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Analysis and validation of
diagnostic biomarkers and
immune cell infiltration
characteristics in osteoarthritis
by integrating bioinformatics and
machine learning
Tianyang Li †, Jinpeng Wei †, Hua Wu* and Chen Chen*

Department of Orthopedics, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital,
Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
Objective: Exosomes as important carriers of intercellular communication have

frequently appeared in recent studies related to osteoarthritis (OA), while the

specificmechanism of exosome action in osteoarthritis remains unclear. The aim

of this study was to identify potential exosome-related biomarkers in

osteoarthritis, to explore the role and mechanism of exosome-related genes in

articular cartilage.

Methods: The data on exosome related genes and normal and OA cartilage

genes were obtained through online databases. The potential mechanisms of

these genes were revealed by multiple gene enrichment analysis algorithms.

Machine learning methods were utilized to identify exosome-related differential

genes (ERDEGs) with highly correlated OA features (Hub OA-ERDEGs). In

addition, we created a nomogram to assess the ability of Hub OA-ERDEGs to

diagnose OA. Single-sample gene set enrichment analysis (ssGSEA) was used to

observe the infiltration characteristics of immune cells in OA and their

relationship with Hub OA-ERDEGs.

Results: The results of screening Hub OA-ERDEGs using machine learning

algorithms show that: TOLLIP, ALB, HP, RHOBTB3, GSTM2, S100A8 and

AKR1B1 were significantly up-regulated or down-regulated in OA samples

and verified by qRT- PCR for validation. Using the ssGSEA algorithm, we

discovered that 8 types of immune cell infiltration and 5 types of immune

cell activation.
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Introduction

Osteoarthritis (OA) is one of the most commonmusculoskeletal

diseases, and the global prevalence of OA is increasing year by year,

and the age of onset of the disease is showing a trend of younger

people, according to statistics, more than 22% of adults over the age

of 40 years suffer from knee OA (1). OA is characterized by

degeneration of articular cartilage, accompanied by subchondral

bone remodeling, synovial inflammation, and osteophyte

formation, leading to joint pain, stiffness, and limited motion

(2, 3). Despite the exciting advances we have made in the

pathophysiology of OA, various challenges remain in its diagnosis

and early prevention. Current diagnostic methods rely heavily on

clinical functional assessment and imaging techniques, while these

methods do not allow for the early diagnosis of OA and may also

lead to diagnostic discrepancies due to subjective judgments (4).

Therefore, a pressing need exists for innovative diagnostic markers

and diagnostic strategies, which are important for the prevention

and disease management of OA.

Exosomes are small extracellular vesicles, usually between 30

and 150 nanometers in diameter, secreted extracellularly by a

variety of cell types. They facilitate intercellular communication

by transferring proteins, lipids, and RNA between cells (5, 6).

Exosomes from different cellular sources may act on articular

chondrocytes through multiple pathways; exosomes from

mesenchymal stem cells (MSCs) can activate the Nrf2 signaling

pathway through TGFB1, a key gene, to promote cartilage

regeneration and inhibit the formation of neutrophil extracellular

traps (NETs) (7). Other studies have shown that exosomes can

activate the PI3K-AKT-mTOR pathway, promote macrophage

polarization towards anti-inflammatory M2-type macrophages,

and enhance the antioxidant capacity and survival of

chondrocytes (8). Meanwhile, microRNA-26b-5p in M2

macrophage-derived exosomes could further protect articular

cartilage by targeting Toll-like receptor 3 (TLR3) and Collagen

type X alpha 1 (COL10A1) (9). In contrast, endocytosis of exosomes

derived from inflammatory fibroblast-like synoviocytes (FLS)

promotes macrophage polarization towards pro-inflammatory M1

macrophages, inducing synovitis and exacerbating the progression

of an OA model after injection of exosomes into the joint cavity of

mice (10). In conclusion, exosomes of various cellular origins play

important roles in influencing inflammation genesis, chondrocyte

activity, and cartilage degradation, and highlight the importance of

exosome research in elucidating the complex cellular interactions

involved in the pathogenesis of OA and provide promising avenues

for identifying novel diagnostic and therapeutic targets.

