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Krüppel-like factor 4 control of
immune cell function
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Xudong Liao1 and Mukesh K. Jain1,2*

1Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine,
Brown University, Providence, RI, United States, 2The Warren Alpert Medical School, Brown University,
Providence, RI, United States
Krüppel-like factor 4 (KLF4) belongs to a family of transcription factors that

contain conserved zinc finger DNA binding domains, including specificity

proteins (SPs) and Krüppel-like factors (KLFs). KLF4 plays a vital role in

regulating cellular differentiation, proliferation and adaptation to a broad

spectrum of internal and external cues. In the context of the immunity, KLF4 is

appreciated as critical to both the innate and adaptive arms of the immune

system. The current review article focuses on these aspects of KLF4 action as well

as implications of this work for impacting human health.
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Highlights
• KLF4 acts as a negative regulator in both T and B cell proliferation, capable of

arresting the progression of the cell cycle to maintain T and B cell quiescence.

• KLF4 regulates macrophage polarization and monocyte differentiation.

• KLF4 acts as a novel transcriptional regulator of neutrophil activation.
1 Introduction

Krüppel-like factors (Klfs) are a family of zinc-finger proteins (ZNF), contains three

highly conserved C2H2 zinc-finger motifs that facilitate specific DNA binding, enabling it

to act as both a transcription activator and repressor. A key feature of the Klf family is that it

contains 3 Cys2/His2 ZNF. Zinc fingers 1 and 2 have 23 amino acids, while finger 3 has only

21 amino acids while finger 3 has only 21 amino acids (1). The Kruppel-Like Factor family

of regulatory proteins having 18 members of transcription factors. KLF proteins bind to

specific DNA sequences to either activate or repress the transcription of target gene,

expression and cellular functions (2) including differentiation, proliferation, and

homeostasis across major physiologic systems. In particular, work to date supports a

critical role in the endocrine, muscular (smooth and striated), nervous, cardiovascular and
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immune systems. Within different immune cell types like T cells, B

cells and myeloid cells, Klfs essentially act as key regulators by

controlling gene expression depending on the specific Klfs involved

(3). Different Klf family members can have distinct roles in immune

cells with some promoting immune responses while others acting as

suppressors depending on the cellular context and environmental

cues. KlFs can influence the expression of inflammatory cytokines

and chemokines impacting the inflammatory response in different

immune cell types (4). Aberrant KLF expression has been linked to

various immune related diseases like autoimmune disorders, cancer,

and chronic inflammatory conditions. KLFs can both promote and

inhibit cell proliferation, depending on the specific KLF and cellular

context. For instance, KLF5 promotes cell proliferation, while KLF4

inhibits it. Similarly, KLFs play vital roles in cell differentiation, such

as KLF1 in erythroid differentiation and KLF4 in goblet cell

differentiation. Some KLFs, like KLF4, are involved in the

regulation of apoptosis, sometimes acting as tumour suppressors

by promoting apoptosis, while in other instances exhibiting anti-

apoptotic effects. KLFs are critical regulators during development,

influencing processes like erythropoiesis, adipogenesis, and

skeletal development.

Certain KLFs, like KLF2 and KLF4, are involved in regulating

immune responses, influencing leukocyte development and

function. They are also implicated in inflammatory diseases.

KLFs related to the immune system are Klf1,Klf2,Klf3,Klf4,Klf6

and Klf16. KLF2 is particularly well studied for its role in

maintaining immune cell quiescence and regulating T cell

activation while other KLFs like KLF5 and KLF14 are also

implicated in immune cell function (1). Klf4 has important

functions in the innate and adaptive immune system. The

adaptive immune system is responsible for generating

immunological response and immunological memory. Regulation

of adaptive immunity including B cell and T cell biology was mainly

understood from the protein and microRNA perspective. KLF4

directly regulates miR-182 cluster expression in human embryonic

stem cells (hESCs) and in melanoma tumours, in which the miR-

182 cluster is highly expressed and has a pro-metastatic role.

Furthermore, higher KLF4 expression was found to be associated

with metastatic progression and poor patient outcome. Loss of

function experiments revealed that KLF4 is required for melanoma

cell maintenance. These findings provide new insights into the

regulation of the miR-182 cluster expression and new opportunities

for therapeutic intervention in tumors in which the KLF4-miR-182

cluster axis is deregulated (5). However, long non-coding RNAs

(lncRNAs) are an emerging class of non-coding RNAs (ncRNAs)

that influence key factors in lymphocyte biology such as NOTCH,

PAX5, MYC and EZH2. LncRNAs were described to modulate

lymphocyte activation by regulating pathways such as NFAT,

NFkB, MYC, interferon and TCR/BCR signalling (NRON,

NKILA, BCALM, GAS5, PVT1), and cell effector functions (IFNG-

AS1, TH2-LCR) (6).

