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Post-COVID-19 Condition (PCC), impacting 30–90% of survivors, is

characterized by persistent fatigue and metabolic dysfunction, often linked to

underlying mitochondrial impairment. This review examines current evidence on

mitochondrial-targeted nutrition therapies, with a focus on magnetic resonance

spectroscopy (MRS) as a tool for assessing metabolic recovery. Key findings

highlight reduced adenosine triphosphate (ATP) production, heightened

oxidative stress, and disrupted mitochondrial biogenesis- metabolic

abnormalities that closely mirror those seen in chronic fatigue syndromes.

While mitochondrial dysfunction is recognized as central, debate continues on

whether systemic inflammation or direct viral damage primarily drives these

abnormalities. Current evidence supports nutrients, such as, CoQ10, NAC, and

creatine for restoring energy metabolism and reducing oxidative stress. MRS

biomarkers (tPCr, Qmax), offer valuable tools for monitoring personalized

intervention. However, several limitations persist, including variability in

nutritional protocols, inconsistencies in MRS methodologies, and limited

consideration of microbiome-psychosocial interactions. Most clinical trials

focus on short-term outcomes, lacking data on long-term efficacy or

stratification based on mitochondrial dysfunction severity. Future research

priorities include multi-omics investigations into mitochondrial-epigenetic

interactions, the development of targeted antioxidants, and exploration of

engineered microbial metabolites. Standardizing MRS protocols, validating

composite endpoints, and optimizing nutrient delivery systems require

interdisciplinary collaboration. This review advocates for a precision medicine

approach, combining MRS-based metabolic profiling with personalized

nutritional strategies, to address the multifactorial nature of PCC and advance

clinical translation.
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1 Introduction

Post-COVID-19 Condition (PCC) has emerged as a significant

public health concern (1), with a global incidence rates among

COVID-19 survivors reported to range between 30% to 90% (2).

This condition involves a broad spectrum of symptoms, including

pervasive fatigue and diminished exercise tolerance, which notably

impair quality of life and daily functioning (3, 4). The multifaceted

nature of muscle-related symptoms in PCC has drawn comparisons

to chronic fatigue syndrome (CFS), underscoring a potentially

shared pathophysiology, particularly mitochondrial dysfunction

(5, 6).

Mitochondria play a crucial role in energy metabolism, especially

in muscle tissue, and disruptions in mitochondrial integrity during

acute viral infections may contribute to the muscle fatigue

experienced in PCC (6, 7). This dysfunction leads to decreased

ATP synthesis and increased production of reactive oxygen species

(ROS), which exacerbates oxidative stress, potentially contributing to

further cellular damage (5). Emerging evidence also suggests that the

lingering fatigue, often observed in PCC, mirrors symptoms seen in

aging and neurodegenerative diseases, implying overlapping

mechanisms of mitochondrial injury across different conditions

including myalgic encephalomyelitis/CFS (ME/CFS) (8, 9, 10).

Discrepancies in research findings on the pathophysiology of PCC

highlight the need for deeper investigation. While some studies suggest

that the inflammatory response triggered by SARS-CoV-2 may heavily

influence the persistence and severity of symptoms (11, 12), others

indicate that cognitive impairments in PCC may stem from subtle

neurochemical changes linked to mitochondrial dysfunction than from

systemic inflammation (4, 13). This underscores the complex and

multifaceted nature of PCC, suggesting that no single cause fully

accounts for its diverse manifestations seen among patients.

Comprehensive understanding of these interrelated mechanisms is

crucial for developing targeted mitochondrial nutritional therapies

(MNTs) aimed at restoring mitochondrial function and alleviating

associated symptoms (14, 15).

The exploration of MNT holds great promise for managing

PCC. Considering the evident mitochondrial dysfunction observed

in many patients, targeted supplementation may not only help

improve energy metabolism, but could also mitigate oxidative stress

and restore overall cellular health, potentially supporting recovery

from the debilitating effects of prolonged COVID-19 symptoms (7,

16). Increased interdisciplinary collaborations are necessary to

consolidate these findings and effectively advance therapeutic

strategies to address the multifactorial nature of PCC.
2 Mitochondrial dysfunction in PCC

Mitochondrial dysfunction is closely linked to a reduced

capacity for synthesizing ATP, which is vital for cellular energy.

