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Introduction: RNA sequencing (RNA-seq) can measure whole transcriptome

gene expression from tissues or even individual cells, providing a powerful tool to

study the immune response. Analysis of RNA-seq data involves mapping

relatively short sequence reads to a reference genome, and quantifying genes

based on the position of alignments relative to annotated genes. While this is

usually robust, genetic polymorphism or genome/annotation inaccuracies result

in genes with systematically missing or inaccurate data. These issues are

frequently hidden or ignored, yet are highly relevant to immunologic data,

where balancing selection has generated many polygenic gene families not

accurately represented in a ‘one-size-fits-all’ reference genome.

Methods: Here we present nimble, a tool to supplement standard RNA-seq

pipelines. Nimble uses a previously developed pseudoaligner to process either

bulk- or single-cell RNA-seq data using custom gene spaces. Importantly, nimble

can apply customizable scoring criteria to each gene set, tailored to the biology

of those genes.

Results: We demonstrate that nimble recovers data in diverse contexts, ranging

from simple cases (e.g., incorrect gene annotation or viral RNA), to complex

immune genotyping (e.g., major histocompatibility or killer-immunoglobulin-like

receptors). We use this enhanced capability to identify killer-immunoglobulin-
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like receptor expression specific to tissue-resident memory T cells and

demonstrate allele-specific regulation of MHC alleles after Mycobacterium

tuberculosis stimulation.

Discussion: Combining nimble data with standard pipelines enhances the fidelity

and accuracy of experiments, maximizing the value of expensive datasets, and

identifying cellular subsets not possible with standard tools alone.
KEYWORDS

single-cell RNA-seq (scRNA-seq), T cells, bioinformatics, immunogenetics, major
histocompatability complex (MHC)
Introduction

RNA-sequencing (RNA-seq) and single-cell RNA-sequencing

(scRNA-seq) technologies provide transcriptome-wide quantification

in a sample of interest. In the case of scRNA-seq, transcriptomes are

captured from individual cells, allowing for high-resolution

observations of cellular function and differentiation. These high-

dimensional data benefit the analysis of large populations of cells,

such as those common in immunologic data. The rapid and accurate

production of these data relies on complex software quantification

toolchains. The process of transcript quantification is characterized by

many technical decision points which, while generally obscured from

downstream analysis, have a profound impact on the produced count

data, depending on the quantification method of choice and its

interaction with the reference genome.

The bioinformatic processing of RNA-seq and scRNA-seq data

involves several steps. In most cases, short reads are aligned to a

reference genome which is annotated for gene and features. In

general, one genome is used to represent the diversity of the entire

species. After alignment, an algorithm is run to assign reads to

genes/features, producing gene counts. There are many established

tools and pipelines for RNA-seq analysis. STAR is a commonly used

alignment tool that can align reads by local positional alignment to

a reference genome or transcriptome in a splice-aware manner (1).

Kallisto performs transcript quantification by pseudoalignment of

reads to a reference genome, without undergoing an expensive

positional alignment process first (2). Feature calling is sometimes

included with the aligner, and is sometimes performed using a

separate tool, such as HTseq (3). Especially for scRNA-seq analyses,

it is common for vendors to wrap all steps into one pipeline, such as

the 10x Genomics CellRanger software. While these tools have

differences in their implementation, they each function by aligning

all data from a sample to a single reference genome, and they score

genes/features using a ‘one-size-fits-all’ logic that treats all genes

identically. This approach can work quite well and is probably the

desirable approach for most genes.

There are nonetheless situations where standard pipelines are

systematically inaccurate or sub-optimal (Figure 1). Complex
02
regions of the genome, especially gene families with copy number

differences and/or segmental duplication, are difficult to accurately

assemble when generating reference genomes. If the reference

genome is inaccurate or incomplete, this results in feature

counting artifacts, such as missing counts for expected genes. If a

gene that is transcribed is not represented in the reference genome,

the RNA-seq reads from that gene can misalign to the closest

available gene, inflating these counts and providing misleading data.

Improved genomic assemblies, especially those generated from long

read sequencing, will improve this to a point; however, there are

gene families with characteristics that remain problematic.

Instances where two highly similar genes are encoded in the

genome can result in alignment ambiguity or multi-mapped

reads, which are often discarded, resulting in lost data. Some gene

families have high degrees of variation between individuals,

meaning it is extremely difficult to represent genomic diversity of

the species with one single reference genome. Examples of these

include the major histocompatibility complex (MHC), which

is the most variable region of primate genomes, or killer

immunoglobulin-like receptors (4–9). In the case of MHC class I,

in addition to variable gene content in some species, there is

extremely high allelic diversity, with thousands of known alleles

(5). While most RNA-seq and scRNA-seq analyses are designed to

ignore allelic variation, the identity of the expressed MHC alleles for

a subject is critical to antigen recognition, and thus higher

resolution genotyping is often needed. Standard RNA-seq

pipelines generally treat quantification of all genes identically,

which does not permit adaptation of feature calling to match the

biology or differing needs of certain gene families.

To address the limitations of standard RNA-seq and scRNA-seq

pipelines, we developed nimble, a lightweight tool intended to

provide supplemental gene counts to complement standard

pipelines (Figure 1). Nimble is designed to be executed against

one or more customizable gene spaces, where each gene space

contains a focused set of reference sequences to address a specific

question. Nimble uses a previously published pseudoalignment

engine to align reads against these references (10), followed by

customizable logic for feature calling. The combination of these two
frontiersin.org
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capabilities allows nimble to quantify both simple and complex

gene families, especially when the biology or characteristics of these

genes are problematic for the standard one-size-fits all alignment

and feature calling pipelines.
Results

Design of nimble and concordance with
standard pipelines

Nimble is the combination of a previously developed

pseudoaligner and customizable feature-calling algorithm,

designed to allow the user to perform targeted quantification of
Frontiers in Immunology 03
one or more panels of interest. While nimble is primarily designed

to address complex genomic regions, we first constructed a panel of

“simple” genes that lack the complex genetics or high intra-species

variation that can confound standard RNA-seq pipelines. We

processed a single-cell RNA-seq (scRNA-seq) dataset from rhesus

macaque peripherical blood mononuclear cells (PBMC) and

compared the counts obtained by the CellRanger pipeline using

the Mmul10 reference genome (“CellRanger/Mmul10”) against the

counts obtained by nimble using this custom gene space (Figure 2).

