
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Karol Sestak,
PreCliniTria, LLC., United States

REVIEWED BY

Roberto Rosales-Reyes,
National Autonomous University of Mexico,
Mexico
Houriah Y. Nukaly,
Batterjee Medical College, Saudi Arabia

*CORRESPONDENCE

Gang Zhou

zhougang@whu.edu.cn

RECEIVED 20 March 2025
ACCEPTED 14 April 2025

PUBLISHED 08 May 2025

CITATION

Zhou D-Y, Bao C-F and Zhou G (2025)
Intraepithelial lymphocytes in
human oral diseases.
Front. Immunol. 16:1597088.
doi: 10.3389/fimmu.2025.1597088

COPYRIGHT

© 2025 Zhou, Bao and Zhou. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 08 May 2025

DOI 10.3389/fimmu.2025.1597088
Intraepithelial lymphocytes
in human oral diseases
Dong-Yang Zhou1, Chao-Fan Bao1 and Gang Zhou1,2*

1State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of
Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of
Stomatology, Wuhan University, Wuhan, China, 2Department of Oral Medicine, School and Hospital of
Stomatology, Wuhan University, Wuhan, China
Objective: As a distinctive subset of T cells, intraepithelial lymphocytes (IELs) are

found in the epithelium of mucosal barrier and serve as the primary defenders of

the intestinal mucosal immune system. IELs exhibit phenotypic and functional

diversity with high expression of activated marker molecules, tissue-homing

integrins, NK cell receptors, cytotoxic T cell-related molecules, and cytokines.

Meanwhile, IELs demonstrate differentiation plasticity, antigen recognition

diversity, self-reactivity, and rapid “memory” effect, which enable them to play

a crucial role in regulating responses, maintaining mucosal barriers, promoting

immune tolerance, and providing resistance to infections. In addition, IELs have

been explored in autoimmune diseases, inflammatory diseases, and cancers.

However, the specific involvement and underlying mechanisms of IELs in oral

diseases have not been systematically discussed.

Methods: A systematic literature review was conducted using the PubMed/

MEDLINE databases to identify and analyze relevant literatures on the roles of

IELs in oral diseases.

Results: The literature review revealed the characteristics of IELs and emphasized

the potential roles of IELs in the pathogenesis of oral lichen planus, oral cancers,

periodontal diseases, graft-versus-host disease, and primary Sjogren’s syndrome.

Conclusion: This reviewmainly focuses on the involvement of IELs in oral diseases,

with a particular emphasis on the main functions and underlying mechanisms by

which IELs influence the pathogenesis and progression of these conditions.
KEYWORDS

intraepithelial lymphocytes, oral lichen planus, oral squamous carcinoma, periodontal
disease, graft-versus-host disease, primary Sjogren’s syndrome
Introduction

Being a distinctive subgroup of T cells located in the mucosal epithelium, intraepithelial

lymphocytes (IELs) differ from other T cells in terms of tissue distribution, phenotype,

subgroup differentiation, and function (1). As a class of killing lymphocyte population, IELs

exhibit potent, rapidly activated cytolytic and immunomodulatory effectors (2).
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Meanwhile, IELs resist pathogenic infections by supporting

epithelial cells and regulating the barrier function of acquired and

innate immunity (3).

By far, emerging studies have explored the role of IELs in

chronic inflammation, autoimmune diseases, and tumors as a

potential regulator of pathogenesis and a future therapeutic

target. Moreover, IELs’ involvement in oral diseases has gradually

garnered public attention. In oral lichen planus (OLP), significant

infiltration of CD8+ IELs were observed (4). IELs infiltration was

found in oral squamous cell carcinoma and was strongly associated

with prognosis (5–7). gd IELs were the first line of defense against

luminal microorganisms and could induce inflammatory factors,

which mediated the development and progression of periodontitis

(8). IELs were increased in the gallbladder of patients with

hematopoietic stem cell transplantation (HCT) (9). Currently, a

scoring system for oral graft-versus-host disease (GVHD)

pathology grading based on IELs infiltration and other

pathological characteristics have been established. Intraepithelial

B-lymphocytes (B-IELs) exist in salivary gland of primary Sjogren’s

syndrome (pSS) patients, which act as a clear indicator of pSS and

could be used as an objective alternative to scoring of striated ducts

with hyperplasia (10). Furthermore, it is acknowledged that the

complex microbial environment presents in the oral cavity,

including various carrier molecules and cytokine networks

associated with different oral diseases. These factors may play a

role in the activation and function of IELs in oral diseases.