COVID-19 infection can alter phosphocreatine (PCr) metabolism, a

key process facilitating ATP production, ultimately manifesting as

profound fatigue and diminished physical capacity in recovering
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patients (16, 17). Additionally, a well-documented similarity exists

between the fatigue profiles of post-COVID-19 patients and those

suffering from CFS, suggesting similar underlying mitochondrial

dysfunctions that may compromise energy production (18, 19).

Beyond the disruption of energy metabolism, oxidative stress

plays a pivotal role in exacerbating mitochondrial dysfunction in

PCC. Excessive ROS production following SARS-CoV-2 infection is

considered a key pathological mechanism, inducing a cascade of

oxidative damage that impairs mitochondrial function, ultimately

creating a vicious cycle where decreased mitochondrial respiration

leads to further oxidative stress (20, 21). Additionally, imbalances in

the antioxidant defense systems, such as reduced glutathione levels,

have been observed, particularly among older patients, linking

heightened oxidative stress to poorer clinical outcomes (22, 23). A

study has further demonstrated that patients with post-acute

sequelae of COVID-19 exhibited compromised mitochondrial-

nuclear communication and a pronounced shift towards reliance

on glycolysis instead of oxidative phosphorylation (24). While this

shift may serve as an adaptive response to ongoing oxidative stress,

it ultimately contributes to the fatigue and neurological symptoms

commonly reported in PCC (25).

Recent evidence has also highlighted that mitochondrial

dysfunction is accompanied by disruptions in signaling pathways

governing mitochondrial-nuclear interactions. The resultant

impaired communications can lead to dysregulation of key

metabolic processes, further amplifying oxidative stress responses

and perpetuating a detrimental cycle of cellular function (24, 26).

Thus, although there is consensus regarding the critical roles of

impaired ATP synthesis and heightened oxidative stress in PCC, the

intricacies of their interplay and the resulting clinical manifestations

remain areas of active investigation and debate.

3 MRS in PCC: Mitochondrial
bioenergetics and recovery

Magnetic resonance spectroscopy (MRS) is emerging as an

innovative tool for dynamically evaluating mitochondrial function

and nutritional recovery in individuals with PCC. This technique,

particularly utilizing 1H and 31P-MRS, enables real-timemonitoring of

metabolite fluctuations during exercise and recovery, with a specific

focus on muscle tissues such as the gastrocnemius (27, 28). Key

metrics derived from this analysis include Qmax, representing the

maximal oxidative flux, and tPCr, the PCr recovery time constant.

These parameters offer valuable insights into mitochondrial

bioenergetics and muscle recovery capacity, both critical to

understanding the complexities of PCC (22, 28).

Clinical validation of MRS findings has revealed significant

correlations between elevated resting PCr levels and reduced Qmax

in patients post-COVID-19 hospitalization. Such results suggest

that optimizing these metrics could be pivotal in addressing the

observed fatigue and malaise commonly associated with PCC (28,

29). Elevated resting PCr levels, in particular, may reflect a

compensatory reliance on anaerobic energy pathway due to

impaired oxidative metabolism, a characteristic frequently
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1597370
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1597370
observed in long COVID patients (22). However, challenges remain

in aligning advanced MRS data with symptom scoring systems,

underscoring an urgent need for standardized protocols that

effectively integrate MRS findings into routine clinical evaluation

of PCC (27, 28).