This review focuses on the crucial role of KLF4 in maintaining

immune cell system’s balance particularly in regulating immune

responses and function of various immune cells (Figure 1).
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2 The role of KLF4 in monocyte and
macrophage biology

The innate immune system functions as the body’s first line of

defence through the initiation of a nonspecific rapid response to

pathogens and infections, while also serving a critical role in the

overall regulation of tissue homeostasis and immunity surveillance

(7). Myeloid lineage-enriched transcription factors, drive the

commitment of progenitor cells toward a stage-specific

monocyte-macrophage differentiation program (8).
2.1 Monocyte-macrophage introduction

The innate immune system functions as the body’s first line of

defence through the initiation of a nonspecific rapid response to

pathogens and infections, while also serving a critical role in the

overall regulation of tissue homeostasis and immunity surveillance

(7). Monocytes, a subset of white blood cells originating from

hematopoietic stem cells (HSCs) in the bone marrow, patrol the

bloodstream for sites of inflammation and, upon migration to

tissues, differentiate into their tissue-specific macrophages (9).

Once relocated into the tissue, these differentiated and highly

plastic macrophages undergo polarization in adaptation to their

specific microenvironment, a process tightly regulated under the

KLF4 transcriptional control (8, 10).

In principle, there are two subsets of macrophages, namely tissue

resident and non-resident macrophages. Resident macrophages

(Ly6Clo/CCR2-), originating from yolk sac-derived erythro-myeloid

progenitors, predominantly exhibit an M2-like anti-inflammatory

phenotype under homeostatic conditions, contributing antagonistic

roles of inflammation, such as mitigating insulin resistance, eliminating

parasites, and promoting tissue remodelling and repair (11–13). In

contrast, non-resident (blood-borne infiltrating) macrophages, derived

from circulating (Ly6Chi) monocytes recruited by the CCL2-CCR2

chemotaxis pathway, are more likely to adopt an M1-like

proinflammatory phenotype to enhance pathogen clearance and

increase blood vessel permeability and the activation of other

inflammatory mediators (14–17). Recent studies have established the

crucial role of KLF4 in modulating macrophage polarization,

influencing the balance between proinflammatory M1 and anti-

inflammatory M2 phenotypes, thus contributing to immune

homeostasis and the resolution of inflammation (1).
2.2 Regulation of monocyte differentiation

Monocyte differentiation is embedded within the broader

framework of haematopoiesis – a highly transcriptionally regulated

process that drives the specialization of HSCs into various blood

lineages. HSCs first give rise to common myeloid progenitors

(CMPs), which differentiate into granulocyte-macrophage progenitors

(GMPs). GMPs can then commit to either granulocytic or monocytic

lineages depending on specific transcription factor cues (18).
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The myeloid differentiation process is modulated by the

induction of lineage-restricted transcription factors such as PU.1,

a member of the ETS family of transcription factors, that bind to

consensus GGAA-like motifs, for GMPs differentiation and GATA-

1 as an antagonist to drive megakaryocyte-erythroid progenitors

(MEPs) differentiation (19–21). KLF4, a downstream target gene of

PU.1, binds the CD14 promoter, thus specifying monocyte

commitment. In PU.1-deficient mouse fetal liver cells, KLF4

overexpression restores monocyte differentiation in the absence of

PU.1, supporting a partially compensatory or synergistic

relationship between the two transcription factors (22) (Figure 2).

Thus, KLF4 acts as both a determinant and effector of monocyte

lineage commitment and differentiation. The expression of KLF4 is

present in monocyte-lineage cell lines (e.g., THP-1, U-937) but

absent in other hematopoietic cell types, underscoring its specificity.

Functionally, KLF4 not only induces monocytic surface markers

(CD11b, CD14; while not impacting granulocytic and lymphocytic

markers) but also causes morphological changes (23). These

characteristic changes in cellular morphology, include increased

cytoplasmic size, smaller and more condensed nuclei, and ruffled

cell edges, consistent with the acquisition of a monocytic phenotype

(7, 24). Understanding these regulatory mechanisms not only

advances our knowledge of hematopoietic lineage commitment

but also provides potential targets for therapeutic modulation in

inflammatory and myeloid-related disorders.
2.3 Transcriptional control of macrophage
polarization

Macrophages can undergo polarization in adaption to their

specific microenvironment, a process tightly regulated by KLF4
Frontiers in Immunology 03
(10). The heterogeneous cell population of macrophages plays an

essential role in the innate immune response due to their remarkable

plasticity, allowing them to adopt distinctive functional phenotypes

(M1/M2) in response to tissue environment cues governing

polarization (25, 26). This binary classification of macrophages is

an oversimplification of a more dynamic spectrum of activation

states. Given its regulatory role, KLF4 serves as a key transcription

factor essential in modulating and regulating macrophage

polarization, to facilitate tissue repair but also suppresses excessive

inflammation, highlighting its dual role in immune homeostasis (27).