In this review, the characteristics of IELs was outlined and novel

insights into the potential role of IELs in human oral diseases,

including OLP, OSCC, PD, GVHD, and pSS were provided.
Subsets and development of IELs

Approximately 90% of all IELs are TCR+. These cells can be

further divided into induced and natural TCR+ IELs (also called

conventional or type a and unconventional or type b IELs,

respectively (11)). Induced TCR+ IELs are derived from

conventional Ag-specific T cells that were activated in the

periphery and subsequently entered the epithelium. This group of

IELs includes CD4+ and CD8ab+ subsets. Natural TCR+ IELs

include TCRab+ and TCRgd+ subsets, which immediately enter

the IELs compartment following their generation. TCR- IELs

include subsets resembling innate lymphoid cells (ILCs) that are

found outside the intestinal epithelium. Humans contain ILC1-like

IELs expressing NKp44 (NCR2/CD336) (12–14). A subset of IELs

that express NKp44 and resemble peripheral ILC3 cells have also

been identified in humans (15). Another subset of TCR- IELs,

present in mice and humans, express intracellular CD3 (iCD3)

chains and are called iCD3+ TCR- IELs (16). One subset of TCR-

IELs, identified in mice and humans, express iCD3 chains together

with surface CD8aa and are referred to as innate CD8aa+ (iCD8a)
cell (16–18) (Figure 1).

Induced TCR+ IELs are derived from conventional age

experienced T cells that enter the intestinal epithelium. Their

ontogeny follows the conventional intrathymic development
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pathway. Natural CD8aa+TCRab+ IELs undergo agonist

selection. Being consistent with their lack of Ag-specific receptors,

TCR- IELs develop extrathymically (19). The development of

murine NKp46+ ILC1-like IELs is dependent on the transcription

factors Nfil3 and Id2 (12), which requires for the development of all

peripheral ILC subsets. The development of these cells also requires

T-bet expression (12) (Figure 1).
Activation and maintenance of IELs

In vivo, the activation IELs can be achieved, at least in part, by

TCR ligation. Positive selection of the agonist-driven IELs in the

thymus suggests that the mature IELs at the epithelial barrier can

subsequently be activated by specific TCR ligands. TCR activation

of IELs can be achieved by cell surface receptors, such as non-

classical MHC molecules (20, 21). After TCR signaling complexes

are stimulated by anti-CD3 antibodies, the balanced IELs show

higher expression of CD44, Ly-6C, OX40, FasL, and CD25, and

reduced CD45RB protein expression, which indicates the

expression of both cytotoxic mediators and cytokine transcripts

(22, 23)(Figure 2).

Cytokines are essential for IELs activation. IELs rapidly produce

effector cytokines and cytotoxic molecules, such as keratinocyte

growth factor (KGF), insulin-like growth factor 1 (IGF1), and

transforming growth factor (TGF-b) in the stage early activation

(24). What’s more, the expression of KGF is limited to gd-tCR+

IELs. IELs can express the receptors of TNF, leukemia inhibitory

factor, thymic stromal lymphopoietin (TSLP), stem cell factor (SCF;

c-Kit ligand), TGF-b, IL-12, IL-15, and IL-1. TGF-b is required for

the maintenance of native CD8aa IELs and the expression of

CD103. High levels of IL-15 can trigger CD8+ T cells to become

cytotoxic independently of the TCR (25, 26). The stimulation of IL-

15 on IELs results in increased production of IFN-g and TNF,

granzyme-dependent cytotoxicity, and enhanced expression of NK

receptors (27).

IELs constitutively express transcripts of genes, which are

associated with activated cytotoxic T cells, such as granzyme A,

granzyme B, serine, Fas ligand (FasL), and chemokine C-C motif

ligand (CCL). IELs express cytotoxic T lymphocyte-associated

protein 4, Ly49E-G, NK cell inhibitory receptor Ig superfamily-

related gp49B, and programmed cell death 1 (PD-1) (28). Unlike

conventional CD8+ T cells, IELs express high levels of Tnfsf6

transcripts during steady state (29), but do not express the

protein encoding FasL on their surface until additional activation

occurs (29, 30).