Emerging evidence also highlights the dual role of malnutrition

in both worsening PCC symptoms and impeding the recovery

process. Nutritional deficiencies have been identified to

significantly increase post-COVID-19 syndrome risk, especially in

vulnerable populations such as cancer patients (30–32). Poor

nutritional assessment and management during the acute phase

of a COVID-19 infection can lead to prolonged muscle loss and

functional decline, emphasizing the importance of comprehensive

nutritional support throughout recovery phases (33–35). This

aspect is particularly relevant in the context ofMRS-guided

interventions, as optimizing nutritional intakeis critical for

restoring mitochondrial function, a factor that has been

associated with improved clinical outcomes in PCC rehabilitation

(29, 36). However, the literature also indicates conflicting results

regarding the effectiveness of various post-COVID nutritional

strategies, particularly in relation to the choice of supplements

and the timing of administration within MRS-guided

rehabilitation protocols (37, 38).

The application of MRS to evaluate metabolic and nutritional

dynamics in PCC shows significant potential in clinical practice.

While the clinical validation of MRS-derived parameters like Qmax

and tPCr is promising, further research is needed to integrate these

insights with nutritional strategies that facilitate optimal recovery

and effective symptom management.
4 MNT in PCC: MRS-informed
strategies for metabolic recovery

The assessment of targeted MNT for individuals suffering from

PCC emphasizes the critical insights gained through MRS evaluations.

MRS data has been instrumental in identifying specific metabolic

abnormalities commonly observed in PCC patients, serving as a

guide for tailoring nutritional interventions. For instance, PCr

insufficiency observed in these patients suggests a need for creatine

supplementation, which directly aids in replenishing energy substrates

and enhances cellular metabolism under oxidative stress (29). This

aligns with findings suggesting that direct supplementation of PCr

precursors can be beneficial in addressing energy deficits characteristics

of post-viral syndromes (39).

In addition, reduced oxidative flux has been documented in

PCC patients. In this context, nutrients such as Coenzyme Q10 and

lipoic acid, have gained attention for their roles in enhancing the

efficiency of the electron transport chain and promoting cellular

respiration (40). Such supplementation has shown promise in

improving mitochondrial function, thereby addressing a central

metabolic deficiency noted in patients with long COVID (41).

Furthermore, the excessive accumulation of ROS poses a

significant challenge in PCC, as it contributes to ongoing

mitochondrial dysfunction. Antioxidants like N-acetylcysteine
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(NAC) and vitamins C and E are known for their ability to

neutralize free radicals and regenerate glutathione, thereby

offering protection against oxidative damage while supporting

mitochondrial integrity (3).

The inhibition of mitochondrial biogenesis in long COVID

highlights the importance of targeted nutritional strategies.

Nutrients such as pyrroloquinoline quinone (PQQ) and omega-3

fatty acids activate the peroxisome proliferator-activated receptor

gamma coactivator 1-alpha (PGC-1a) pathway, a central regulator
of mitochondrial biogenesis (42). By promoting the formation of

new mitochondria and enhancing overall metabolic flexibility, these

nutrients could play a vital role in facilitating recovery in

PCC patients.

Emerging research also points to the potential of branched-

chain amino acids (BCAAs) in regulating mitochondrial protein

synthesis, in muscle tissues an area of particular relevance given the

muscle wasting frequently seen in long COVID (43). Furthermore,

growing interest surrounds the gut–mitochondria axis, with

probiotics and prebiotics being explored for their ability to

modulate gut microbiota and, in turn, influence mitochondrial

function and overall metabolic health (2). This holistic approach

acknowledges the interconnected nature of biological systems, and

is crucial for the rehabilitation of patients recovering from

COVID-19.

Taken together, the integration of targeted mitochondrial

nutrient screening and supplementation holds promise for

mitigating the metabolic dysfunctions associated with post-

COVID-19 conditions, potentially improving patient outcomes and

recovery trajectories. Nonetheless, future investigations are warranted

to resolve inconsistencies in the current literature surrounding these

interventions and to optimize therapeutic strategies.
5 MRS-guided nutritional
interventions for PCC recovery

The development of a targeted MNT regimen for individuals

suffering from PCC necessitates a detailed understanding of the

biochemical pathways involved in mitochondrial dysfunction. MRS

has emerged as a pivotal tool for investigating metabolic alterations

within the mitochondria, offering valuable insights into energy

metabolism and oxidative stress markers. Recent studies have

identified several core metabolic abnormalities in PCC patients,

including PCr deficiency, impaired oxidative phosphorylation,

elevated ROS, and disrupted mitochondrial biogenesis (44).