We contrasted un-normalized raw counts in aggregate, prior to

downstream normalization or other processing, to provide the most

direct comparison of alignment behavior. The results are highly

similar both when comparing the total counts per gene (Figure 2),

and the per-cell counts (Figure 2). While there is minor variation
FIGURE 1

Diagram of RNA-seq alignment and potential pitfalls. (A) The schematic illustrates the alignment of short read data to a reference genome. In most
cases, the short reads uniquely map to that reference, providing unambiguous gene counts. There are nonetheless several examples, with both
technical and biological cases, that result in reads being unable to uniquely map to the genome, resulting in either missing or inaccurate gene
counts. If the reference assembly is incomplete and lacks a gene, or if that gene is present but not annotated, either missing data or inaccurately
aligned counts are produced. Further, when multiple copies of highly similar genes are present, the aligned often cannot uniquely assign the reads
to a gene, often resulting in lost data. Finally, certain regions of the genome are highly polymorphic across the population (e.g., MHC) making it
virtually impossible to accurately represent the species using one reference genome. (B) The schematic illustrates the workflow used by nimble to
address deficiencies in standard single-cell and bulk RNA-seq pipelines. Nimble allows the user to create multiple custom reference spaces, where
each is generally designed to address a specific need, such as a reference containing the sequences of genes missing or mis-annotated in the
reference, or extra-genomic sequences (e.g., a viral genome). This could also involve specialist databases, such as a reference containing all MHC/
HLA alleles. Equally important, nimble allows customized feature calling thresholds for each reference. This is critical to support applications like
MHC-typing, where higher resolution matches are required than standard feature calling. The result of this pipeline is a set of supplemental count
matrices containing per-sample or per-cell counts for the additional genes/features. These data can either be merged with the existing gene counts,
or analyzed in parallel, depending on the experimental needs.
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between the tools, this is likely due to differences in alignment

algorithm or scoring thresholds. While nimble is not designed to

completely replace standard alignment and feature calling pipelines,

to provide a more comprehensive comparison of nimble with

standard pipelines we generated a nimble library containing the

complete 15,782 genes defined in the MMul_10 genome, and

compared the resulting per-cell counts against the same data

processed with CellRanger/MMul_10. The results were highly

concordant, with a Pearson correlation of 0.968 (Supplementary

Figure 1). Together, these data indicate that nimble’s alignment

pipeline captures similar count data to standard pipelines,

establishing nimble’s accuracy when aligning to a straightforward

gene space. Nimble’s performance scales with available hardware

via thread-level parallelism and will attempt to fully-saturate the

provided cores. RAM usage is low, requiring memory only for

the reference de Bruijn graph and 50 UMIs of buffered data from

the input.bam file. In one example, aligning 491 million paired-end

reads to a ~2,200-feature MHC reference completed in 225 minutes

on 18 CPUs, sustaining ~36,000 reads/sec. Performance scales in a

nearly linear manner with CPU count.
Quantification of genes missing from the
reference genome enhances measurement
of B cell class switching

A second straightforward usage of nimble is to quantify genes or

features not annotated or misannotated in the reference genome.
Frontiers in Immunology 04
While this is less common for the human genome, the genomes of

model organisms frequently have less complete or accurate gene

models. While gene models can be corrected, generating counts for

missing features, at least for most scRNA-seq pipelines, requires

repeating the entire alignment. Rhesus macaques encode both CD27

and immunoglobulin heavy constant delta (IGHD), and while the

sequence for these genes is present in the MMul_10 genome,

neither are annotated in the NCBI gene build (version 103). Both

genes provide useful information about B cell differentiation states

(11). To overcome this, we generated a nimble reference containing

these genes, along with the remaining Ig heavy chains (IGHA,

IGHE, IGHM, IGHG1, IGHG2, IGHG3, and IGHG4) to provide a

comparison against standard pipelines (Supplementary Table S1).

We processed a previously published rhesus macaque reference B

cell dataset using this reference space (Figure 3). This dataset

contains B cells of multiple differentiation states, including Pre-B

cells, mature B cells, germinal center (GC), and plasma cells

(Figure 3). Nimble successfully generated missing count data for

CD27, demonstrating expression primarily in the “innate-like”

CD40- mature B cell cluster, with limited expression among GC

cells (Figure 3). IGHD is upregulated primarily in pre-B cells and

the mature B cell cluster (Figure 3). Finally, we used the nimble

immunoglobulin heavy chain expression data to classify B cell class

switching status (Figure 3). For each B cell maturation type, we

observe a predominant class-switching status: pre-B and mature B

cells were predominately not class switched, while germinal center

and plasma cells were predominately class-switched, reflecting their

antigen-exposed state. Additionally, as cells transition through the
FIGURE 2

Validation of nimble accuracy relative to established pipelines. All panels display summaries of raw count data generated by processing rhesus
macaque scRNA-seq data through either nimble (using a gene space comprised of the mRNA sequences for these genes), or CellRanger (using the
Mmul10 reference genome). (A) The bar plot compares the magnitude of raw counts generated by nimble and CellRanger/Mmul10 in aggregate for
a set of common immune genes. These genes were selected because they represent “simple” features, present at a single copy in the genome
without complex polymorphism expected between subjects. (B) The scatter plot compares the range of counts generated by nimble and
CellRanger/Mmul10 for each cell in the dataset. These data demonstrate that both tools produce similar per-cell counts when executed against
typical genes.
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class switch recombination process, we observe many different

“mixed” expression states, at a diminished ratio compared to cells

that fall into one of the two main class-switching categories.