Maintaining IELs requires the involvement of multiple

cytokines and signaling pathways. The ligand-activated

transcription factor and the aryl hydrocarbon receptor (AHR) are

essential for the maintaining of IELs (31, 32). Maintenance and

activation of IELs also critically depend on the interaction between

epithelial cells and microbes. The myeloid differentiation primary

response gene 88 (MyD88) can activate NF-kB, which is essential

for IELs maintenance (33). IL-15 produces signals by expressing the

type 1 transcription factor T-box in T cells (T-bet) to sustain IEL
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precursors (34). Protein containing a nucleotide-binding

oligomerization domain (NOD) 2 is also crucial for maintaining

IELs (35) (Figure 2).
IELs and human oral diseases

The oral mucosa consists of stratified squamous epithelium,

lamina propria (LP) and MALT, mucosal-associated lymphoid

tissue (MALTs). Dendritic cell (DCs), Langerhans cells (LCs) and,

intraepithelial lymphocyte (IELs) reside in the epithelial layer.

Numerous microorganisms and antigens and stimuli from

exogenous substances (36) such as food undergo sophisticated

regulation by immune responses in the oral mucosa. T cells

especially IELs are crucial for this defense (37). CD8aa+ IELs in

the oral-pharyngeal mucosa have not been identified and

characterized until recently year. And TGF-b regulates the

development/generation of oral CD8aa+ IELs (38).
IELs in oral lichen planus

OLP is a chronic inflammatory disease that occurs in the oral

mucosa and is labelled as oral potentially malignant disorder

(OPMD) by the World Health Organization (WHO). Although
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the etiology is unknown, T-cell-mediated immune response is

pivotal in the pathogenesis of OLP. T cells infiltrate the lamina

propria, secrete cytokines to construct an inflammatory

environment and mediate keratinocyte apoptosis, participating in

the development of OLP.

OLP is characterized by subepithelial lymphocyte infiltration

and elevated IELs (4). Most subepithelial and intraepithelial

lymphocytes are CD8+ T cells (4). The infiltrates in the lamina

propria of OLP lesions are mostly CD4+ Th cells, while T cells near

the basement membrane region are dominated by cytotoxic CD8+ T

cells (4). There is approximately a 1:2 ratio of CD4+ IELs/CD8+ IELs

in OLP (39). Our previous study identified a significant infiltration

of elongated CD8a+ IELs in the basal cell layer of OLP (40).

Enomoto A et al. proposed that CD8+ IELs could serve as a

predictive biomarker for OLP remission. They found that CD8+

IELs were associated with the remission rate in a subgroup that

exhibited higher T-bet/FOXP3 subset balance (indicating inducible

cytotoxic immunity) and determined a predicted cut-off value for

CD8+ IELs (16 cells/high-power fields) (41).

Gene expression analysis of OLP oral mucosa samples disclose

increased transcript expression of killer cell lectin-like receptor

subfamily G member 1 (KLRG1), CD8A, and granzyme K

(GZMK) (42). CD8 T cells and KLRG1+ T cells localized within

the intraepithelial regions, both at the basal layers and more

superficially and often adjacent to keratinocytes (42). Cytotoxic
FIGURE 1

Subsets and development of IELs. With the exception of TCRgd+ IELs, all TCR+ IELs develop in the thymus. All TCR- IELs develop extrathymically.
Induced TCR+ IELs follow a conventional thymic development and the selection pathway, whereas natural CD8aa+TCRab+ IELs undergo agonist
selection. IELs require a variety of transcription factors for their development and function. Many TCR+ IELs initiate CD8aa expression upon entry
into the epithelium. The development, maintenance, and homeostasis of IELs require a variety of factors.
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CD8+ IELs cluster in areas of basement membrane disruption (43)

and adjacent to degenerating keratinocytes (44), which indicates

that CD8+ IELs may be engaged in epithelial cell destruction by

typical cytotoxic mechanisms of CD8 T cells in OLP, such as release

of granzymes and direct killing of target cells.

CD8A encodes the CD8a chain that is a cell surface

glycoprotein expressed on cytotoxic T cells, and it plays a pivotal

role in antigen recognition and the immune response against

infected or abnormal cells (45). Research indicates that CD8aa is

a crucial modulator of the IEL’s dynamic migration between the

inner epithelium and the lamina propria. While CD8aaCD4 IELs

were in the lamina propria, adoptively transferred CD8aCD4 IELs

were found within the recipient mice’s epithelium (46).