PCr insufficiency is particularly intriguing, as it implies a

potential need for direct supplementation of creatine or PCr

precursors. Creatine plays a central role in cellular energy

metabolism by acting as a buffering agent for ATP and

modulating energy flux within cells. Enhancing PCr levels

through supplementation may help restore ATP availability and

improve mitochondrial function. Complementing this strategy,

compounds such as Coenzyme Q10 (CoQ10) may enhance the

efficiency of the electron transport chain, potentially mitigating

oxidative stress (45). Similarly, lipoic acid has garnered attention for
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its dual role in supporting mitochondrial oxidative phosphorylation

and functioning as an antioxidant to neutralize excess ROS.

The accumulation of ROS remains a significant challenge in

PCC, prompting the use of antioxidants such as NAC and vitamins

C and E, which neutralize free radicals and promote glutathione

regeneration, a key antioxidant in cellular defense (46, 47). Other

promising compounds for restoring mitochondrial function in PCC

patients include PQQ and omega-3 fatty acids. PQQ serves as a

cofactor that enhances mitochondrial biogenesis through the PGC-

1a pathway and possesses antioxidant properties (48). Likewise,

omega-3 fatty acids have shown potential to activate PGC-1a,
thereby enhancing mitochondrial resilience and adaptability (49).

Emerging candidates for targeted mitochondrial nutrient

interventions also encompass BCAAs, which are posited to

promote mitochondrial protein synthesis, as along with prebiotics

and probiotics that may improve the gut-mitochondria axis (50).

These nutritional approaches offer a comprehensive strategy for

managing PCC by addressing both mitochondrial deficits

highlighted in MRS assessments and broader aspects of cellular

health and oxidative stress resilience.

The integration of MRS-guided nutritional interventions offers

promise for addressing the unique challenges of PCC. A

multifaceted approach, incorporating creatine, CoQ10, lipoic acid,

NAC, PQQ, omega-3 fatty acids, BCAAs, and gut microbiome

modulators, combines biochemical insights with clinical

application. By targeting the cellular energy impairments

identified through MRS, this strategy could help restore

mitochondrial function, support recovery, and improve the

quality of life for PCC patients.
6 MRS-guided stratification and
personalized nutrition for PCC

MRS can classify patients into groups reflecting mild, moderate,

or severe dysfunction through quantitative metrics such as Qmax

thresholds. This stratification serves as a crucial foundation for

designing personalized therapies that address specific metabolic

deficits associated with PCC (30, 38).

One promising avenue within these personalized nutritional

interventions is the use of pre-exercise nitrate supplementation,

particularly from sources such as beetroot. Nitrate is known to

enhance blood perfusion and may improve both exercise

performance and recovery by optimizing mitochondrial function.

Research suggests that organic nitrates help maintaining vascular

function, thereby supporting endothelial health and improving

exercise tolerance (51, 52). This approach emphasizes the

importance of vascular health in mitigating exercise intolerance

commonly seen in this population.

Additionally, the role of nighttime melatonin supplementation

offers a compelling strategy for enhancing mitophagy, a critical

process for mitochondrial quality control. Melatonin is recognized

for its antioxidative properties and may help reduce mitochondrial

oxidative stress, enhancing mitochondrial performance during post

COVID-19 recovery phases (52, 53). Enhancing autophagic
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pathways can mitigate cellular damage, contributing to better

metabolic health, making melatonin particularly relevant for PCC

(52, 54).

Despite the promise of these interventions, the research

landscape remains complex and, at times, contradictory. For

instance, although dietary supplements like alpha-ketoglutarate

have demonstrated metabolic benefits in various settings,

evidence for their efficacy in PCC remains inconsistent (54, 55).