Incorporating bioinformatics and machine learning into the

study of OA and exosomes can significantly enhance our

understanding of this complex disease. Machine learning

techniques are able to analyze large and complex data sets

generated from genomic, proteomic, and metabolomic studies,

allowing researchers to uncover complex patterns and

relationships that may have been overlooked by traditional

analytical approaches (11). In addition, machine learning can

facilitate disease modeling, allowing for personalized treatment
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plans based on individual patient characteristics (12). In this

study, machine learning algorithms were used to screen

characteristic genes of OA, and single-sample gene set

enrichment analysis (ssGSEA) algorithm was used to study the

immune infiltration of OA and its relationship with hub genes. It

provides guidance for advancing OA research, guiding clinical

applications, and ultimately improving patient survival quality

through targeted therapy.
Methods

Data preprocessing

The gene expression profile microarrays (GSE113825、

GSE117999、GSE169077、GSE178557) of normal and OA

cartilage samples were downloaded from the Gene Expression

Omnibus database (GEO, https://www.ncbi.nlm.nih.gov/geo/).

The datasets were first transformed into gene symbols, followed

by background correction and normalization of each dataset in R

software using the “limma” package, and integration of the two

cartilage datasets using the “sva” package to eliminate batch effects

(13). A two-dimensional PCA clustering plot was used to visualize

the differences before and after removing the batch effect from the

sample. Genes associated with exosomes were obtained from

GeneCards Version 5.23 (https://www.genecards.org/), and we

searched for exosome related genes (ERGs) and selected genes

with correlations greater than 2 to be used for subsequent

analysis (14).

Expression matrices of all genes in normal and OA cartilage

samples were extracted from the training set and differences were

analyzed using the limma package, using a threshold |logFC| > 0.25;

P-value < 0.05 to obtain differential genes (DEGs) (15).

Subsequently, the “ggplot2” package in R Version 4.2.3 was used

to visualize the differential genes. The “ggvenn” package was used to

intersect the DEGs and ERGs in the training set for subsequent

analysis, and the genes obtained were named exosome-related

differential genes (ERDEGs).
Constructing protein interaction networks

To assess gene interactions among DEGs, a protein-protein

interaction (PPI) network was constructed using the Interacting

Genes Search Tool (STRING Version:12.0, https://cn.string-db.org/)

database, with a confidence score of >0.7 as a cut-off criterion (16).

Subsequently, the PPI network was visualized using Cytoscape

software (version 3.8.2).
Functional enrichment analysis

Gene Ontology (GO) is an organized knowledge base designed

to provide standardized descriptions of genes and gene products. It

mainly covers the annotations of Molecular Function (MF),
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https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
https://cn.string-db.org/
https://doi.org/10.3389/fimmu.2025.1596912
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1596912
Biological Process (BP), Cellular Component (CC) (17). The Kyoto

Encyclopedia of Genes and Genomes (KEGG) integrates all kinds of

biological information, especially data related to genomics and

systems biology. The main feature is visualization using pathway

maps to make complex biological processes easier to understand

(18). Disease Ontology (DO) is a knowledge base for systematically

describing and categorizing a variety of diseases and their associated

characteristics that can enhance the effectiveness of disease research

(19). To further understand the biological functions, signaling

pathway enrichment and disease similarities of DEGs, we

analyzed DEGs using the “clusterprofiler” package.
Gene set enrichment analysis

Gene Set Enrichment Analysis (GSEA) is a bioinformatics

method that is commonly used to analyze transcriptomic data to

assess whether changes in gene set expression levels under different

conditions are significant or not (20). This study utilized the GSEA

package (v1.66.0) to conduct gene set enrichment analysis. The c2

(c2 . cp .kegg_ l egacy . v2025 .1 .Hs . symbo l s . gmt ) and c5

(c5.go.v2025.1.Hs.symbols.gmt) gene sets from the Molecular

Signatures Database (MSigDB), along with the immune

infiltration cell signature gene set defined by Yu et al (21), were

applied to generate signature enrichment scores. To assess

enrichment in OA cartilage samples, we used the “clusterprofiler”