CD8 IELs are often tissue-resident memory T (Trm) cells in OLP

lesions. Compared to nonerosive oral lichen planus (NEOLP), CD8+

Trm cells was increased in erosive oral lichen planus (EOLP), which

were adjacent to the epithelium and its products may induce

epithelial erosion. CD8+ Trm cells in particular exhibited higher

expression levels of GZMA, GZMK, TNF, PRF1, and other genes

associated with inflammatory factors, when compared to other

subgroups. It may have contributed to the worsening of the clinical
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manifestations of OLP. CD8+ Trm marker gene CD69, GNLY which

can play a cytotoxic role, and multiple pro-inflammatory factor-

related genes, such as GZMB, IFNG, TNF, and PRF1, were

significantly increased in the CD8+ Trm subgroup in EOLP (47).

The expression of TNF, IL17A/IL17RA, IFNGR1, etc. was

higher in EOLP than in normal oral mucosa. And the signals of

IFNGR1 and IL17RA were significantly enhanced in EOLP

compared with NEOLP. CD8+ Trm cells in EOLP produced

significantly higher levels of TNF-a, IFN-g, and IL-17 than those

in NEOLP, with the increase in IFN-g being statistically significant.
Therefore, CD8+ Trm cells may affect the clinical manifestations of

OLP through the secretion of IFN-g (47).
Biologic therapies targeting cytokines such as anti-TNF-a, anti-

IL17, and anti-IL12/23 have been employed with variable outcomes.

TNF-a inhibitors (etanercept, infliximab, and adalimumab) have

shown promise. Additionally, therapies such as Alefacept and

agents targeting IL-17 and related pathways (e.g., ustekinumab,

guselkumab, secukinumab, and tildrakizumab) have demonstrated

efficacy, particularly in reducing the Th1 and Th17/Tc17 cellular

mucosal infiltrate, suggesting a key role for IL-17-producing T cells

in OLP pathogenesis (48).
FIGURE 2

Activation and maintenance of IELs. Commensal bacteria can contribute to IELs maintenance. Signaling via TLR2 and myeloid differentiation primary
response gene 88 (MyD88) increases IL-15 production, an important survival factor for IELs. Antigen presenting cells, such as dendritic cells (DCs) or
macrophages, also produce IL-15 in a NOD2 dependent manner. IL-15 is bound to the IL-15Ra on the producing cells, and is presented in trans to
the IELs, which carries the IL-15Rb/Cg chain receptor complex, and signals via the transcription factor Tbx21. IL-7 and stem cell factor (SCF) are
additional examples for IEC derived cytokines important for IELs survival, while arylhydrocarbon receptor expression (AhR) and tissue-specific
factors, such as butyrophilin-like 1 (Btnl1), play an additional role in maintaining IELs. Infections cause disruption or damage to the epithelial barrier.
Dependent on the type of insult, IEC and DCs produce cytokines like thymic stromal lymphopoietin (TSLP), IL-10, IL-12, or SCF, thereby directing the
type of immune response. Additional stimulation may be derived from IEL-IEL cross-talk, such as via OX40-XO40L interactions. IELs produce pro-
inflammatory cytokines such as interferons (IFNs) and tumor necrosis factor (TNF), and cytotoxic factors such as Fas ligand (FasL) and granzymes, as
well as antimicrobial peptides (AMPs) to contain the infection and contribute to wound healing and restoration of homeostasis by secreting growth
factors such as KGF. Aberrant IELs activation and potentiation by cytokines might be involved in the development of chronic inflammation.
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The integrin aE (CD103) b7 (aEb7) is expressed by IELs,

dendritic cells and regulatory T cells, and mediates cell migration

and homing (49). The percentage of CD103 gdT cells was

upregulated in OLP gd IELs are the main group of IELs with

highly motility (50). The interaction between the IELs and the

pathogen is critical for gd IELs surveillance and direct host defense

(51). TCRgd+ IELs recognize autoantigen molecules expressed by

epithelial cells to activate the NKG2D receptor pathway and play a

dynamic defense role in the epithelium (52). IL-15 secreted by

epithelial cells can induce NKG2D activation and upregulation on

the surface of IELs, thus preventing the activation of the inhibitory

receptor NKG2A and then activating the ability of IELs to destroy

epithelial cells (17, 53). Research has found the co-localization of

IELs with IL-7 secreted by epithelial cells (11), which suggests that

IL-7 that is secreted by epithelial cells may mediate the close

interaction between IELs and epithelial cells in OLP.