Organizing the cell categories by stage in the B cell maturation

and differentiation process, we see the expected transition of B cells

from not class-switched to class-switched over time. Taken

together, these data demonstrate a case where a new nimble gene

space allowed for cell classification beyond what is possible using

standard pipelines alone.
Quantification of extra-genomic features

Many experiments require the quantification of features not

encoded by the normal species genome, including the sequences of

viral or bacterial pathogens, or exogenous genes (e.g., GFP). A

common way to address this situation today is to append the

exogenous sequence(s) to the species genome and align data to

this new composite “genome”. While this is a viable option much of

the time, alterations to the base genome can require re-processing of

data, creates issues recombining or merging cohorts (it is more

complex to merge counts when not aligned to the identical genomic

space). Nimble provides an option to rapidly generate counts for

any number of custom features, at any point after the primary

alignment is performed, which can either be merged to the primary

count matrix or treated separately.

To demonstrate examples of this, we analyzed virally infected

cells. First, we performed scRNA-seq on primary normal human

dermal fibroblasts experimentally infected with Chikungunya virus

(CHIKV; strain SL-15649), as well as uninfected controls

(Figure 4A). These were processed on separate lanes, and

therefore the CHIKV-exposure status of each cell is known. We

began by processing using the standard CellRanger/Mmul10

pipeline. PCA/UMAP analyses revealed two main transcriptional

clusters, which largely separate the CHIKV-infected from

uninfected cells (Figure 4). We aligned these populations to a
Frontiers in Immunology 05
custom nimble gene space containing the CHIKV genome,

generating per-cell counts. CHIKV-expression corresponded

extremely well with the expected groups, with virtually all

CHIKV-exposed cells expressing high levels of CHIKV and no

CHIKV detected in the control cells. This indicates that nimble is

accurately and specifically detecting CHIKV (Figures 4B).

Because the CHIKV experiment involved experimental viral

infection, it was obviously important to quantify CHIKV, and the

proper CHIKV reference sequence was known prior to analysis.

Therefore, alignment of data to an augmented genome and using

standard pipelines would be as effective as nimble. This situation is

not always true. Next, we performed scRNA-seq on cells cultured

from an adrenal mass detected in an immunosuppressed cynomolgus

macaque (12). We hypothesized that a virus was the cause of adrenal

mass, but this was not known prior to the experiment. We used

nimble to align the reads against a genome containing multiple

macaque viruses (Supplementary Table S1). Unsupervised

clustering on RNA expression (using the host genome and not

viral transcripts), revealed multiple transcriptional clusters

(Figure 4). The nimble-generated data identified lymphocryptovirus

(LCV) in B cells isolated from this sample (Figure 4E). LCV is a

member of the gammaherpesvirus family that naturally infects

macaque populations, infects B cells, and can cause lymphomas,

especially in immunocompromised subjects (13, 14). Also of note, the

per-cell expression of LCV differed between the clusters (Figure 4).

This is noteworthy because LCV RNA was not part of the

dimensional reduction, and therefore the pattern of clustering is

driven by changes in the host transcriptome alone. LCV has complex

interactions with the host cell, and this suggests that the host gene

expression differences could be the effect of increased viral replication

or represent different phases of the viral life cycle. While in this

experiment we quantified LCV as a single feature, allowing

assignment of cells as LCV-positive or LCV-negative, it would be

possible to repeat this nimble analysis using a gene space containing

the individual LCV transcripts for a more precise quantification.

Together, these examples demonstrate that nimble can generate
FIGURE 3

Nimble can quantify features missing from a reference genome. All panels display the analysis of scRNA-seq data from a reference rhesus macaque
B cell dataset (19). (A) The UMAP displays a dimensional reduction of the reference B cells, colored by B cell subtype. (B) The same UMAP as (A),
colored by the expression of CD27, a gene encoded by rhesus macaques, but not annotated in the Mmul10 genome. (C) The same UMAP as (A),
colored by the expression of IGHD, another feature not annotated Mmul10. (D) The IGHD count data illustrated in (C) was combined with count
data from the other Ig heavy chains to categorize cells by isotype. The bar plot displays the result of this classification, grouped by subset.
Collectively, these data illustrate situations where nimble can generate missing data to augment standard processing pipelines.
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specific quantification for extra-genomic features, such as viruses. It

also provides an example where iterative alignment against custom

gene spaces could be advantageous over modifying the base genome

and repeating the entire analysis.
Resolution of complex, multigenic families
such as NKG2 and KIRs

The examples shown thus far would be possible using standard

scRNA-seq analysis pipelines, although there are situations when it

might be more convenient or flexible to generate these data using

nimble. There are nonetheless many gene families, particularly
Frontiers in Immunology 06
those with gene duplication or variable copy number, where

aligning data and calling features in one-size-fits-all logic creates

artifacts. When aligning RNA-seq data to a reference, an important

technical decision point, which is often obscured from the end-user,

is whether to discard alignments that are mapped to multiple

features. These ambiguous “multi-mapped” reads are often

discarded in standard pipelines, which can result in the

systematic loss of biologically important data. The NKG2 genes

are a family of cell surface receptors expressed on NK cells and a

subset of T cells (15, 16). This includes the inhibitory receptor

NKG2A and the activating receptors NKG2C, and NKG2E. In

concert with CD94, these receptors can recognize MHC-E ligands

(16, 17). NKG2D is a separate activating receptor that binds
FIGURE 4

Quantification of viral RNA to illustrate detection of extra-genomic features. Panels (A–C) display the results of primary human fibroblasts infected
with CHIKV at high MOI, followed by scRNA-seq. Uninfected fibroblasts were included as a control and processed in a physically separate lane.
(A) The UMAP displays a dimensional reduction of these cells, colored by infection status. (B) The same UMAP as (A), colored by nimble-generated
quantification of CHIKV RNA, demonstrating that CHIKV is specifically detected in CHIKV-infected fibroblasts and absent in uninfected controls.
(C) The bar plot quantifies the percentage of CHIKV-positive cells for each fibroblast population from (A). Panels (D–F) display scRNA-seq data
generated from B cells obtained from an adrenal mass identified in a cynomolgus macaque. (D) The UMAP displays a dimensional reduction of
adrenal mass-derived B cells. (E) The same reduction as (D), colored by nimble-generated LCV expression data. LCV is a ubiquitous opportunistic
virus that infects B cells and can induce lymphoma. (F) The violin plot quantifies the same nimble-generated LCV expression data shown in (E),
demonstrating upregulation of LCV in B cell cluster 1. Collectively, these data provide two examples where nimble provides a simple solution to
quantify transcripts not encoded by the host genome.
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numerous MHC-I ligands (17, 18). These receptors are an