package to score GO and KEGG pathways and screened for the five

pathways with the most significantly upregulated expression levels

in OA.
Machine learning algorithms screening hub
characteristic genes

To further identify the characteristic genes, we used linear and

nonlinear machine learning algorithms for the analysis. Linear

models include Single-factor logistic regression (SFLR), which

eliminates factors in the variables that are considered insignificant

through the “glmnet” package, and the acquired gene expression

data are used for the subsequent three nonlinear machine learning

analyses (22). Least absolute shrinkage and selection operator

(LASSO) logistic regression imposes L1 penalties on the

regression coefficients by means of the “glmnet” package, which

automatically selects significant features associated with the target

variable (23). Support vector machine-recursive feature elimination

(SVM-RFE) reduces the number of features efficiently by using the

SVM function of the “e1071” package, reducing the computational

cost and improving the interpretability of the model (24). Random

Forest (RF) automatically evaluates the importance of features

through the “random Forest” package, helping to identify the

features that have the greatest impact on the target variable,

facilitating feature selection and data analysis (25). Finally, using

the “ggvenn” package, the intersection of the filtered feature genes

of the three nonlinear machine learning models is defined as Hub

OA-ERDEGs. The expression of Hub OA-ERDEGs in the training
Frontiers in Immunology 03
set and their location on the chromosome were subsequently

visualized using the “ggpubr” and “circlize” package.
Mouse chondrocyte culture and
processing

Primary chondrocytes were isolated from the knee cartilage of

four 5-dayold C57BL/6 male mice as follows: mice were disinfected

by immersion in 75% alcohol. Under aseptic conditions, cartilaginous

tissues of the knee joints of mice were dissected and isolated, and

digested with 0.25% trypsin (Boster, China) at 37 degrees for 30

minutes. After centrifugation to remove trypsin, 0.2% collagenase

type II (BioFroxx, Germany) was added and incubation was

continued at 37 degrees for 4–6 hours. After centrifugation, the

cells were resuspended in DMEM/F12 (HyClone, USA) medium

containing 10% fetal bovine serum (FBS, Newzerum, New Zealand)

and incubated at 5% CO2 and 37°C in an incubator. When the fusion

rate reached 80-90%, the cells were digested with 0.25% trypsin and

collected, and then transferred to 6-well plates at an appropriate

density. After the chondrocytes were attached to the wall, the cells in

the OA group were treated with 10 ng/mL concentration of IL-1b
(R&D Systems, USA) for 24 hours, and the control group was only

changed the culture medium. If not specified, first or second-

generation chondrocytes were used for subsequent experiments.

Animal studies are reported according to ARRIVE guidelines 2.0.

Male C57BL/6 mice, 5-day-old, weighing approximately 3.5 g each,

were purchased from Hubei Bainte Biotechnology Co., Ltd. All

animal experiments were performed in accordance with a protocol

approved by the Institutional Animal Care and Use Committee of

Huazhong University of Science and Technology ( [2024] IACUC

Number: 4741), and strictly followed the recommendations of the

“Laboratory Animals of the National Institutes of Health”.
Quantitative reverse transcription-PCR

Total RNA was extracted using the EZNA Total RNA kit

(Omega Bio-Tek, USA) according to manufacturer’s instructions.

Then we used 2 ug RNA to synthesize first strand cDNA with

Reverse Transcription kit (Toyobo Life Science, Japan). PCR

amplification was performed with SYBR Green Real-Time PCR

Master Mix (Toyobo Life Science, Japan) on CFX96 (Bio-Rad

Laboratories, USA) system. The relative gene expression level was

calculated by comparative Ct method and normalized to internal

control b-Actin. All PCR reactions were repeated in triplicates.

Primer sequences for Hub OA-ERDEGs are shown in the

Supplementary Table S13.
Construction and evaluation of a
nomogram

The nomogram will combine multiple variables of a predictive

model in a simple visual way, providing an easy to understand and
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use method for assessing the risk or outcome of a patient-specific

event. Therefore, we utilized the “rms” package to create a

multivariate logistic regression-based outcome to generate a

decision curve analysis (DCA) to assess the clinical utility of the

nomogram (26). The “pROC” package was used to generate ROC

curves to verify the reliability of the model, AUC > 0.75 indicates

that this model has good performance (27).
Immunological features of osteoarthritis

Single-sample gene set enrichment analysis (ssGSEA) is a method

used to assess the enrichment of specific gene sets in a single sample.