MAIT cells express transcription factors retinoic acid receptor-

related orphan receptor gamma-t (RORgt) and T-bet, regulating the
secretion of IL-17, IFN-g. etc (54–56). Additionally, MAIT cells can

secrete Th2-type cytokines like IL-13 under chronic inflammation

stimulation (57). This cytokine secretion potentially enables MAIT

cells to modulate Th1, Th2, and Th17 cells, suggesting a potential

immunomodulatory capacity exerted by MAIT cells. In OLP

patients, TNF and IFN-g upregulate endothelial adhesion

molecules like CD31, CD106, CD54, and CD62E in blood vessels

and stimulate the production of the chemokine CCL5 by

keratinocytes (58–60). Circulating T cells are recruited to OLP

lesions through these adhesion molecules and chemokines, and the

release of TNF and IFN-g by activated MAIT cells may participate

in these processes, thereby promoting T cell recruitment.

Current studies on the interaction between MAIT and CD8+ T

cells primarily focus on vaccine research. Provine et al. highlighted

the ability of MAIT cells to sense immune activation signals

triggered by viral vectors and integrate them to augment CD8+ T-

cell responses, with locally produced chemokine CXCL20 likely

playing a significant role in this process (61). Additionally, IFN-g
promotes CD8+ T cell activation and maintains MHC II expression,

with MAIT cells potentially involved in this process, thereby

modulating the OLP inflammatory response (62).
IELs in oral squamous cell carcinoma

Oral squamous cell carcinoma is the most prevalent type of oral

cancer, with a 5-year survival rate of approximately 50%. The

significantly high rates of local recurrence and cervical lymph

node metastasis complicate surgical removal of OSCC, leading to

poor prognoses and posing significant threats to human health and

well-being. The pathogenesis of OSCC has not been fully elucidated,

which is a consequence of complicated multiple-factors synergetic

effects and associated with the changes of oncogenes and tumor

suppressor genes and a series of tumor immunological responses

(63–65).
Frontiers in Immunology 05
IELs infiltration and expression of tumor related factors were

observed in OSCC. In lip carcinogenesis, there was an increase in

peritumoral and intratumoral CD3+, CD8+, CD20+ and CD68+

cells. In the intraepithelial region, CD8+ cells are correlated with

CD20+ and CD68+ cells (66). In tongue cancers, tumor nest-

infiltrating CD8+ IELs frequently expressed PD-1, an inhibitory

receptor, in sharp contrast to those in the stroma or in the lichen

planus. Conversely, CD8+ IELs only infrequently expressed

NKG2D, an activating receptor, in contrast to those in the stroma

or in the lichen planus. No CD8+ IELs expressed Ki-67, a

proliferation associated marker, whereas those in the stroma

frequently expressed it (67). CD8+ IELs in tongue cancer tumor

nests was phenotypically inactivated, which indicated the first

immune escape in OSCC tumor nests (67).

FOXP3+ IELs were significantly increased in OSCC patients

(68). Tumor-infiltrating FOXP31+ IELs were significantly more

frequent in oropharynx cancer and OSCC and patients without

lymph node metastasis (68). Additionally, high infiltration of

regulatory FOXP31+ IELs and relatively high levels of BDCA21

and FOXP31 cells in stromal (peripheral) regions of the tumors

were found in head and neck squamous cell carcinoma (68).

A higher number of CD8+ T cells was significantly associated

with poorer outcome. In the tumor-bearing part of involved lymph

node tissue, more CD8+ T cells were observed than in primary

cancer. CD8+CD103+ Trm cell infiltration in T2 tumors was higher

than in T1 or T4 tumors (69). However, patients with a higher

density of CD8+ T cells in their cancer survive longer than patients

with lower numbers. Patients with Trm cell-high cancers had better

overall survival than patients with Trm cell-low tumors. In addition,

Trm cell infiltration was absent in metastatic disease or at

recurrence, serves as a marker of better survival. The checkpoint

molecule TIM3, was expressed significantly higher on Trm and

non-Trm cells in the lymph node compared with primary tumors,

which was also seen in recurrences. The role of TIM3, as a

therapeutic target remains to be defined (69).

The early progression of oral precancerous lesions to cancer was

enhanced in IL-23 receptor-deficient mice, which suggested the

importance of IL-23. Exogenous IL-23 can promote the activation

of CD8+ IELs with high expression of IL-23R (70). IL-23 is known

to modulate the homeostasis of neutrophil infiltration into tissues

by inducing expression of IL-17 and G-CSF18, which are linked to

tumor growth (71). IL-23 can induce IL-17 production by tumor-

resident immune cells, including CD4+ Th17 cells, natural killer T

(NKT) cells, gd T cells and CD8+ cytotoxic T lymphocytes (CTLs).