important part of NK cell signaling and can modulate T cell

signaling and thus quantifying these is important for the study of

these cells. As is common among many expanded families of genes,

there is a high degree of sequence similarity between NKG2C and E,

which has the potential to result in multi-mapping of reads and loss

of data. To examine the role of multi-mapping in standard RNA-seq

pipelines, we obtained a reference scRNA-seq dataset consisting of

T and NK cells from eight tissues and 47 rhesus macaques (19). We

processed these data using the standard CellRanger/Mmul10

pipeline, along with nimble using a custom gene space containing

NKG2 and KIR genes (Supplementary Table S1). Further, because

we understood the biology of these genes differed from the genome

as a whole, we executed nimble in a mode to allow and report multi-

feature hits for these gene families. For NKG2A and NKG2D, which

are both single-copy and have relatively unique sequences, we

observe high concordance between nimble and the standard

CellRanger/Mmul10 pipelines; however, there is a significant

difference for NKG2C and NKG2E (Figure 5). Because NKG2C

and NKG2E have high sequence similarity, many short Illumina

reads will match both genes and no aligner will be capable of

uniquely differentiating them; however, because NKG2C/E are

functionally related activating receptors, there can be value in

capturing and quantifying those ambiguous hits, especially if this

results in a significant increase in data. This is exactly what we

observe: by tolerating and reporting multi-mapped data, nimble

recovers 45% more counts than the standard pipelines (Figure 4).

In additional to the NKG2 family, the killer immunoglobulin-

like receptors (KIRs) are a well-characterized polygenic gene family

also involved in NK and T cell signaling (7, 20, 21). KIRs are

polygenic, with 23 genes present in rhesus macaques, which can be

divided into activating and inhibitory KIRs (20, 21). This raises

similar alignment/ambiguity issues as NKG2C/E; however, KIRs

present a second layer of difficulty for standard pipelines. The gene

number and gene content are variable between KIR haplotypes,

which is a challenge when trying to use a ‘one-size-fits-all’ genome

to represent the entire species. Because the reference genome

represents one possible haplotype, individuals will encode

different configurations of KIRs than represented in the reference.

Further, polygenic regions with segmental duplications are

notoriously difficult to sequence and are often poorly represented

in reference genomes. The Mmul10 genome contains only 11 KIR

genes and thus cannot provide accurate data for this gene family.

We processed the same T and NK data using a gene space

containing all published rhesus macaque KIR sequences

(Supplementary Table S1). This reference gene space contained

allele-level sequences; however, we executed nimble in a mode to

aggregate results to the KIR gene level (Figure 5). As expected, KIRs

are primarily expressed in NK cells, although expression was

detected in gamma/delta (gd) and to a lesser degree alpha/beta

(ab) T cells. KIR2DL4 and KIR3DS1 were the most detected KIRs.

Collectively, these data illustrate the ability to nimble to recover

data missed from standard pipelines by employing a more complete

reference gene space and executing feature calling using logic more

appropriate to the biology of the target genes.
Frontiers in Immunology 07
Characterization of NKG2 and KIR
expression in NK and T cells

The enhanced NKG2 and KIR data obtained by nimble allow

more detailed characterization of the expression patterns of these

functionally important receptors. Because the data in Figure 5 are

derived from a comprehensive single-cell atlas, they provide an

ideal dataset in which to characterize expression patterns (19).

Expression for NKG2 and KIR genes was variable by tissue,

although this likely reflects the composition of the T and NK cells

at these sites. For example, the lowest NKG2 and KIR expression

was detected in lymph nodes, which are sites dominated by naive

and central memory cells (Figure 5D). To resolve expression in

more detail, we subset to effector-differentiated cells and performed

dimensionality reduction (Figure 5). The subsets defined in Figure 5

are explained in greater detail in the original publication (19). As

expected, the NKG2 and KIR expression is more common in NK

cells relative to T cells. Most NK cells are positive for NKG2A,

NKG2C, or both (Figure 5). CD16+ NK cells, which are more

cytotoxic, have a higher fraction of NKG2C+ cells relative to the

CD16- NK subset. T cells were more likely to be NKG2D+ without

NKG2A/C/E; however, approximately 10% of effector memory T

cells (TEM) express NKG2C/E. T follicular helper (TFH) cells had the

highest fraction of NKG2D+ cells. Gamma/delta T cell subsets

showed intermediate NKG2 expression relative to NK cells and ab
T cells, with MAIT-like T ab cells and TRGV9+ gd T cells being the

population with the largest fraction of NKG2A+ cells. KIR

expression was also primarily detected in NK cells (Figure 5).

Cells are more likely to express inhibitory KIRs alone, and a

higher fraction of CD16- NK cells expressed KIRs relative to the

CD16+ NK cells, the opposite of NKG2 expression. Among the T

cell subsets, gd T cells had intermediate levels of KIR positivity, and

KIR expression was nearly absent from TFH cells, and KIR

expression is relatively rare in most ab T cells. A notable

exception was tissue resident memory T cells (TRM), which are

ab T cells differentiated for rapid response to antigenic stimulation

(22–24). Nearly a third of these cells expressed KIRs, which is a

significant difference from other ab T cell subsets and even higher

than CD16+ NK Cells. In total, these data illustrate additional

information that can be gleaned from existing scRNA-seq datasets,

by combining standard RNA-seq pipelines with targeted alignment

and feature calling that are adapted to the biology of complex

gene families.
Quantifying major histocompatibility class I
and II allelic expression

The major histocompatibility complex (MHC) is among the

most polymorphic in the genome and presents multiple challenges

for traditional RNA-seq analyses. Because of the high importance of

MHC/HLA genotyping and the unique challenges, an entire field

has emerged dedicated to MHC genotyping (5). The MHC is

divided into class I and II loci. In humans, there are three MHC

class I loci (termed human leukocyte complex or HLA): HLA-A, -B,
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and –C; however, in macaques there are a variable number of

MHC-A and –B loci, ranging from 20–24 distinct alleles per

macaque (Figure 6) (25). The latter creates similar challenges as

KIRs and presents a major problem for reference genome design.