2.3.1 KLF4 promotes M2 macrophage
polarization

The anti-inflammatory M2 macrophage primarily functions to

remodel and organize components of the extracellular matrix to

facilitate the clearance of cellular debris (via matrix metalloproteinases

[MMPs]) and secretion of TFG-b to promote tissue repair (28). This

KLF4-promoted M2 macrophage polarization is modulated by

cytokines, IL-4 and IL-13 to achieve optimal expression of target

genes (arginase-1, mannose receptor, resistin-like a, and chitinase 3-

like 3) expressing anti-inflammatorymarkers (Figure 2). Essential toM2

activity, arginase 1 (encoded within the Arg1 gene) is an enzyme that

degrades L-arginine, thereby limiting nitric oxide (NO) production

while promoting polyamine synthesis (29). The well-characterized Arg1

promoter is mechanically regulated by KLF4 determined by the

consensus KLF-binding sites (CACCC) located in the IL-4-responsive

enhancer region tangentially to the Stat6-binding site. Stat6, as another

transcription factor involved in regulating immune homeostasis and

M2 polarization, cooperates with KLF4 to induced M2 genes in

response to IL-4 activation. To elucidate the manifestation of an

optimal KLF4 cooperative activity, Stat6-null macrophages observed

decreased recruitment of KLF4 to Arg1 enhancer region following IL-4
FIGURE 1

Interaction of KLF4 with innate and adaptive immune cells. KLF4 plays a crucial role in regulating the differentiation and function of various immune
cells. In an innate immunity context, KLF4 promotes anti-inflammatory responses influencing tissue repair and immune resolution. In an adaptive
immunity context, KLF4 is involved in immune modulation, specifically impacting activation, proliferation, and cytokine production to maintain
immune homeostasis.
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treatment, indicative of a dependent relationship to Stat6 and synergistic

activation requires intact KLF4 and Stat6 factors (27). Overexpression of

Arg1 can result in excessive tissue repair and scarring (fibrosis), while

insufficient Arg1 activity can impair healing processes. Interestingly,

overexpression of KLF4 resulted in the upregulation of the PPARg
(Peroxisome proliferator-activated receptor gamma) to suppress M1-

associated proinflammatory cytokines via inhibition of NF-kB pathway

while simultaneously enhancing IL-4/Stat6 signalling. Cooperative

interactions with PPARg and Stat6 establish KLF4 as a critical

mediator of M2 macrophage polarization (30).

2.3.2 KLF4 inhibits M1 macrophage polarization
The M1 macrophage phenotype adopts a proinflammatory role

via the stimulation of macrophages with bacterial endotoxin

lipopolysaccharide (LPS), characterized by the increased production

of antimicrobial effector molecules such as prostaglandins (via

induction of prostaglandin-endoperoxide synthase 2 [Cox-2]),

nitric oxide (via inducible nitric oxide synthase [iNOS]), and

proinflammatory cytokines (TNF-a, IL-1b) (31, 32). Interestingly,

M2macrophages can be reprogrammed toM1-like macrophages due

to the downregulation of their characteristic anti-inflammatory

markers under proinflammatory signals like LPS or INF-g via the

activation of the JAK/STAT pathway (33, 34). As the primary classic

proinflammatory target, the Cox-2 promoter doesn’t have a canonical

KLF-binding site, however, studies of KLF4-deficient macrophages

displayed significantly enhanced recruitment of histone

acetyltransferases (p300 and PCAF) to activate the transcription of
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proinflammatory gene promoters specific to the NF-kB pathway (35,

36) (Figure 2). Amplified bactericidal activity is observed in KLF4-

deficient M1 polarization, as the production of ROS-generating

enzyme NADPH oxidase 1 (Nox1), Infg, and Tnfa was in response

to both Gram-negative and Gram-positive bacteria (27). Further

studies of myeloid KLF4 deficiency mice exhibited delayed wound

closing measured by upregulated expression of iNOS and TNF-a,
determined by increased levels of tissue destruction correlated to

promoted insulin resistance (37–39). With the NF-kB signalling

pathway serving as a key regulator of M1 polarization, KLF4 may

act as a negative regulator, suppressing excessive inflammation and

rampant bactericidal activity while facilitating proper wound healing.
3 KLF4 and its role in neutrophils

Neutrophils form the largest component of circulating white

blood cells and serve as the first line of immune defence against

microbial infections (40). These motile immune cells are recruited

to sites of infection or injury, where they eliminate pathogens

through mechanisms such as phagocytosis, degranulation, and the

release of neutrophil extracellular traps (NETs) (41). While their

primary role is to maintain host defence, neutrophils can also

contribute to tissue damage and chronic inflammation when their

activation is dysregulated, leading to autoimmune diseases like

rheumatoid arthritis, phospholipid antibody syndrome, or

systemic lupus erythematosus (SLE) (42). As such, it is crucial to
FIGURE 2

KLF4 mechanistically modulates monocyte differentiation and macrophage populations and polarizations. It cooperates with PU.1 to promote
monocyte differentiation while upregulating CD14, a key monocyte marker. In macrophages, KLF4 inhibits NF-kB signalling, reducing
proinflammatory M1 polarization, while enhancing Stat6/IL-4 signalling to drive M2 macrophage polarization, facilitating tissue repair and anti-
inflammatory responses.
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understand the molecular pathways governing neutrophil function

and activity. To date, KLF4 has emerged as a crucial player in

modulating neutrophil activation and function in the context of

acute infection and chronic inflammation. It balances pro-

inflammatory responses necessary for pathogen clearance with

mechanisms that prevent excessive inflammation upholding a

dual role in host defence and tissue homeostasis.
3.1 KLF4-deficiency on neutrophil granule
proteins and cytokines