Unlike traditional gene set enrichment analysis, ssGSEA focuses on a

single sample and is able to reveal biological features and pathway

activities in the sample in greater detail (28). We calculated

enrichment scores for normal and OA cartilage samples in

immune cells using the “GSVA” and “GSEABase” packages, and

used the “Ggpubr” package to plot box line plots, and the “reshape2”

and “tidyverse” packages to plot heat maps of differential gene and

immune cell correlations. Spearman correlation analysis was used to

correlate Hub OA-ERDEGs with immune cells.
Animal model

A destabilization of the medial meniscus (DMM) model was

established in C57BL/6 mice aged six weeks. Mice were anesthetized

with sodium pentobarbital before surgery. Following anesthesia, the

knee joint area was prepared by shaving, disinfecting, and making

an incision from the distal patellar to the proximal tibial region. The

joint capsule was then opened, the patellar tendon retracted, and the

medial meniscal ligament was exposed and transected. The Sham

group underwent a similar incision procedure without transection

of the medial meniscotibial ligament. Postoperative management

included prophylactic penicillin administration and unrestricted

ambulation in climate-controlled housing with ad libitum access to

feed and water. At 12-week endpoint, bilateral joint specimens were

harvested following humane euthanasia of three model group and

three sham group animals.
Histological evaluation

Knee tissues underwent post-fixation with 4% paraformaldehyde

(Sigma-Aldrich) for 48-hour immobilization, followed by

decalcification in 10% EDTA solution (Sigma-Aldrich). After

complete demineralization, specimens were processed through

paraffin embedding and sectioned sagittally at 6 mm thickness.

Tissue sections underwent deparaffinization in xylene baths with

subsequent graded ethanol rehydration. Histomorphological analysis

was performed using H&E staining according to standardized

protocols (Solarbio). For protein localization studies,

immunohistochemical detection was implemented with specific

antibodies targeting INOS (Abcam) and ARG1 (Abcam).
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Results