As such, while MRS-guided stratification and targeted nutritional

interventions represent a paradigm shift towards personalized

treatment, further research and clinical trials are essential to

reconcile discrepancies and validate proposed therapeutic benefits

across diverse patient populations (56, 57).

Design of personalized nutritional intervention plans, informed

by MRS-guided stratification, holds great promise for enhancing

recovery in patients suffering from PCC. The integration of targeted

supplementation strategies, such as nitrate and melatonin, can

potentially rehabilitate mitochondrial function and improve

overall health outcomes. Nonetheless, a rigorous appraisal of

existing literature and ongoing clinical evaluations are essential to

navigate the complexities and ensure the safe and effective

implementation of these nutritional therapies.
7 Challenges, multi-omics integration,
and emerging translational strategies

The clinical translation of MNT for PCC faces several technical

challenges. Limited availability of MRS equipment and lack of

standardized protocols across clinical settings lead to variability in

data and treatment outcomes (58). Additionally, assessing nutrient

bioavailability is complicated by individual physiological factors,

dietary patterns, and interactions with medications, which

introduce further variability in therapeutic efficacy (59, 60).

Assessment methods used to evaluate the efficacy of

mitochondrial interventions exhibit their own set of challenges.

One key issue is the need for composite endpoint settings that

integrate multiple evaluation metrics such as MRS parameters, the

six-minute walk test, and fatigue scales. While integrating these

outcome measures could enhance the granularity of results, it also

introduces complexity in interpretation and standardization (61).

The variability across these assessments also raises the bar for

establishing causal relationships between nutritional therapy and

clinical improvements. Effective evaluation strategies thus require

an interdisciplinary approach that synthesizes expertise from

clinical nutrition, pharmacology, and systems medicine to

customize interventions for individual patient profiles (62, 63).

Psychosocial factors further influence patient compliance and

motivation in utilizing nutritional therapies. There is a growing

need for robust frameworks that incorporate such variables into

treatment designs. As evidence shows, understanding patients’

lifestyle and psychosocial contexts plays a pivotal role in ensuring

compliance and optimizing outcomes (64, 65). Future clinical

studies must embrace technologies that facilitate real-time

monitoring of patient compliance and feedback, allowing for
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dynamic adjustments to nutritional interventions based on

evolving needs.

Looking forward, research in MNT for PCC should adopt a

multi-omics integration approach, combining metabolomics with

insights from epigenetics, genomics, transcriptomics, and

proteomics. For instance, examining urinary tricarboxylic acid

(TCA) cycle intermediates can enrich our understanding of

metabolism in the context of nutritional therapy post-COVID-19.

Such investigations may elucidate how mitochondrial dysfunction

correlates with epigenetic modifications during viral infections and

subsequent recovery phases (66). Such multi-layered analyses can

uncover novel biomarkers of therapeutic efficacy and pave the way

for truly personalized nutrition interventions (67).

The development of novel mitochondria-targeted nutrients also

represents a promising frontier. Mitochondria-targeted antioxidants,

such as 10-(6’-plastoquinonyl)decyltriphenylphosphonium (SkQ1),

have shown potential in counteracting oxidative stress associated with

PCC. These targeted interventions can enhance cellular resilience and

functionality, thereby supporting the mitochondrial pathways

essential for recovery from long-term COVID-19 symptoms (68).

In parallel, engineered microbial metabolites, especially butyrate

analogs, are gaining recognition for their anti-inflammatory

properties and their role in maintaining metabolic health and gut–

mitochondria homeostasis after SARS-CoV-2 infection (69, 70).

Effective clinical translation of these exciting avenues into therapy

necessitates extensive explorations into their bioavailability, interaction

with host systems, and optimal delivery methods. Emerging evidence

indicates that encapsulation of bioactive compounds using advanced

nanocarrier systems significantly improves their bioactivity by

improving their solubility and stability (71, 72).