Neutrophil granules are membrane-bound vesicles storing pro-

and anti-inflammatory molecules, that are released through a

process termed degranulation to execute pathogen elimination

and tissue remodelling functions (43). Among these molecules are

essential antimicrobial and cytotoxic molecules, such as matrix

metalloproteinase-9 (MMP-9) and myeloperoxidase (MPO) (44).

In wild-type neutrophils, lipopolysaccharide (LPS) stimulation

upregulates MMP-9 mRNA, promoting granule release. However,

KLF4-deficient neutrophils exhibit a significant reduction in MMP-

9 mRNA levels, indicating that KLF4 is necessary for proper

transcriptional regulation of granule-associated proteins.

Furthermore, reduced secretion of MMP-9 and MPO in these

neutrophils suggests that KLF4 deficiency primarily disrupts

granule content; since MMP-9 mRNA levels were already

suppressed in KLF4-deficient neutrophils, this deficiency in

secretion is not due to impaired degranulation but rather to a

reduction or defect in granule content (45).

Beyond granule-associated proteins, KLF4-deficient neutrophils

also exhibit altered cytokine secretion. Proinflammatory cytokines

such as TNF-a, keratinocyte chemoattractant (KC), and IL-1b,
along with the anti-inflammatory cytokine IL-10, coordinate the

innate immune response (46). Upon Streptococcus pneumoniae

stimulation, KLF-deficient neutrophils showed significantly

reduced TNF-a and KC secretion, while IL-10 release was

elevated compared to the wild-type control. IL-1b levels remained

unaffected, possibly suggesting that KLF4 selectively regulated

specific cytokine pathways in neutrophils. Notably, these changes

were observed in blood-derived PMNs but not in remaining white

blood cells (WBCDPMNs), indicating potential differences in KLF4-

dependent cytokine regulation amongst neutrophil populations

(47). Together, these findings highlight KLF4’s essential role in

promoting proinflammatory cytokine release while restraining anti-

inflammatory signalling, making it a critical regulator of neutrophil-

mediated immune responses.
3.2 Neutrophil KLF4-deficiency and
susceptibility to bacterial infection

Effective bacterial clearance mechanisms are essential for

neutrophils to maintain host defence from bacterial infections

(48). The loss of KLF4 disrupts these processes, compromising

immune responses and increasing susceptibility to infection.
Frontiers in Immunology 05
Following intraperitoneal E. coli infection, myeloid-specific KLF4-

deficient mice exhibited significantly higher mortality rates than

controls. Increased bacterial burden in these mice points to

uncontrolled infection and subsequent development of

bacteraemia. Furthermore, circulating levels of TNF-a, MPO, and

MMP-9 were significantly lower in myeloid-specific KLF4-deficient

mice, signifying a diminished host defence mechanism. Impaired

bacterial killing capabilities in KLF4-deficient neutrophils ex vivo

further support this observation (45). KLF4-deficient murine

polymorphonuclear neutrophils (PMNs) also exhibit reduced

pneumococcal killing. After incubation with opsonized S.

pneumoniae D39 or R6× for three hours, KLF4-deficient blood-

derived PMNs showed significantly reduced bacterial clearance

(47). Although the precise mechanism by which KLF4 regulates

neutrophil antimicrobial function remains unclear, these findings

suggest that KLF4 plays a central role in coordinating the

transcriptional response required for effective bacterial killing (49).
3.3 Inflammatory response in KLF4-
deficient neutrophils

Neutrophil function is protective in bacterial killing, but

excessive systemic inflammation can lead to septic shock and

death (50). Interestingly, while KLF4 deficiency impairs the

immune response to bacterial infection, it appears to confer

resistance to excessive inflammation in response to direct

challenge with endotoxin (45). LPS-induced mortality rate is

greatly reduced in myeloid-specific KLF4-deficient mice

compared with the control, along with lower levels of pro-

inflammatory factors MPO and TNF-a. Beyond acute infection,

neutrophils also play a key role in chronic inflammatory diseases,

where their interactions with other immune cells influence disease

progression (51). Specifically, neutrophils may influence chronic

inflammation in the experimental autoimmune encephalomyelitis

(EAE) model, which mimics multiple sclerosis (MS) in humans (52,

53). KLF4-deficient neutrophils impaired chronic inflammation,

exhibited delayed disease onset, and significantly reduced EAE

severity compared to wild-type controls despite a 100% incidence.