Identification and PPI analysis of ERDEGs
in osteoarthritis

The flow chart of this study is shown in Figure 1. The calibrated

dataset information is shown in Supplementary Table S1. The PCA

results showed a significant difference between the samples from

patients with OA and controls, and the batch effect was significantly

removed, suggesting that the expression matrix was suitable for

subsequent analyses (Figure 2A). 861 exosome-associated genes

with correlations greater than 2 were obtained from the GeneCards

database for subsequent analysis. (Supplementary Table S2). A total

of 1813 DEGs in the dataset of OA-related genes were shown in the

volcano map (Figure 2B). We subsequently intersected the DEGs

with the ERGs by taking the intersection of the DEGs, and found

105 ERDEGs using the “VennDiagram” package, of which 73 genes

were up-regulated and 32 genes were down-regulated in OA, and

the Supplementary Table S3 contains a detailed list of these related

genes. PPI protein network Interaction analysis showed that

ERDEGs interacted closely at the protein level (Figure 2C). The

results of the PPI protein network interaction analysis are shown in

Supplementary Table S4.
Functional enrichment analysis of ERDEGs

In order to better understand the potential mechanisms of

ERDEGs in OA, we performed GO, KEGG, and DO enrichment

analyses of ERDEGs using the “clusterProfiler” package. GO

enrichment analyses showed that the first five ERDEGs

enrichments were mainly involved in regulation of peptidase

activity, ameboidal−type cell migration, viral process, viral life

cycle and regulation of endopeptidase activity. The top five

ERDEGs enriched in cellular components and molecular

functions are shown in Figure 3A. In addition, KEGG pathway

analysis showed that these ERDEGs were enriched in the fluid shear

stress and atherosclerosis, salmonella infection, regulation of actin

cytoskeleton, human cytomegalovirus infection and pathogenic

Escherichia coli infection, and that these pathways interacted

closely with each other (Figure 3B). DO enrichment analysis

revealed disease types with similar pathogenic mechanisms to

ERDEGs in OA, such as atherosclerosis, arteriosclerotic

cardiovascular disease, arteriosclerosis, breast carcinoma and

familial hyperlipidemia (Figure 3C). Supplementary Tables S5–7

show the detailed results of GO, KEGG and DO enrichment

of ERDEGs.
GSEA enrichment analysis

We investigated the enrichment of GO and KEGG pathways in

OA by GSEA method and showed the five gene functions and

pathways that were most significantly up-regulated in OA,

respectively. GO enrichment results showed that cell chemotaxis,
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external encapsulating structure organization, collagen containing

extracellular matrix, external encapsulating structure and

extracellular matrix structural constituent were significantly

upregulated (Figure 3D). KEGG pathway enrichment results

showed that cytokine receptor interaction, ecm receptor

interaction, focal adhesion, hematopoietic cell lineage and prion

diseases were significantly upregulated (Figure 3E). Detailed results

of the GSEA are shown in Supplementary Tables S8, 9.
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Identification and validation of
Hub OA-ERDEGs

To further understand the role of 105 ERDEGs in the diagnosis

and prognosis of OA, we aimed to identify hub genes from these

105 ERDEGs to construct a diagnostic prediction model. We used

three nonlinear machine learning algorithms, lasso (Figure 4A),

SVM-RFE (Figures 4C, D), and Random Forest (Figures 4E, F) to
FIGURE 1

Flowchart for comprehensive analysis of exosome-related genes in OA.
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screen OA-ERDEGs. The results of the three machine learning

algorithms for recognizing Hub OA-ERDEGs are shown in

Supplementary Table S10. Finally, by combining the results of the

three algorithms, a total of nine Hub OA-ERDEGs were obtained,

namely, TOLLIP, ALB, HP, RHOBTB3, GSTM2, S100A8 and

AKR1B1 (Figure 4B). TOLLIP, ALB, RHOBTB3, and GSTM2

were down-regulated in OA samples and HP, GSTM2, and

S100A8 were up-regulated in OA samples (Figure 5A). The

location of each gene in the chromosome is shown in Figure 5B.
qRT-PCR

We performed qRT-PCR assays to further validate the mRNA

expression levels of Hub OA-ERDEGs. The results showed that four

genes were expressed meaningfully, of which AKR1BI, S100A8 and

HP were significantly upregulated in OA cartilage samples, and

RHOBTB3 was significantly downregulated in cartilage samples (p-

value less than 0.05), which was consistent with the expression in

the training set (Figures 5C–F).
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Construction of Hub OA-ERDEGs risk
prediction model

We constructed a nomogram of OA diagnosis based on the

expression of Hub OA-ERDEGs to obtain a more applicable OA

diagnosis model. By constructing the clinical calibration curves

(Figure 6A) and clinical decision curves (Figure 6B) of the model, it

is obvious that the model has a high predictive ability for OA. The

score of each gene expressed in the column line graph accurately

predicted the risk of osteoarthritis disease (Figure 6C).
Diagnostic value of Hub OA-ARDEGs

ROC curve analysis showed that 7 Hub OAARDEGs and

column line graphs had high diagnostic value for OA.ALB and

column line graphs had the highest diagnostic value (AUC=0.866),

and the diagnostic values of other genes were: TOLLIP

(AUC=0.851), GSTM2 (AUC=0.816), and HP (AUC=0.814),

RHOBTB3 (AUC=0.807), S100A8 (AUC=0.784) and AKR1B1
frontiersin.or
FIGURE 2

Identification and PPI analysis of ERDEGs. (A) Removal of batch effects and identification of DEGs in OA. (B) ERDEGs volcano plot. Red nodes
indicate Deg upregulation, blue nodes indicate Deg downregulation, and gray nodes indicate genes with no significant differential expression.
(C) Interaction map of 105 ERDEGs PPI protein network.
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(AUC=0.761) (Figure 6D). Therefore, the seven Hub OA-ERDGEs