IL-23 also opposes the action of IFN-g and the subsequent

production of cytotoxic mediators such as perforin, granzymes,

and Fas ligand (FasL), and can also inhibit IFNg-mediated MHC-I

upregulation (72).

The duction of IFN-g by T-cell induction by IL-23 antagonized

the local inflammatory response as well as IELs infiltration in the

tumor immune microenvironment (TME) (73). Low-density

CD4FOXP3 IELs infiltration was observed within the OSCC

invasion front and tumor center, which suggested a poor
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prognosis. The rate of local failure in older cancer patients

improved with increasing levels of CD3+ IELs and CD8+ IELs

(74). In low-risk oropharyngeal and hypopharyngeal SCC, high

infiltration of CD8+ IELs may improve disease-free survival (75).

The cytotoxic activity and tumor infiltrating ability of CD8+ T cells

might be largely inhibited owing to a local protective tumor

microenvironment induced or fostered by IL-23.
IELs in periodontal disease

Periodontal disease is a chronic inflammatory disease

characterized by an inflammatory environment, mainly affecting

the gingiva, bone, and ligament (76). Periodontal disease includes

gingivitis and periodontitis.

Junctional epithelium (JE), the first line of periodontal defense

against bacterial infection, constitutively expresses ICAM-1,
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cytokines and chemokines, together to maintain the physiological

homeostasis of JE (77). IELs are localized to the middle layer of JE,

in which the number of TCR+ lymphocytes is higher than that in

systemic immune organs, such as spleen and lymph nodes (78).

IELs in JE express TCR and CD3 in conventional and germ-free

mouse (79). TCR-positive T cells constitute the main population of

IELs (80, 81).

The gingiva contains a significant population of Vg6+ gd T cells

(82, 83). gd IELs are the first line of defense against luminal

microorganisms and they are adjacent to dental biofilm, which

implies their possible role in the host-microbiota interactions in the

gingiva (82). The microbiome is both necessary and sufficient for

the observed increase in gd IELs (82, 84, 85). Furthermore, adult

mice treated with antibiotics had a substantial decrease in the

frequency of gd IELs in their gingiva (82), which indicated that

the microbiota may have impacts on the development and

maintenance of gd IELs (85).
TABLE 1 (94) Grading of minor salivary gland immuno-histopathology post-allogenic hematopoietic cell transplantation.

Type of inflammation

Feature a) None b) Lymphocytic c) Plasmoctic d) Chronic mixed

n (%) 12 (11.7) 8 (7.7) 12 (11.7) 71 (68.9)

Ducts

Features and points None = 0 Mild = 1 Marked = 2

1. Periductal infiltrate n (%) Sporadic 17 (16.5) Focal
53 (51.5)

Widespread 33 (32.0)

2. Periductal exocytosis n (%) None
58 (56.3)

Focal
31 (3s0.1)

Widespread 14 (13.6)

3. Ductal damage* n (%) None
57 (55.3)

Focal
31 (30.])

Widespread 15 (14.6)

4. Periductal fibroplasia n (%) Discrete 29 (28.2) Some
68 (66.0)

Intense 6 (5.8)

Acini

Features and points None = 0 Mild = 1 Marked = 2

5. Peri-acinar infiltrate n (%) Sporadic 18 (17.5) Focal
57 (55.3)

Widespread 28 (27.2)

6. Acinar exocytosis n (%) None
73 (70.9)

Focal
28 (27.2)

Widespread 2 (1.9)

7. Acinar destruction ** n (%) None
28 (27.2)

Focal
45 (43.7)

Widespread 30 (29.1)

8. Interstitial fibrosis n (%) None
22 (21.4)

Some
60 (58.2)

Intense 21 (20.4)

Total points: 16 (Grade 0 - 0-2; Grade I - 3-4; Grade II - 5-7; Grade III - 8–11; Grade IV - 12-16)

GO; n = 13 (12.6%) GI; n = 28 (27.2%) Gll; n = 24 (23.3%) GIII; n = 21 (20.4%) GIV; n = 17 (16.5%)