At the disease onset phase, a significant reduction in CNS-

infiltrating neutrophils, T helper cells, B cells, and dendritic cells

was observed in myeloid-specific KLF4-deficient mice, further

suggesting that KLF4-deficient neutrophils are defective in

mediating chronic inflammation (45). These findings reinforce

the role of KLF4 in promoting inflammatory responses, with its

absence reducing acute endotoxin-induced inflammation and

chronic autoimmune-mediated neuroinflammation.
3.4 Mechanisms of KLF4 regulation in
neutrophils

Previously, TLR4 activation by LPS has been shown to induce

KLF4 expression in murine neutrophils (45). KLF4-deficient

neutrophils exhibited impaired responses to LPS stimulation,
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which typically activates TLR4 and initiates a signalling cascade

leading to the activation of the IкB kinase (IKK) complex. This

complex phosphorylates IкBa, resulting in its degradation and the

subsequent release of NF-кB, a key transcription factor of pro-

inflammatory genes (54). In KLF4-deficient neutrophils, LPS-

induced phosphorylation and degradation of IкBa are

significantly attenuated, resulting in reduced NF-кB activation

and decreased transcription of its target genes such as TNF-a
(45). One of the key mechanisms by which KLF4 influences this

pathway is through the regulation of CD14, a crucial co-receptor for

TLR4 (55). CD14 aids TLR4 in recognition of bacterial components

like LPS, and typically, neutrophils upregulate CD14 levels upon

encountering LPS. However, in KLF4-deficient neutrophils, both

CD14 mRNA and surface protein expression were reduced, both at

baseline and after LPS activation. This reduction in CD14

expression impairs the ability of neutrophils to efficiently

recognize bacteria stimuli, weakening the activation of the

downstream TLR4-NF-кB signalling cascade. While other

components of the TLR4 pathway remain unaffected by KLF4

deficiency, the decreased expression of CD14 is a critical factor in

the reduced responsiveness to LPS in neutrophils (45) (Figure 3).

Other findings testing various TLR pathways (TLR2, TLR4, and

TLR9) demonstrated that activation of a single TLR by its respective

agonist (MALP-2, LPS, or CpG) was insufficient to induce KLF4

expression in neutrophils, macrophages, or epithelial cells (47).

Possible explanations for the difference in findings is that mouse

and human neutrophils respond to LPS differently from variations in

TLR4 or the use of different types of LPS from different bacterial

sources. Additionally, neutrophils do not always respond strongly to a

single stimulus but can becomemore reactive after priming (56). This

suggests that multiple stimuli might be needed to induce KLF4

expression, which was observed with S. pneumoniae stimulation (47).
4 KLF4 in T and B lymphocytes

T and B lymphocytes are white blood cells that play a significant

role in the adaptive immune response to infection. During the

immune response, naïve T cells are activated by certain antigens,

causing them to proliferate and differentiate into mature T cells,
Frontiers in Immunology 06
which are then recruited to different sites of infection (57). On the

other hand, the primary function of B cells is to release antibodies,

which they do by differentiating into plasmocytes upon

encountering certain antigens (58). Despite serving critical roles

in the immune response, T and B cells are also predecessors of

destructive cancers: T cell acute lymphoblastic leukaemia (T ALL),

which can arise from malignant thymocytes in certain stages of T

cell differentiation, and Hodgkin’s Lymphoma, derived from

mutations in the germinal centres of B cells. As such, it is critical

to elucidate the molecular mechanisms regulating the

differentiation and development of T and B lymphocytes.

T cell quiescence is regulated by the transcription factor KLF4,

as well as different FOXO proteins. The FOXO proteins are a family

of transcription factors known for regulating key homeostatic

processes, including cell proliferation (59). It has been suggested

that KLF4 serves a regulatory role in the differentiation of CD8+ T

cells, while also inhibiting the proliferation of B cells downstream of

certain FOXO proteins (60). However, the exact role of KLF4 in

developing T and B cells has not yet been clarified.
4.1 KLF4 in regulation of CD8+ T cell
development

Functional CD8+ T cells, otherwise known as cytotoxic T cells

or killer T cells, originate from naïve CD8+ T cells in the bone

marrow and undergo a rapid expansion, differentiation, and

selection in the thymus (61). Once matured, cytotoxic T cells

become mono-specific CD8+ T cells capable of contributing to

the immune response. Novel research indicates following enhanced

T cell receptor (TCR) activation by TCR crosslink, naïve CD8+ T

cells in Klf4-deficient mice demonstrated increased proliferation

(60). In the same experiment, these Klf4-deficient naïve CD8+ T

cells also increased in proliferation in response to bacterial infection

– specifically, when upon infection with a strain of Listeria

monocytogenes-OVA, Klf4-deficient naïve CD8+ T cells generated

more memory CD8+ T cells in both the primary and secondary

responses to the infection. Additionally, circulating CD8+ T cells

remain quiescent when under KLF4 expression (62) maintained

through activation of p21, a kinase inhibitor involved in cell cycle
FIGURE 3

KLF4 inhibits neutrophil activation of proinflammatory response. Via the suppression of NF-kB pathway, nuclear translocation and subsequent
transcription of proinflammatory genes is prevented. Upstream, KLF4 downregulates TLR4 and CD14, reducing neutrophil responsiveness to
bacterial LPS and dampening the initiation of inflammatory cascades, thereby limiting excessive inflammation.
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regulation (63). CD8+ T cells from Klf4-deficient mice upregulated

proliferation following in vitro TCR crosslink activation and

increased in vivo homeostatic population expansion in the spleen.