can be used as reliable biomarkers with high diagnostic value for the

diagnosis of OA.
Immune infiltration analysis

We used the ssGSEA algorithm to find myeloid-derived

suppressor cells, T follicular helper cell, Macrophage, central

memory CD8 T cell, activated CD8 T cell, type 1 T helper cell,

gamma delta T cell and activated dendritic cell infiltration were

significantly increased (Figures 7A, B). Subsequently, to investigate

histological infiltration of immune cells, an OA animal model was

established through DMM surgery. During OA progression,

characteristic pathological manifestations including cartilage

degradation and subchondral bone sclerosis were observed

(Figure 7C). Furthermore, upregulated expression of immune cell

markers such as INOS and ARG1 was detected in joint tissues of

OA group mice (Figure 7D). Spearman correlation was used to

analyze the interactions between immune cells. The results showed
Frontiers in Immunology 07
significant correlations between most immune cells, for example,

effector memory CD8 T cell was significantly positively correlated

with MDSC (r=0.88) (Figure 8A). Para inflammation, check−point,

type II IFN response and other immune functions were significantly

activated in OA samples (Figure 8B). AKR1B1, TOLLIP,

RHOBTB3, HP and S100A8 were well correlated with multiple

immune functions (Figures 8C, D). Data of results were shown in

the Supplementary Tables S11, 12.
Discussion

In recent years, the role of exosomes in OA, as an important

mediator of intercellular communication, has gradually gained

attention in research. Recent studies have shown that exosomes

not only carry a variety of bioactive molecules, but also participate

in key signaling pathways in the pathological process of OA (29).

For example, microRNAs enriched in exosomes (e.g., miR-146a,

miR-140, etc.) have been shown to regulate signaling pathways

associated with inflammation and cartilage degradation. These
FIGURE 3

ERDEGs functional enrichment analysis. (A) GO enrichment analysis with BP, CC, and MF included. The bubble plots depict the ten most significantly
enriched functions, where the size of the bubbles represents the number of DEGs (the larger the circle, the greater the number of DEGs) and the
color represents the corrected p-value (the redder the color, the smaller the corrected p-value). (B) Analysis of KEGG enrichment, with bubble plots
displaying the top 20 most significant pathway enrichments. (C) Analysis of DO enrichment, with bubble plots displaying the top 20 most similar
diseases. (D) Gene set enrichment analysis of GO showing the top five most significant biological processes. (E) Gene set enrichment analysis of
KEGG, showing the top five most significant pathways.
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microRNAs are involved in the regulation of classical pathways

such as NF-kB, Wnt/b-catenin, etc. by affecting the expression of

target genes, which contributes to the pathologic process of OA

(30). In addition, it has been shown that exosome-derived proteins

also play an important role in the development of OA. Proteins in

exosomes are not only associated with intercellular signaling, but
Frontiers in Immunology 08
may also affect the proliferation and differentiation of fibroblasts

and chondrocytes, which in turn affects the metabolic homeostasis

of articular cartilage (31). Notably, the interaction between

exosomes and immune cells is also one of the research focuses.

Through the release of inflammatory factors and cytokines from

exosomes, the activity and infiltration of immune cells can be
FIGURE 4

Machine Learning Screening Hub OA-ERDEGs. (A) Cross-validations of the choice of adjustment parameters in the LASSO model. Each curve
corresponds to one gene. (B) LASSO, SVM-RFE and Random Forest algorithms for screening Venn diagrams of the OA-ERDEGs. (C, D) Maximum
accuracy and minimum error plots of the SVM-RFE algorithm for screening optimal OA-ERDEGs. (E) Ranking of the relative importance of OA-
ERDEGs. (F) Relationship between the number of random forest trees and the error rate.
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modulated to influence the inflammatory response in OA. This

process may influence the clinical manifestations and course of OA

by regulating the accumulation and release of exosomes in the joint

cavity (32). Therefore, exploring in depth the role of exosomes and

related signaling pathways in OA not only provides new

perspectives for understanding the pathogenesis of the disease,

but also lays the foundation for seeking new biomarkers and

therapeutic targets in the clinic.