Further, most MHC loci have extremely high allelic diversity, with

thousands of unique alleles per species (5). These allele-specific

polymorphisms alter the peptide binding potential of MHC alleles,

meaning that genotyping at high resolution is required. This is quite
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distinct from the approach used for RNA-seq quantification of most

genes, where pipelines are generally designed to ignore subject-

specific polymorphism within a gene. Together, these present twin

problems: 1) the single reference genome cannot adequately

represent species-level diversity, and 2) genotyping at a much

higher resolution is required than for typical genes.

To demonstrate the ability of nimble to generate high-

resolution and accurate MHC typing from scRNA-seq data, we
FIGURE 5

Summarization of NKG and KIR expression across T and NK populations. (A) The bar plot displays the magnitude of aggregated counts for NKG2A
and NKG2D, demonstrating that nimble and CellRanger/Mmul10 exhibit similar behavior for these two features. (B) The bar plot displays the
magnitude of aggregated counts for NKG2C, NKG2E, as well as reads that mapped to both NKG2C and NKG2E, which are two functionally similar
genes with high sequence similarity. Critically, the difference in ambiguity resolution strategies between CellRanger/Mmul10 and nimble leads to a
significant disparity in the number of counts generated for these features. Because nimble can be configured to retain and report ambiguous results,
we can recover more counts for the activating NKG2C/E case than standard pipelines. (C) The bar plots display the percentage of cells across the
RIRA T and NK cell types that are positive for various KIR genes. (D) The bar plots display the percentage of RIRA T and NK cells that express nimble-
generated NKG data across various RIRA tissue types. (E) A similar set of bar plots as (D), displaying the percentage of RIRA T and NK cells that
express nimble-generated KIR data across various RIRA tissue types. (F) The UMAP displays a dimensional reduction of a population of effector T and
NK cells colored by RIRA subtype. (G) The bar plot represents the percent of cells that express NKG across the clusters we defined in (F). (H) A
similar bar plot to (G), representing the percent of cells that express KIR across the clusters we defined in (F).
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processed scRNA-seq data from four rhesus macaques against

a reference space with 2,379 MHC-I and MHC-II alleles

(Supplementary Table S1). Unlike prior figures, nimble was run

in a mode to report only perfect sequence matches, which is

essential for the MHC, where nucleotide differences as little a

single base pair change alter peptide binding potential,

necessitating high-resolution allele-level genotyping. While the

database contained all known rhesus macaque MHC alleles, the

resulting data were summarized by lineage (e.g. two-digit typing) (5,

26). We began by isolating the raw sequence reads nimble detected

as aligned to MHC and compared the nimble result against the

CellRanger/Mmul10 alignments. As noted above, the Mmul10

genome is incomplete and inaccurate across the MHC region, due
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to the high complexity and polymorphism of that region. It

nonetheless contains a handful of genes annotated as MHC or

MHC-like. The majority of reads nimble identified as MHC were

aligned to these loci (Figure 6). While MHC loci are highly

polymorphic, polymorphism is clustered in the peptide-binding

region with most regions of the gene being much more conserved.

Because the Mmul10 reference genome only contains a handful of

MHC loci, and these loci do not represent the diversity of the

species, all reads from MHC will pile up against the best available

target. This is shown in greater detail when comparing the reads

assigned to the gene annotated as MHC-A in Mmul10 against the

higher resolution genotyping generated by nimble (Figure 6). This

shows that while many of the reads assigned to MHC-A by standard
FIGURE 6

High-resolution MHC genotyping and quantification using nimble. All panels summarize scRNA-seq data obtained from sorted T cells of four rhesus
macaques. (A) A schematic of the MHC region, illustrating the hypervariability of the region. (B) The pie chart summarizes the alignment status for all
MHC reads, as assigned by the standard CellRanger/Mmul10 pipeline. Because the Mmul10 genome only contains a handful of MHC-I or MHC-I-like
genes, any read with sufficient sequence similarity will map to one of these loci. Note, the genes with “LOC” designations indicate a gene that was
not assigned a formal name in the NCBI gene build. This is both a reflection of the incomplete MHC sequence present in the Mmul10 genome, and
the imprecision of count data with respect to the MHC. (C) The Sankey plot summarizes all reads assigned to Mamu-A by the CellRanger/Mmul10
pipeline, which is compared against the higher resolution MHC genotype data generated by nimble. While many reads are from Mamu -A, where
nimble simply reports a higher resolution genotype, a significant number of the reads assigned to Mamu-A are from Mamu-B alleles, highlighting the
inaccuracy of MHC data from standard pipelines. (D) The tile plot summarizes the concordance between nimble-generated data and MHC typing
data generated on the same animals using an independent sequence-based genotyping (SBT) assay. Panels E-H provide a proof-of-concept
example to illustrate how MHC typing data can be used to demultiplex pooled cells from scRNA-seq experiments. (E) The UMAP displays a
dimensional reduction computed from nimble-generated MHC allele data across the same subjects as shown in (C) and (A), colored by
unsupervised cluster identity. (F) The same UMAP as (E), colored by known subject identity. (G) The bar plot shows the proportion of cells within
each unsupervised cluster assigned to each subject. Together, (E–G) indicates that MHC allele expression per-subject is relatively unique, and that
using it to perform unsupervised clustering recovers many subject-specific clusters. (H) For the heatmap, we compute a gene module per-subject
by getting the top differential genes by cluster, indicating that each subject has a set of unique MHC alleles that uniquely identify them, thereby
driving cluster differentiation.
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pipelines are MHC-A alleles, a significant number of MHC-B alleles

are also aligned to this gene. This highlights the fact that standard

pipelines generate incorrect data from complex loci, in large part

because they are simply not designed to differentiate this level of

complexity. To evaluate the accuracy of nimble MHC data, we

genotyped the subjects using an alternative sequence-based

genotyping (SBT) assay, commonly employed for MHC

genotyping of rhesus macaques (27). This assay involves PCR

amplification of a small amplicon spanning the most variation

portion of MHC-I alleles, using primers conserved across most

MHC-I alleles. The genotypes obtained from each assay were

overwhelmingly concordant, supporting nimble’s accuracy.

