging immunomodulatory therapies have identified the

BLyS-APRIL cytokine network as a key regulator of pathologic B-

cell activity in autoimmune disease. The dual antagonist recombinant

fusion protein atacicept exhibits a singular efficacy in diseases with

chronic autoreactive B-cells. Atacicept-treated lupus nephritis and

IgA nephropathy clinical trials showed dramatic reduction in disease

biomarkers upon atacicept treatment, paralleled by suppressed

inflammatory responses mediated by long-lived B-cell subsets. The

therapeutic benefits of this approach have been validated in multiple

clinical settings. Research has confirmed significant clinical

improvement in autoimmune disorders characterized by

pathogenic B-cell accumulation, including active lupus nephritis

(214) and IgA nephropathy (215). By modulating these cell

populations, atacicept offers a promising avenue for restoring

immune balance in aging-related autoimmunity. Another

immunotherapeutic strategy targeted the CD11a subunit of LFA-1

through the monoclonal antibody efalizumab, originally developed

for psoriatic disease. Efalizumab functioned by blocking T-cell

activation and cutaneous trafficking, effectively reducing dermal
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infiltration and keratinocyte hyperproliferation—hallmarks of

psoriatic plaques. While early clinical results were promising, post-

marketing safety concerns led to its withdrawal from the global

market (216). Future treatments can aim the effector T cells in such a

manner so that they do not cause chronic inflammation caused by

senescent immune cells as a strategy. These cells can cause SASP, a

causative factor of pathology by releasing high levels of inflammatory

mediators like TNF-a and IL-6. The chronic inflammatory tissue

environment triggers additional ongoing tissue damage and loss of

immune homeostasis. Current studies indicate that selective

inhibition of SASP constituents would be a suitable therapy to

correct autoimmune function in aging-related autoimmune diseases

and offers new therapeutic possibilities. TNF-a inhibitors, including

etanercept and adalimumab, have proven effective in a wide range of

autoimmune diseases—psoriatic arthritis (217, 218), psoriasis (219),

RA (218, 220), ulcerative colitis (221, 222), Crohn’s disease, and

ankylosing spondylitis (218, 223). The therapeutic benefits of these

agents may stem, at least partially, from their ability to counteract

senescence-driven inflammation, thereby restoring immune

equilibrium and mitigating tissue injury. This mechanism aligns

with observations from clinical studies of tocilizumab, an IL-6

receptor blocker, which has shown measurable efficacy in

autoimmune disorders where inflammation is exacerbated by

immunosenescent processes. These include refractory polymyositis

and dermatomyositis (224), giant cell arteritis (225), relapsing

polychondritis (226), primary Sjögren’s syndrome (227), Graves’

ophthalmopathy (228), and hemophagocytic lymphohistiocytosis

(229). Tocilizumab induces its therapeutic activity through

inhibition of IL-6 signaling, thus resolving SASP-mediated

inflammation and inducing immune homeostasis. Analogously, the

proteasome inhibitor bortezomib has been considered for the therapy

of autoimmune conditions with immune cell senescence. Its use for

inapproapriate immune response modulation is most applicable in

conditions of disease when autoreactive plasma cells are accumulated

as a result of age-associated immune deregulation, e.g., refractory

warm autoimmune hemolytic anemia. In addition, combination

therapy with agents such as cyclophosphamide or rituximab

potentiates bortezomib’s effect by increasing immunosuppression

and reducing pathogenic levels of B cells (230). There is

increasingly available evidence to suggest the application of multi-

drug regimens for evading the compromised pathways of cell survival

seen in aged immune status. As a critical regulator of inflammatory

signaling, the JAK-linked kinase TYK2 generally possesses aberrant

activity in immunosenescent states. Such dysregulation is crucially

implicated in autoimmune pathogenesis, especially in chronic

inflammatory diseases such as psoriasis where immune aging is a

critical component. Deucravacitinib’s selective TYK2 inhibition is an

important therapeutic innovation. Clinical data in rigorous Phase II/

III clinicals in plaque psoriasis patients were adequate efficacy and

safety to seek FDA approval. Its mechanism of action is also well

suited to inhibit autoimmune activity while restoring some remaining

residual impaired age-related immune activity (231). Additional

research is left to determine these biotherapeutic agents, and

complete trial results are presented in Supplementary Table 1.
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4.2.2 CAR-T cell therapy targeting senescent
cells

Recent developments in autoimmune disease therapy have

identified two potentially profitable immunomodulatory strategies:

chimeric antigen receptor (CAR) T-cell and monoclonal antibody

therapies. Although monoclonal antibodies initially were effective

against hematologic malignancies and possess the dominant

mechanism by peripheral B-cell depletion, CAR-T therapy is a

targeted precision medicine strategy involving the genetic

manipulation of autologous T cells to recognize and destroy

harmful immune cell populations. One of the more promising

features of CAR-T cells is their known capacity for invading

immunologically privileged areas, such as the CNS—therapeutic

effect not typically observed with standard B-cell depleting therapies.