In normal and OA cartilage samples, we identified 105 ERDEGs.

and further screened by machine learning, 7 Hub OA-ERDEGs

(TOLLIP, ALB, HP, RHOBTB3, GSTM2, S100A8, AKR1B1) were

identified. Our findings suggest that Hub OA-ERDEGs have

excellent diagnostic ability to predict OA and are significantly up-

or down-regulated in cartilage samples from OA patients. TOLLIP is

considered a negative regulator of the Toll-like receptor (TLRs)

signaling pathway. It inhibits the NF-kB and MAPK signaling

pathways by binding to TLRs, further inhibiting the activation of

downstream signals, thereby reducing the intensity of the

inflammatory response (33). The ALB gene encodes albumin, a
Frontiers in Immunology 09
plasma protein synthesized primarily by the liver that has a variety of

physiological functions, and recent studies have found that the ALB

gene and its products play an important role in the inflammatory

response. For example, albumin binds and transports antioxidants

and reduces oxidative stress, thereby decreasing the inflammatory

response. In addition, albumin is able to regulate cytokine secretion

and reduce inflammation through interactions with immune cells

(34). HP is primarily responsible for encoding acute phase protein-

hemoglobin binding proteins in the organism. During tissue injury

or inflammation, erythrocyte rupture releases hemoglobin, and free

hemoglobin has strong oxidative properties that may lead to cellular

damage. HP reduces oxidative stress by binding to free hemoglobin,

forming a complex that facilitates its clearance by macrophages (35).

RHOBTB3 gene is a gene encoding a member of the Rho GTPase

family, and it has been pointed out that the expression level of

RHOBTB3 is significantly increased in breast cancer tissues. And it

can promote breast cancer progression by regulating the expression

of Collagen Type I Alpha 1 Chain (COL1A1) (36). Its high

expression in OA samples was also found in this study, so we
FIGURE 5

Hub OA-ERDEGs expression difference and validation. (A) Expression of 7 hub genes in OA samples. (B) Chromosome distribution of the 7 OA-
ERDEGs. (C-F) The mRNA expression levels of Hub OA-ERDEGs were detected by qRT-PCR. Among them, AKR1B1, RHOBTB3, S100A8 and HP were
significant. *p<0.05, **p<0.01, ***P<0.001.
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hypothesized that RHOBTB3 is also involved in inflammation in

osteoarthritis. The GSTM2 gene is a member of the glutathione S-

transferase family, which maintains the MAPK signaling pathway by

directly interacting with apoptosis signal-regulated kinase 1 (ASK1)

to scavenge free radicals and oxidative products in vivo, thereby

reducing the level of oxidative stress and indirectly decreasing the

degree of inflammatory response (37). The enzyme encoded by the

AKR1B1 gene is mainly responsible for reducing a variety of

aldehydes to their corresponding alcohols, and studies have

indicated that Linarin has anti-inflammatory, antioxidant, and

anti-apoptotic effects in osteoarthritis, and Linarin reduces the

intensity of the inflammatory response by inhibiting endoplasmic

reticulum stress and further inhibiting AKR1B1 (38). The S100A8

gene encodes a small protein belonging to the S100 family of

proteins, which play important roles in many biological processes,

including cell proliferation, differentiation, inflammation, and the

immune response. The S100A8 protein usually associates with the

S100A9 protein to form a dimer, the S100A8/S100A9 complex,
Frontiers in Immunology 10
which promotes the aggregation of monocytes and other

inflammatory cells, thereby exacerbating the inflammatory

response and tissue damage (39). It has been noted that the

mRNA expression levels of S100A8 and S100A9 are significantly

increased in the early stages of OA, but their expression in cartilage

gradually decreases as the disease progresses. This suggests that these

two proteins may promote cartilage degradation by up-regulating

matrix metalloproteinases (MMPs) and aggrecans in the early stages

of OA, while this sustained effect is lost in the later stages of OA. In

contrast, in inflammatory arthritis, S100A8 and S100A9 show more

sustained expression and activity (40). S100A8 was significantly up-

regulated in OA samples in the present study, which may indicate

that the OA model resulting from stimulation of chondrocytes with

IL-1b for 24h is at an early stage of the disease, highly consistent with
the results of previous studies.