Equally important is exploring microbiome modulation in

relation to mitochondrial health. Probiotics and prebiotics could

enhance mitochondrial function by improving nutrient absorption

and metabolite generation, which directly impacts mitochondrial

performance (73, 74). Investigating these interactions could unveil

foundational mechanisms that reshape the future of nutritional

therapy landscape.

Translating research into clinical practice will depend on

substantiating the links between mitochondrial health and systemic

disease processes. Understanding how nutritional interventions

influence mitochondrial dynamics could provide insights for

developing targeted, evidence-based therapies for PCC. Advancing

beyond traditional nutrient roles and embracing systems biology will

be essential for bridging research with real-world clinical solutions.

The technical challenges surrounding MNT’s application reveal both

obstacles and opportunities for clinical advancement. With a

commitment to systematic, evidence-based research, integrating

multifaceted evaluations and innovative nutritional strategies has the

potential to significantly enhance recovery and foster sustainable

health improvements in PCC.

8 Conclusion

Emerging evidence highlights mitochondrial dysfunction as a

central mechanism in PCC, characterized by impaired ATP synthesis,
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increased oxidative stress, and disrupted mitochondrial-nuclear

signaling, which drive persistent fatigue and metabolic derangements

in 30-90% of survivors. While nutrients like CoQ10, NAC, and creatine

show potential in restoring energy metabolism and reducing oxidative

damage, critical gaps remain. These include heterogeneous nutritional

protocols, inconsistent MRS methodologies, and a lack of long-term

efficacy data, all of which limit clinical translation. Additionally, existing

studies focus primarily on biochemical parameters, often neglecting

microbiome-psychosocial interactions and failing to stratify patients by

the severity of mitochondrial dysfunction, hindering personalized

interventions. Future research should prioritize integrating multi-

omics approaches to explore mitochondrial-epigenetic crosstalk,

standardizing MRS biomarkers (e.g., tPCr, Qmax) for dynamic

metabolic profiling, and developing targeted nutrient delivery systems

tailored to individual metabolic phenotypes. Interdisciplinary

collaboration is crucial to enhancing precision nutrition strategies,

bridging mechanistic insights with scalable clinical solutions, and

ultimately improving the quality of life for millions affected by PCC.
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65. Budzyńska S, Siwulski M, Gas̨ecka M, Magdziak Z, Kalač P, Niedzielski P, et al.
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67. Scuto M, Majzúnová M, Torcitto G, Antonuzzo S, Rampulla F, Fatta ED, et al.
Functional food nutrients, redox resilience signaling and neurosteroids for brain health.
Int J Mol Sci. (2024) 25:12155. doi: 10.3390/ijms252212155

68. Mohammadalipour A, Dumbali S, Wenzel PL. Mitochondrial transfer and
regulators of mesenchymal stromal cell function and therapeutic efficacy. Front Cell
Dev Biol. (2020) 8:603292. doi: 10.3389/fcell.2020.603292

69. Cui Z, Amevor FK, Zhao X, Mou C, Pang J, Peng X, et al. Potential therapeutic
effects of milk-derived exosomes on intestinal diseases. J Nanobiotechnology. (2023)
21:496. doi: 10.1186/s12951-023-02176-8

70. Pandarinathan S, Khatri A, Niharika M, Karthikeyan K, Jagadeesan R,
Mohapatra RK, et al. Role of micronutrients in preventing chronic diseases: A
review. Eur J Nutr Food Saf. (2024) 16:159–78. doi: 10.9734/ejnfs/2024/v16i121610

71. Chang X, Lv C, Zhao G. A dual function of ferritin (Animal and plant): its holo
form for iron supplementation and apo form for delivery systems. . Annu Rev Food Sci
Technol. (2023) 14:113–33. doi: 10.1146/annurev-food-060721-024902

72. Hedin KA, Zhang H, Kruse V, Rees VE, Bäckhed F, Greiner TU, et al. Cold exposure
and oral delivery of glp-1r agonists by an engineered probiotic yeast strain have antiobesity
effects in mice. ACS Synthetic Biol. (2023) 12:3433–42. doi: 10.1021/acssynbio.3c00455
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