The small number of discrepancies can be explained by

methodological differences. The most notable was the lack of

Mamu-B*072 detection in the nimble/scRNA-seq data. When we

inspected the raw nimble results, Mamu-B*072 alignments were

detected; however, they were always ambiguous with different MHC

alleles and thus discarded by nimble’s featuring calling logic.

Because scRNA-seq data randomly samples regions of mRNA

molecules, as opposed to the targeted sequencing of SBT, and

because many MHC alleles are highly similar, it may not always

be possible to resolve every allele. Depending on the goal of the

analysis, nimble’s alignment and scoring parameters could be

adjusted. These data nonetheless demonstrate a resolution of

MHC genotyping far superior to standard pipelines.
High-resolution MHC typing from scRNA-
seq can assign scRNA-seq transcriptomes
to subject

Due to cost, it is common to pool samples in single-cell RNA-

seq experiments. Multiple methods exist to demultiplex samples,

including cell hashing reagents and genotype-based approaches

(28–31). Due to the high subject-to-subject diversity of MHC,

these MHC genotypes should provide a mechanism to assign cells

to subjects as well. To test this, we performed dimensionality

reduction and unsupervised clustering on the MHC genotypes

generated by nimble, using the same four rhesus macaques, which

identified six clusters (Figure 6). This method was effective at

separating cells by subject (Figure 6F). Pairwise differential gene

expression analyses between these clusters identified a handful of

MHC alleles with cluster-specific expression patterns, which

correspond to alleles uniquely expressed by one or two subjects

(Figure 6). These data illustrate one practical usage for high-

resolution MHC genotyping from scRNA-seq data.
Differential regulation of individual MHC
alleles following Mtb lysate exposure

MHC expression can be altered in response to pathogens,

although most data measure global regulation of all alleles from a

given MHC locus, since allele resolution of expression has been

difficult to measure (32, 33). To examine this, we generated a dataset
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with bronchial alveolar lavage cells from a cohort of 12 rhesus

macaques vaccinated against Mycobacterium tuberculosis (Mtb).

The recovered cells were overwhelmingly macrophages. We

divided these cells and exposed one fraction to Mtb lysate for 6

hours, with the remaining cells serving as a control, followed by

scRNA-seq. We used nimble to quantify MHC-I and MHC-II

expression levels. First, we quantified MHC at the locus level to

identify any systematic changes across a whole MHC locus

(Figures 7A, B). Data were quantified as either the mean

expression level or the percent of cells expressing each locus.

Across all subjects, we see changes in mean expression of <5% in

Mtb stim or control unstimulated cells, with generally high

variance, especially for MHC-B, suggesting expression may vary

by allele. The percentage of cells expressing MHC loci varies by

<10% in Mtb exposed or control unstimulated cells, except for

Mamu-I. There was a small overall increase in the percentage of

cells expressing any MHC-A and MHC-B alleles.

When the data are summarized at the allele-level, a more

complex picture emerges (Figures 7C, D). First, the per-cell

expression of each MHC allele varies heavily both at rest and

post-stimulation. Certain MHC alleles are expressed by nearly all

cells (e.g., Mamu-A1*004), while some are only expressed by a small

fraction of cells (e.g., Mamu-A1*008 or Mamu-DRB1*10). Second,

individual alleles behave differently after Mtb exposure, with some

alleles increasing significantly relative to controls, some unchanged,

and some even decreasing (e.g., Mamu−DRB5*03). When

summarized across all rhesus macaques, Mamu-B*053 showed

the highest increase after exposure, while Mamu-DRB1*10

showed the highest decrease (Figure 7E). These data, while proof-

of-concept, demonstrate that there is high variability in expression

at the level of MHC allele, and that allele-specific regulation occurs.

This level of information is largely undetected by standard analysis

pipelines. These changes could have implications for antigen

selection in vaccines and could contribute to the protective effects

of certain MHC alleles.
Discussion

Dominant RNA-seq and scRNA-seq pipelines are designed to

produce reliable quantification across the genome as a whole. Reads

are typically aligned to a single reference genome that is intended to

represent the genomic diversity of the entire species. While these

can be very effective, there are gene families and genomic regions

with characteristics that are problematic for standard pipelines,

especially polygenic regions with differences in gene content

between subjects. These include regions where it is extremely

difficult for one reference genome to faithfully represent the

diversity of the species (e.g. MHC/HLA or KIR), and situations

where the species simply encodes multiple copies of highly similar

genes (e.g. NKG2C/E). There are also more mundane situations

where standard pipelines can fail or be sub-optimal, including

detection of exogenous RNA (e.g., a virus) or simple errors in the

gene model. Here, we presented nimble, a novel and flexible tool to

address these gaps, especially where the underlying biology doesn’t
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lend itself to a one-size-fits-all algorithm. Nimble supplements

standard pipelines by aligning data to custom gene spaces, with

customizable criteria for feature calling, which can be adapted to the

needs of that gene family.
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We demonstrate the value of nimble through multiple

examples. To validate accuracy, we demonstrate concordance

between nimble and the standard CellRanger pipeline, using a set

of typical single-copy, relatively conserved genes. Nimble can be
FIGURE 7

Detection of variance in MHC allele expression between stim and control data. (A) The bar plot displays the magnitude and variation of the
aggregated expression difference between stim and control data for each MHC locus. (B) A similar bar plot to (A), displaying the percentage
difference and variance of the number of cells that express each MHC locus, compared between stim and control data. (C, D) The dot plots show
the top variable alleles for each subject. For each allele, the data are split between stim and control expression. Negative percentage values indicate
expression in unstimulated cells, while positive percentage values indicate expression in stimulated cells. The x-axis is the magnitude of the
expression for each allele. The dot size and color represent the “skewedness” of the expression toward stim or control data, indicating an
upregulation. (E) In the bar plot, we rank all MHC alleles across the subjects by mean “skewedness” and display the top twenty-five, allowing us to
identify alleles that are systematically upregulated in either the stim or the control data.
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used to address technical issues in the genome or gene model, as