Inflammatory responses in osteoarthritis exacerbate damage to

articular cartilage and synovium through the release of pro-

inflammatory factors and mediators, leading to joint pain and
FIGURE 6

Hub OA-ERDEGs risk prediction model. (A) Nomogram of Hub OA-ERDEGs in the diagnosis of OA patients. (B) Calibration curve used to estimate
the predictive accuracy of the nomogram (the closer to the ideal dashed line, the more reliable the result). (C) Accuracy of the clinical decision curve
detection model (the further the red line endpoints are from the grey line, the higher the accuracy). (D) ROC curve analysis of Hub OA-ERDEGs and
nomogram in the training set.
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dysfunction; while immune deficiencies may deregulate these

inflammatory processes, further exacerbating inflammatory

processes and degenerative joint disease (41). T follicular helper

(TFh) cells are a specific class of CD4+ T cells that are primarily

responsible for promoting B cell maturation and antibody

production in the germinal centers of the lymph nodes. TFh cells

may be involved in the pathological process of arthritis through the

production of cytokines, such as IL-21, and the modulation of B cell

activity (42). It has been suggested that the expression of long chain

non-coding RNA (Lnc RNA) MM2P in monocyte-derived cells

promotes the polarization of M2-type macrophages and the

delivery of Sox9 mRNA and protein via their secreted exosomes,

thereby enhancing the differentiation and function of primary

chondrocytes (43). Dendritic cells are important antigen-

presenting cells that play a key role in the immune response.

Exosomes produced by dendritic cells can deliver mRNAs,

miRNAs, and cytokines and interact with immune cells (44).

Myeloid-derived suppressor cells (MDSCs) are a class of cells

with immunosuppressive functions, mainly derived from bone

marrow, capable of suppressing the activity of T cells and other

immune cells through multiple mechanisms. In the tumor
Frontiers in Immunology 11
microenvironment, MDSCs promote tumor cell growth and

metastasis as well as suppress anti-tumor immune responses by

secreting exosomes (45). We hypothesized that in some

inflammation-related diseases, such as osteoarthritis, exosomes

produced by MDSCs could similarly play an immunomodulatory

role. We used Spearman correlation analysis to show that nine Hub

OA-ERDEGs were reasonably correlated with immune cell

function, suggesting that these genes influence immune cell

function and play a key role in the development and progression

of OA.

This study has several limitations. First, the intersection of non-

chondrocyte-derived exosomal genes with OA chondrocyte datasets

may result in gene omission due to the absence of cell type-specific

exosomal gene references. While data screening and processing

enhanced the reliability of candidate genes, future validation

through chondrocyte-specific exosome isolation combined with

multi-omics analysis remains necessary. Second, algorithm-

dependent variability (LASSO/SVM/RF) may affect result stability,

though our multi-model integration aligns with current multi-

omics standards. Third, the sample size (24 controls/25 OA cases

across four datasets), though geographically diverse, remains
FIGURE 7

Immune infiltration and histological verification. (A) Heat map of the differences in the distribution of 28 immune cells in each sample. (B) Box plots
of differences in the infiltration of 28 immune cells. (C) Representative HE staining images (10x and 20x). (D) Representative immunohistochemistry
images of INOS and ARG1 (10x).
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modest, necessitating multicenter validation. Finally, while qRT-

PCR confirmed expression trends of AKR1B1, RHOBTB3, S100A8,

and HP in OA chondrocytes, their diagnostic specificity, functional

mechanisms, and clinical utility require further exploration through

large-scale cohorts, in vitro/in vivo models, and differential

diagnosis assays. These limitations highlight the need for

expanded validation frameworks to advance the translational

potential of our findings.
Ethics
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generated from previous studies, and all original studies obtained

ethical approval and personal consent.
Conclusion

In summary, this study preliminarily explored the potential

linkage of differential and exosome-related genes in OA cartilage

tissues. In addition, seven Hub OA-ERDEGs have excellent

diagnostic ability for OA, these genes may become new targets for
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OA diagnosis and treatment. However, more experimental studies

are needed to support our findings.
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