Median points: 1 Median points: 2 Median points: 5 Median points: 10 Median points: 13
*Damage represents vacuoler changes and apoptosis.
**Destruction represents atrophy, ductal metaplasia and apoptosis.
Assessment of MSG 103 biopsies that included 100 biopsies from HCT patients and three healthy control biopsies.
Histological MSG evaluation was based on the NIH cGVHD Pathology resource document (“NIH cGVHD grading”) with associated NIH specific criteria for sg-cGVHD. The NIH cGVHD
grading form was designed to cover degree of peri-ductal and acinar infiltration, including exocytosis, ductal damage, and acinar degeneration, as well as peri-ductal and interstitial fibrosis (in
bold font). Each feature was assessed as mild or marked with a final pathological scoring range, and points for the features were allocated (0–16 points).
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gd IELs are involved in regulating the oral microbiota (85) and

can induce a large amount of IL-17, which mediates the development

and progression of periodontitis (8). IL-17 plays a predominantly

protective role in periodontal diseases (86). Vg6+gd T cell can produce

large amounts of IL-17A to accelerate bone formation at the fracture

site by stimulating the proliferation of mesenchymal progenitors and

the differentiation of osteoblasts (87). However, some studies have

shown that the presence of gd T cells and IL-17 in periodontal tissue

is positively associated with the severity of periodontitis, which may

be related to the ability of IL-17 to recruit inflammatory cells (88, 89).

gd T cells can inhibit periodontal bone loss and promote gingival

repair by producing restorative cytokines, such as amphiregulin (a

member of the epidermal growth factor family) (90, 91).
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IELs in graft-versus-host disease

GVHD is a common and significant complication of allogeneic

hematopoietic cell transplantation (allo-HCT). Both apoptotic bodies

and IELs were increased in the gallbladder of patients with HCT (9).

Oral chronic GVHD (cGVHD) occurs after approximately 70% of

HCT, including lichenoid mucosal responses, restricted mouth

opening, and salivary gland dysfunction. According to literature

reported, patients with refractory Hodgkin’s lymphoma developed

tongue GVHD after receiving allo-HCT. Tongue biopsy

showed changes in moss and keratinized tissue, accompanied

by epithelial T cell infiltration, which was consistent with

cGVHD (92).
FIGURE 3

IELs and human oral diseases. There is approximately a 1:2 ratio of CD4+IELs/CD8+IELs in OLP. CD8aa and Integrin aE (CD103) b7 (aEb7) mediates
cell migration and homing. TCRgd+ IELs recognize autoantigen molecules expressed by damaged keratinocytes, activate the NKG2D receptor
pathway. IL-15 secreted by epithelial cells can induce NKG2D activation and upregulation on the surface of IELs, preventing the activation of the
inhibitory receptor NKG2A. Co-localization of IELs with IL-7 secreted by epithelial cells. In lip carcinogenesis, peritumoral and intratumoral CD3+,
CD8+, CD20+ and CD68+ cells increase. In tongue cancers, CD8+ IELs frequently expressed PD-1. IL-23 promote the activation of CD8+ IELs. IELs in
junctional epithelium express TCR and CD3. Most gingival gd IELs are adjacent to dental biofilm. gd IELs induce a large amount of IL-17, which
mediates the development and progression of PD. IELs were increased in the gallbladder of patients with HCT. High expression of CD4, CD8, and
FOXP3 in GVHD confirmed that oral cGVHD is primarily driven by T cells. IELs expressing CD3 in human and mouse can differentiate along the
transcription factor Id 2-independent pathway under NOTCH1 signaling. TCRab/CD19 cell depletion is often used in HCT. gd T cells may undergo
CXCR4 signaling to recruit alloreactive CD4 T cells to target tissues. B-IELs were found in almost all striated ducts with hyperplasia in
lymphoepithelial lesions (LELs). FcRL4+ B-IELs are present in the salivary glands of pSS patients. B-IELs/T-IELs ratios increased significantly with
higher severity of LELs.
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A large cohort analysis on histopathological grading of oral

mucosal cGVHD indicated that a points-based grading tool (0 to 19,

grade 0 to IV, 0→IV: mild→severe) was established. The evaluation

indicators of this tool include IELs and band-like inflammatory

infiltrate, atrophic epithelium with basal cell liquefaction

degeneration, including apoptosis, as well as separation of

epithelium and pseudo-rete ridges. From grade 0 to IV, IELs

infiltration ranged from no/occasional to widespread (93). The

grade II-IV biopsy specimens demonstrated a histopathological

diagnosis of active mucosal lichenoid-like cGVHD, which

highlighted the importance of correlating clinical presentation

with the dynamic histopathological processes for improved

patient stratification. Most importantly, this tool could be used

for assessing treatments, pathological processes, and immune

cellular content to provide further insights into this debilitating

disease (93). Recently, the histological NIH cGVHD grading for

defining features of salivary gland cGVHD (sg-cGVHD) with

awarded points was designed (Table 1) (94). Peri-ductal and

acinar lymphocytic infiltration is an important consideration in

the NIH cGVHD grading form.