The presence of KLF4 modulates repression of T cell development

in T ALL by inducing apoptosis through suppression of the BCL2/

BCLXL genes (Figure 4). Previous studies also reveal that the KLF4

gene becomes hypermethylated in cases of T ALL, while forced

KLF4 overexpression suppresses its downstream signals, inhibiting

T ALL progression and inducing T cell apoptosis (64).

Mechanistically, through the binding of KLF4 to the promoters of

T cell-associated genes, NOTCH1, BCL2, and CXCR4, repression

and inhibition of T Cell proliferation is initiated (65). The results of

these in vitro experiments posit KLF4 as a negative regulator in T
Frontiers in Immunology 07
cell-associated genes and, therefore, T cell proliferation. Specifically,

KLF4 functions as a negative regulator in the proliferation of (naïve)

CD8+ T cells under increased TCR activation/stimulation in vitro.

Disruption of KLF4 activity enhances proliferation, and KLF4 also

plays a key regulating role in the proliferation of functional memory

CD8+ T cells.
4.2 KLF4 in B cell development

B Cells exist naturally in the quiescent state, non-dividing and

inactive until they encounter the appropriate antigen. In active B

cells, KLF4 becomes heavily downregulated, and in vitro studies
FIGURE 4

KLF4 systematically inhibits lymphocyte maturation. KLF4 systematically inhibits lymphocyte maturation by repressing key regulatory and
proliferation factors such as MSC/ABF1 and E47/E12. It downregulates NOTCH1, a critical driver of T cell commitment, and reduces CXCR4
expression, impairing lymphocyte migration and homing. Additionally, KLF4 suppresses anti-apoptotic genes like BCL2 and BCLXL, leading to
increased susceptibility to apoptosis and impaired lymphocyte survival.
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indicate that an induced KLF4 expression prevents and decreases B

cell cycle progression to the S phase via the following modulation of

the known target genes of KLF4: increased p21 activity and

decreased cyclin D2 and c-Myc activity (66). Forced expression of

KLF4 also increased cell death in those proliferating B cells.

However, the KLF4-deficient B cells displayed similar survival

rates and expression as normal B cells, suggesting that the loss of

KLF4 had no noticeable impact on B cell proliferation and

development. It appears KLF4 serves a redundant role as other

members of the KLF family, like KLF2/KLF3, which are also highly

expressed in naïve B cells and downregulated upon activation, and

loss of KLF4 can be compensated by other KLF members. KLF4’s

function is reminiscent of different members of the FOXO protein

family, like FOXO1 and FOXO3a, which induce cell cycle arrest to

G1 and increase apoptosis upon forced expression (67). The FOXO

protein family may be involved in KLF4 transcription, and KLF4’s

regulation by FOXO proteins is a critical mechanism that

determines B cell proliferation and survival.

In another study, KLF4 is shown to inhibit B cell proliferation in

patients with B cell lymphomas, like Burkitt Lymphoma, follicular

lymphoma, and classic Hodgkin lymphoma (68). Primary cases of

B-cell lymphomas revealed that the KLF4 promoter was

methylated, thus silencing the expression of KLF4 in the B cells

(Figure 4). By overexpressing KLF4 in Burkitt lymphoma cell lines,

researchers were able to induce cell cycle arrest in Go and G1,

pausing the proliferation of B cells. In Hodgkin’s lymphoma cell

lines, KLF4 overexpression resulted in increased apoptosis through

the activation of the BAK1 proapoptotic gene. BAK1 activity is

sequestered by the MCL1 and BCL2L1/BCL-XL pathways, and is

only functional if it exists in higher concentrations than the

sequestering capabilities of its regulators. KLF4 may be able to

overstimulate BAK1 production, forcing it to become active and

induce apoptosis in B cells. Interestingly, KLF4 also has a strong

regulatory effect on the MSC/ABF-1 repressor, which is highly

expressed in classic Hodgkin’s Lymphoma, follicular lymphoma,

and Burkitt Lymphoma (69, 70). MSC/ABF-1 is a helix-loop-helix

protein that suppresses the transactivating potential of E-box

transcription factors, E47/E12 (71) which are downstream

proteins involved in B cell proliferation. E47/E12 regulate

proliferation by activating the p21 gene (72). It is plausible that

KLF4 controls the proliferation of B cells by inhibiting the MSC/

ABF-1 factor, which increases activity of E47/E12, which in turn

activates the p21 protein and delays the cell cycle.
4.3 KLF4 in dendritic cells

During infection, DCs are responsible for initiating the adaptive

immune response, activating T cells by capturing and presenting

target antigens (73, 74). There are several subsets of DCs, like

conventional DCs (cDCs), Langerhans cells (LCs), monocyte-

derived DCs, among others, all having specific functions in

response to infection/disease (75, 76) (Figure 4).