The treatment setting for autoimmune disorders also

encompasses several CD19-targeting CAR-T cell strategies in late-

stage clinical evaluation. One of such drugs, CC-97540, is being

evaluated in lupus patients via an open-label multicenter trial with an

active phase I (NCT05869955) (232). Another strategy, KYV-101,

incorporates fully humanized anti-CD19 CAR-T cells and is

undergoing phase I/II development for challenging-to-treat lupus

nephritis (NCT05938725) (233). Regulatory milestones have

included recent FDA clearance for starting in phase II testing of

treatment-refractory progressive MS (NCT06384976) (234).

Additional trials are exploring CAR-T therapy in other

autoimmune indications, including stiff person syndrome

(NCT06588491) (235) and generalized myasthenia gravis

(NCT06193889) (236). The treatment effectiveness of CAR-T cell

therapies can be compromised by cellular senescence. Aged T cells

exhibit biased proliferative capacity downregulation, increased

markers of exhaustion such as PD-1 and LAG-3, and decreased

longevity following adoptive transfer—characteristics singly or

cumulatively decreasing therapeutic effectiveness. This limitation is

additionally compounded by the pro-inflammatory environment

created by frequent SASP factor secretion from senescent immune

cells, which could compromise patients to poorly intended

inflammatory complications like the cataclysmic cytokine release

syndrome. Despite these challenges, next-generation CAR-T

designs are incorporating advanced engineering solutions.

Neutralizing these limitations, third-generation CAR-T platforms

now include advanced engineering strategies for overcoming

immunosenescent challenges. Engineered co-stimulation domains—

namely, CD28 and 4-1BB mutants—have been engineered with

strategic design to augment T cell activation and induce cellular

duration of action in senescent immune environments. At the same

time, researchers are utilizing gene-editing technologies to overcome

built-in inhibitory strategies through modulation of key checkpoint

molecules such as PD-1 and CTLA-4 (237). Murine models have

shown that urokinase-type plasminogen activator receptor (uPAR)-

targeting CAR-T cells are capable of effectively eliminating senescent

cells in intestinal tissue. They not only eliminated the old cellular

populations with efficacy but also enabled two important secondary

effects: efficient downregulation of MHC class II molecules on

epithelial surfaces and restoration of gut mucosal barrier function.

These observations highlight the two-pronged therapeutic value of
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this method, with the ability to cure cellular senescence as well as its

resultant immunological effects in aging diseases (238, 239). These

findings collectively underscore the dual potential of CAR-T cell

therapy: not only in targeting autoreactive immune cells, but also in

mitigating the detrimental effects of cellular senescence.
5 Concluding remarks

Aging progressively weakens the immune system, fostering

susceptibility to autoimmune diseases. This review has examined

the role of immune cell senescence in autoimmunity pathogenesis—

both as a driver of the disease and as a target for treatment. Cellular

aging progressively impairs immune cells’ capacity to maintain self-

tolerance, inducing chronic inflammation by means of the SASP

and compromised immune surveillance. The pathophysiology

underlying lies in complex interactions between senescent T cells,

B cells, and innate immune loops, which all work together to

maintain a chronic inflammatory environment that conditions

autoimmune phenotypes. Energetic therapies such as senolytics,

xenomorphics, and second-generation immunotherapies hold the

potential for reversal of cellular senescence. These therapies not

only reverse immune function but also provide opportunities for

age-related autoimmunity to be treated with individualized therapy

regimens. Current research involves the combination of anti-

senescence therapy with traditional therapy to attain optimum

effectiveness with fewer adverse effects. Enhanced knowledge on

immune cell senescence will form the core of subsequent advances

in therapeutics that enhances immune homeostasis and quality of

life in individuals affected by autoimmune diseases.
6 Future directions

The expanding armory of targeted therapeutics against

autoimmune diseases is a reflection of the unprecedented

advances that have been achieved. As knowledge about immune

cells aging unfolds, the strategies outlined here form a sound

foundation on which to construct future treatment development.

New approaches will probably be an extension of ongoing clinical

trials, optimizing current therapy, optimizing patient-

individualized therapy, and adding new modalities—e.g.,

combination therapy or novel technologies—to overcome current

therapeutic constraints. Future research will need to concentrate on

bridging the gap between fundamental findings and their clinical

utility, where mechanistic information is appropriately translated

into better outcomes and patient care.
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