High expression of CD4, CD8, and FOXP3 in GVHD confirmed

that oral cGVHD was primarily driven by T cells and involved by

macrophages (95). The presence of a CD4/CD8 double-positive T cell

population in adult allo-HCT recipients was predictive of grade II

GVHD (96). Research proved that Notch signaling promoted T cell

pathogenesis and GVHD after allo-HCT, in which d-like Notch

ligand DLL4 played a dominant role. IELs expressing CD3 in

human and mouse can differentiate along the transcription factor

Id2-independent pathway under NOTCH1 signaling (16), which is

involved in the occurrence and development of GVHD.
IELs in primary Sjogren’s syndrome

pSS is a chronic inflammatory autoimmune disease that

primarily affects the function of exocrine glands such as salivary

and lacrimal glands. In tissues of pSS, lymphocytes infiltrate into

salivary and lacrimal glands to produce autoantibodies (97).

Intraepithelial T-lymphocytes (T-IELs) scattered throughout

the striated ductal epithelium of salivary glands of pSS.

Intraepithelial B-lymphocytes (B-IELs) were found in almost all

striated ducts with hyperplasia in lymphoepithelial lesions (LELs).

B-IELs and B-IELs/T-IELs ratios increased significantly with higher

severity of LELs, which was even more pronounced in the parotid

than in the labial gland (98). The presence of B-IELs in salivary

gland biopsies patients is a clear indicator of pSS and can be used as

an objective alternative to LEL scoring (10).

Fc receptor-like protein 4 (FcRL4) is normally expressed on a

small subset of mucosa-associated B-cells, as well as on MALT

lymphoma B-cells. pSS patients have an increased risk of developing

MALT lymphomas, preferentially in the parotid glands. FcRL4

mRNA expression level in parotid MALT lymphoma is increased

compared to parotid gland tissue of pSS patients without
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lymphoma. However, numbers of FcRL4+ B-cells in labial gland

biopsies taken at the time of pSS diagnosis, are not predictive for

later development of MALT lymphoma (99). Pathway analysis

showed upregulation of B cell activation, cell cycle and metabolic

pathways. FcRL4+ B cells are expected to be an important treatment

target in pSS (100).

In pSS, ductal cells produce a wide variety of cytokines (101),

which can contribute to the activation of the FcRL4+ B-IELs, and,

particularly, FcRL4+ B-IELs express the highest levels of FcRL4.

FcRL4+ B-IELs have strong expression of CD20 that makes

them highly susceptible targets for rituximab therapy (102, 103).

Treatment with rituximab did not only reduce the total number of B

cells, but also FcRL4+ B-IELs, which resulted in a significant

decrease in the number of LELs and normalization of the

epithelial lining (99, 104). Apparently, when FcRL4+ B-IELs are

depleted from the epithelium, stimulation of ductal cells by FcRL4+

B-IELs is no longer present, which enables the restoration of

epithelium. Of note, blocking the CD28 mediated co-stimulation

with abatacept did not affect the presence of FcRL4+ B-IELs and the

numbers and severity of LELs concomitantly (105).

Therefore, it has been proposed that identification of B-

lymphocyte–containing ducts should be added to the diagnostic

histopathological work-up of patients suspected of pSS (10).
Conclusion and the future
development direction

The increasing evidence provides new insights into the role of

IELs in the pathogenesis of OLP, OSCC, PD, GVHD, and pSS

(Figure 3). Notably, IELs are increased in OLP lesions, thus killing

epithelial cells directly or indirectly through cytotoxicity and

destroying the basement membrane. IELs are a double-edged

sword in OSCC. The infiltration of IELs around and within the

tumor of OSCC has the potential to promote the tumor growth, and

immune molecules related to regulating its cytotoxicity may regulate

the prognosis of OSCC. However, in low-risk OSCC, survival could

be improved due to IELs. IELs in junctional epithelium are involved

in regulating the host-microbiota interactions to mediate the

development of periodontal disease. Additionally, IELs in glands

are increased in patients with pSS and are involved in the destruction

of the gland and ductal tissue. However, the exact role played by IELs

in the occurrence and development of oral diseases is still largely

unknown. Future studies should not only investigate the biological

functions and precise molecular mechanisms of IELs in oral diseases,

but also address the clinical applications of IELs, aiming to facilitate

the clinical translation.
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