shown for CD27 and IGHD, or for the quantification of viral

expression. Nimble is especially powerful for complex, polygenic

gene families, because it can perform feature calling using settings

more appropriate for each gene family. We show that nimble can

recover otherwise discarded expression data for NKG2 genes and

used nimble to characterize NKG2 and KIR expression in T and NK

cells. These analyses identified previously unreported enrichment of

inhibitory KIR expression in tissue resident memory T cells. Finally,

nimble can resolve high-resolution MHC expression data, which

revealed significant expression differences at the allele-level, and

allele-specific changes after Mtb exposure. Collectively, these

demonstrate a range of situations where nimble can augment

standard RNA-seq pipelines to recover potentially valuable data.

There are many efforts to improve the quality of reference

genomes, including the new generation of so-called telomere-to-

telomere (T2T) genomes (34, 35). While these may help with some

of the issues outlined here, they will not address them all. While

newer builds may provide contiguous sequence across the entire

chromosome, they still represent the entire genomic diversity of the

species with one reference. This is not adequate for highly

polymorphic regions, especially when gene content differs

between subjects. Newer genomic representations, such as

pangenome graphs, seek to represent multiple haplotypes in a

single reference and could address some of this (36). While the

latter is unquestionably a more biologically appropriate way to

represent intra-species variation, this is a significant change, and

new generations of software will be required to take advantage of

this new genomic representation. Finally, even if a perfect

representation of genomic diversity existed, some gene families

have characteristics that require customized logic in the scoring of

gene and allele-level counts.

Nimble, as the name suggests, is designed to be lightweight and

flexible. We presented a set of examples where it is useful, but others

may exist. One potential use-case is quantification of isoforms, in

which case the reference might contain a handful of isoforms for the

gene of interest. This supplemental alignment and count data makes

it feasible to identify previously missed patterns of expression across

diverse species and cell types.
Methods

Nimble aligner

The data presented here were processed using a novel toolchain

developed for the purpose of aligning RNA-seq data to arbitrary

reference spaces. Nimble provides various facilities for curating

these custom reference libraries, aligning sequence data, and

reporting properties of the alignment data for the purpose of

quality control. The tool takes RNA-seq data in a variety of

formats and a set of custom reference libraries as input and

produces one count matrix per library. To create a custom gene

space, the user can provide a set of Entrez identifiers, a CSV, or a

FASTA file. The nimble library file produced allows the user to
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customize values for aligner filter behavior, such as minimum read

length for a passing alignment, the maximum allowable

mismatches, or sequence trimming strictness, among several

others. The tool and detailed documentation about its usage and

configuration options is available on GitHub (https://github.com/

BimberLab/nimble).

Nimble incorporates a previously developed, multithreaded

pseudoalignment algorithm to align RNA-seq data to these

custom gene spaces (10). First, if the input is a.bam file, it is

sorted using samtools (37). Then, the custom gene space

reference sequences are used to construct a Debruijn graph,

which allows for rapid and accurate quantification of counts per

input gene without needing to perform expensive positional

alignment. All input RNA-seq data is trimmed with a

reimplementation of Trimmomatic’s MAXINFO algorithm (38)

and aligned to the input gene spaces, producing either counts-

per-gene matrices or counts-per-molecule matrices, depending on

the format of the input data. Ambiguous alignments to two or more

features may be kept or discarded, depending on the user settings.

The nimble alignment pipeline provides several additional

layers of filtration for the alignment count matrix, depending on

the format of the input data. All alignments are subject to alignment

length, mismatch, and trimming filters. In the case of paired-end

input reads, there are optional filters for asserting read-pair

alignment orientations relative to the reference space, and several

options for producing a single set of calls from differing alignments

between two sequences in the same read-pair. Finally, nimble can

transform the counts-per-molecule matrix produced from 10x

scRNA-seq input data into a counts-per-cell matrix by

intersecting on the molecule and cell barcodes to conform to the

expected data format for downstream packages like Seurat.
Animal subjects

All study macaques were housed at the Oregon National

Primate Research Center (ONPRC) in animal biosafety level 2

rooms with autonomously controlled temperature, humidity, and

lighting. Macaques were fed commercially prepared primate chow

twice daily and received supplemental fresh fruit or vegetables daily.

Fresh, potable water was provided via automatic water systems.

During all protocol time points, body weight and complete blood

counts were collected and animals underwent anesthesia support

and monitoring. The ONPRC Institutional Animal Care and Use

Committee approved macaque care and all experimental protocols

and procedures. The ONPRC is a Category I facility. The American

Association for Accreditation of Laboratory Animal Care fully

accredits the Laboratory Animal Care and Use Program at the

ONPRC. It has an approved assurance (no. A3304-01) for the care

and use of animals on file with the National Institutes of Health

Office for Protection from Research Risks. The Institutional Animal

Care and Use Committee adheres to national guidelines established

in the Animal Welfare Act (7 U.S. Code, sections 2131–2159) and

the Guide for the Care and Use of Laboratory Animals, Eighth

Edition, as mandated by the U.S. Public Health Service Policy.
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Tissue collection and processing

Cell isolation from PBMC and solid tissues were acquired and

processed to single-cell suspensions using previously published

methods, summarized below (5, 19). Liver, spleen, and mesenteric

lymph node biopsies were collected by a minimally invasive

laparoscopic procedure (39). For lung samples, animals were

humanely euthanized, and caudal lung lobe samples were

collected during necropsy. Bone marrow cells were harvested

from the humerus or iliac crest by flushing with R10 media.