In DC differentiation, KLF4 expression positively correlates

with the proinflammatory characteristics of that DC subset.
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differentiation, but is repressed to enable differentiation in LCs (77).

Specifically, epithelial Notch signalling represses KLF4 in

developing LCs, causing Runt-related transcription factor 3

derepression in response to TGF-b1, which ultimately enables

differentiation into LCs due to low cytokine expression markers.

KLF4 is also important in cDC development and function,

particularly in IRF4-expressing cDCs that promote Th2 immune

responses. In vivo cDCs with conditional deletion of KLF4

demonstrated impaired Th2 cell response to infection by

Schistosoma mansoni and house dust mites, although Th1/Th17

cell responses were unaffected in response to other infections (78).

In different tissues, KLF4 deletion decreased expression of IRF4 in

pre-cDC subsets, and caused selective loss of cDC subsets

expressing IRF4.

KLF4 activity also modulates inflammatory immune responses,

including the production of inflammatory molecules like IL-6 by

DCs. Rosenzweig et al. found that KLF4 plays dual functions to

modulate expression of IL-6, directly activating the IL-6 promoter

and remodelling chromatin (79). Further, they showed that DCs

lacking KLF4 had significantly reduced levels of IL-6 mRNA and

protein, although IL-6 was not fully absent.
4.4 KLF4 in natural killer cells

Natural Killer (NK) cells are fundamental cytokines in the innate

immune response pathway to cancer (79), inhibiting proliferation

and migration/colonization of distant tissues to combat primary

tumour cells and metastasis (79). NK cells also produce large

amounts of cytokines like interferon-g, modulating adaptive

immune responses and participating in similar pathways (80, 81).

KLF4 has been shown to promote survival of NK cells in the

spleen, and also maintain the number of cDCs in the spleen (82)

mutated the KLF4 gene in cre-transgenic mice, and found that

somatic deletion leads to heavily reduced numbers of NK cells in

the blood and spleen but not in bone marrow (BM), liver, or

lymph nodes (82). Functional and immunophenotypic analyses

suggested increased NK cell apoptosis in these cells, and that

survival is dependent on BM-derived hematopoietic cells from the

spleen. Further, numbers of CD11chi DCs, which promote NK cell

survival, were significantly reduced in the KLF4-deficient mice,

suggesting that the KLF4 gene is associated with the maintenance

of spleen DCs, which support differentiation and survival of

NK cells.

KLF4 additionally plays a role in upregulating NK cell ligands,

specifically the NKG2D ligand MICA, which stimulates immune

responses of NK cells (Figure 4). Alkhayer et al. determined that the

MICA promoter contains KLF4-binding motifs, and that in acute

myeloid leukaemia (AML), KLF4 mediates inducible expression of

MICA (83). Upon inhibition/ablation of KLF4, HDAC-mediated

upregulation of MICA is also reduced. Moreover, the APTO253

molecule, which is a known KLF4 inducer, was found to upregulate

MICA in AML cells. APTO253-treated AML cells were also

rendered more susceptible to termination by NK cells.
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5 Regulatory function of KLF4 across
major immune cell types with respect
to diseases

KLF4 plays a multifaceted role in the immune system,

impacting various cell types and influencing disease progression.

Its activity is context-dependent, leading to both pro- and anti-

inflammatory effects depending on the environment and cellular

state (Table 1). KLF4 regulates immune cell differentiation,

polarization, and inflammatory responses, contributing to both

effective pathogen defence and the prevention of excessive

inflammation. Targeting KLF4 could offer new strategies for
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Its dual nature as a tumour suppressor and oncogene suggests

that its therapeutic use may depend on the specific disease and

context (Figure 5). In summary, KLF4 is a crucial regulator of

immune cell function and disease progression, playing a key role in

shaping the immune response and influencing the development and

progression of various diseases.
6 Conclusion

Work over the past two decades provides compelling evidence

that KLF4 regulates key aspects of the innate and adaptive immune
TABLE 1 Summary of KLF4’s regulatory functions in immune cells and disease contexts.

Immune
context

Cell type(s) KLF4-Regulated
Molecules/
pathways

Regulatory effect Associated disease(s) References

Th17 Cell
Differentiation

CD4+ T cells IL-17, RORgt, STAT3 ↑ Th17 differentiation Autoimmune diseases (e.g., MS, RA) (84, 85)

B Cell Maturation B cells Pax5, AID, Blimp-1 ↑ Class switching
and differentiation

Lymphomas, Autoimmune diseases (86, 87)

Dendritic Cell
Activation

Dendritic cells IL-6, CD80, CD86 ↑ Antigen presentation, T
cell priming

Chronic infections, Cancer (79, 88)

NK Cell Function Natural Killer
(NK) cells

IFN-g, THBS1,
CD47, ALSH1L

↑ Cytotoxicity and
cytokine production

Viral infections, Tumors (79, 82)