Peripheral blood mononuclear cells (PBMCs) were isolated from

freshly collected ACD-A treated blood utilizing Ficoll-Paque

density centrifugation (20). Lymph nodes (LN) and spleen

samples were homogenized as previously described (40) while

liver and lung samples were enzymatically digested with DNAse

and collagenase (41, 42). Prior to processing, cells were filtered

using 70 um strainers. Cells were quantified using a Countess II

(Thermo Fisher), aliquoted, diluted as required for single-cell RNA

sequencing (typically 500-1,500 cells/uL), and kept on ice prior to

processing. Mononuclear cells were isolated from bronchoalveolar

lavage (BAL) as previously described (43).
Cell hashing

Cell hashing was used for most scRNA-seq samples, with the

MULTI-Seq lipid labeling system (31), using commercially available

lipid modified oligos (Sigma Aldridge LMO001). Cells were labeled

with barcoded lipids as follows: 15uL MultiSeq solution 1 (LMO

stock, diluted in PBS to 400nM) was added, along with 45 uL of the

barcode solution (10uM barcode oligo, diluted in PBS to 400nM),

giving a final working concentration of 200nM for LMO and

200nM for the barcode oligo. Next, pipet mix and incubate for 5

min at 4°C. Add 10uL of the MultiSeq co-anchor solution (50uM

Co-A stock, diluted in PBS to 2uM), then pipet mix and incubate for

5 min at 4°C. Wash twice with 1 mL cold PBS, spinning cells at 700

g for 5 min at 4°C, and then resuspend in 200 uL R10 (which will

quench LMOs). Samples were pooled, followed by GEM generation

on the 10x instrument.
Single-cell RNA sequencing

The isolated single cell suspensions were then processed for

single-cell RNA sequencing using the 10x Genomics Chromium

platform, using 5’ v2 or HT chemistry, following the manufacturer’s

protocols, including feature barcoding library preparation. To

improve capture of MULTI-Seq fragments, we added the

following primer, 5’-CCTTGGCACCCGAGAATTCC-3’, at

2.5uM to the 10x cDNA synthesis step. Generation of VDJ

enriched libraries followed manufacturer’s instructions with the

exception that macaque-specific TCR constant region primers were

used in place of human-specific TCR enrichment primers for

macaque cells (19). Primer pairs were used to amplify the alpha,
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beta, delta, and gamma TCR chains. The concentration of the alpha

constant region primer was increased relative to the beta primer to

improve amplification. PCR conditions for both reactions were as

follows: lid temp 105°C, 98°C 0:45, 12 cycles of: 98°C 0:20, 60°C

0:30, 72°C 1:00, followed by 72°C 1:00 and 4°C hold. Sequence

libraries were sequenced using Illumina chemistry, on either

Novaseq or HiSeq instruments (Illumina).
Single-cell RNA-seq processing

Raw sequence reads were processed using 10X Genomics Cell

Ranger software (version 8.0.1). The resulting sequence data were

aligned to the MMul_10 genome (assembly ID: GCF_003339765.1)

with NCBI gene build 103. Cell demultiplexing used a combination

of algorithms, including GMM-demux, demuxEM and BFF,

implemented using the cellhashR package (30, 44, 45). Droplets

identified as doublets (i.e. the collision of distinct sample barcodes)

were removed from downstream analyses. We additionally

performed doublet detection using DoubletFinder, and removed

doublets from downstream analysis (46). Data were otherwise

processed as previous described (19). Analyses utilized the Seurat

R package, version 4.2 (47). Multiple scRNA-seq datasets are used,

including many previously published datasets. A complete listing of

the SRA accession numbers for datasets generated for this

manuscript are available in Supplementary Table S2. Adrenal

mass B cell samples were obtained from a previously described

case (12). The Rhesus Macaque Immune Atlas (RIRA) dataset was

used for multiple analyses, with the input gene expression data from

NIH GEO database, accession GSE277821, and NIH BioProject

PRJNA1163395 (19).
Major histocompatibility complex analysis

Genotyping for Major Histocompatibility Complex class I

(MHC-I) allele was performed using a PCR amplicon-based

method, as previously described 78,79. For nimble-generated MHC

data, normalization was performed per cell by dividing the raw

reads for each MHC allele by the sum of reads from each MHC

locus (i.e. total MHC-A, total MHC-B, etc.).
Chikungunya virus infection

Primary normal human dermal fibroblasts (NHDFs) were

experimentally infected with Chikungunya virus strain SL-15649,

obtained from Dr. Mark Heise (University of North Carolina at

Chapel Hill). NHDFs were plated into 6-well plates, cultured in

DMEM containing 10% FBS and 1X PSG, and incubated overnight

at 37°C with 5% CO2. Cells were infected in triplicate wells with

CHIKV SL-15649 at a multiplicity of infection equal to 1. At 24

hours post infection the cells were trypsinized and washed twice

with DMEM-10 and once with PBS.
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Mycobacterium lysate exposure assay

Mononuclear cells isolated from bronchoalveolar lavage (BAL)

fluid were incubated at 37°C under a humidified 5% CO2

atmosphere. These cells were rested for 4 hours, and then either

exposed to Mtb lysate (BEI NR-14822 at 6uL/Test) for 4 hours or

cultured without Mtb lysate as a control. After incubation, cells

were processed using the 10x Genomic Chromium system, as

described above.
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SUPPLEMENTARY FIGURE 1

Comparison of nimble to CellRanger for genome-wide alignment. While
nimble is not designed to completely replace standard alignment and feature
Frontiers in Immunology 15
calling pipelines, to provide a more comprehensive comparison of nimble
with standard pipelines we generated a nimble library containing the

complete 15,782 genes defined in the MMul_10 genome, and compared
the resulting per-cell counts against the same data processed with

CellRanger/MMul_10. The scatter plot presents the counts for each gene

obtained using nimble relative to the CellRanger pipeine. Results were highly
concordant, with a Pearson correlation of 0.968 (Supplementary Figure 1).

Together, these data indicate that nimble’s alignment pipeline captures
similar count data to standard pipelines, establishing nimble’s accuracy

when aligning to a straightforward gene space.
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