Cancer Tumor-associated
macrophages (TAMs),
T cells

VEGF, PD-L1, NF-kB ↑ Tumor-promoting
immune responses

Colon, Breast, and Lung cancers (89, 90)

Inflammatory Bowel
Disease (IBD)

Macrophages, T cells IL-6, IL-12, STAT3 ↑ Pro-inflammatory
cytokines

Crohn’s disease, Ulcerative colitis (91)

Inflammation (general) Macrophages,
Monocytes

IL-6, TNF-a, CCL2,
NF-kB

↑ Pro-inflammatory
gene expression

Atherosclerosis, Sepsis (92)

Tissue Repair &
M2 Polarization

Macrophages IL-10, Arginase-
1, STAT6

↑ Anti-inflammatory
gene expression

Wound healing, Fibrosis (93)

Atherosclerosis Macrophages ABCA1, ApoE,
inflammatory cytokine

↑ Foam cell formation,
↑ inflammation

Cardiovascular disease (92)

Pulmonary Fibrosis Macrophages,
Fibroblasts

TGF-b, MMPs ↑ Fibrogenic signaling Idiopathic pulmonary fibrosis (IPF) (94, 95)

Monocyte
Differentiation

Monocytes PU.1, CD14 ↑ Monocyte
differentiation from
myeloid progenitors

Immune deficiencies, impaired
myeloid development

(96)

Sepsis Monocytes,
Neutrophils

IL-1b, TNF-a, NF-kB ↑ Cytokine
storm response

Systemic inflammatory response
syndrome (SIRS)

(97)

Neutrophil Activation Neutrophils CD14, TLR4, IkBa
kinase complex, IkBa,
NF-kB, TNF-a

KLF4 deficiency: ↓
Neutrophil activation
through TLR4—NF-kB
signaling, ↓ CD14, ↓ IkBa
phosphorylation, ↓
TNF-a

Experimental autoimmune
encephalomyelitis (EAE), a model for
multiple sclerosis (MS)

(45)
This table consolidates the regulatory functions of KLF4 across major immune cell types, including macrophages, T cells, B cells, dendritic cells, and NK cells. It highlights the cytokines,
chemokines, and signalling pathways modulated by KLF4, delineating its dual role in promoting both pro- and anti-inflammatory responses depending on the cellular context and summarizes
KLF4’s involvement in specific disease states, highlighting its relevance as a molecular target with diagnostic and therapeutic potential.
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system. It orchestrates key processes across monocytes,

macrophages, neutrophils, T cells, and B cells. In monocytes and

macrophages, KLF4 acts downstream of PU.1 to promote lineage

commitment and drives anti-inflammatory responses through M2-

associated Stat6/IL-4 signaling while suppressing M1-associated

NF-kB-mediated inflammation. In neutrophils, KLF4 regulates

granule content, cytokine production, and bacterial killing by

modulating the CD14/TLR4-NF-kB signaling pathway. In

adaptive immunity, KLF4 inhibits the proliferation of CD8+ T

cells and B cells through transcriptional repression of pro-survival

and cell cycle-promoting genes such as NOTCH1 while also acting

as a tumor suppressor.

Given the importance of the immune system in physiology

(host defense) and disease (aging and age-associated disorders),

efforts to target KLF4 may be therapeutically beneficial. In

particular, given the intimate link between inflammation and
Frontiers in Immunology 10
aging (a.k.a. inflammaging), such effort may impact some diseases

that constitute the largest source of morbidity, mortality, and

healthcare expenditure worldwide.

Thus, future investigations should focus on the development of

precision medicine to modulate KLF4 expression or function in a cell

and disease-specific manner. Approaches may include RNA-based

therapeutics or targeted epigenetic modifications, which will be

critical for translating the immunoregulatory potential of KLF4 into

clinically relevant therapies. Additionally, to clarify KLF4’s role in

human inflammation and aging, emerging single-cell technologies

such as single-cell multiomics and spatial transcriptomics can reveal

its immune functions across diverse tissue and disease contexts.

Understanding the molecular mechanisms by which KLF4

modulates immune cell fate and function not only enhances our

grasp of innate immunity but also opens promising avenues for

therapeutic intervention in inflammatory diseases, autoimmune
FIGURE 5

Bench to bedside applications of KLF4. KLF4 serves as critical therapeutic targets bridging bench to bedside applications in cancer, inflammatory
diseases, and metabolic disorders. In cancer, modulating KLF4 expression can influence tumor suppression or progression depending on the
context. In inflammatory diseases, KLF4’s role in macrophage polarization and NF-kB inhibition offers potential for controlling chronic
inflammation. In metabolic diseases, KLF4 regulates lipid metabolism and insulin sensitivity, presenting a target for metabolic syndrome and
diabetes therapeutics.
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disorders, and tissue repair strategies. As research continues to

unravel the complexity of transcriptional networks in immune cells,

KLF4 stands out as a pivotal node with significant clinical relevance.
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