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Significant advances in the treatment of melanoma, the most aggressive form of

skin cancer, have been achieved via immunotherapy. Despite these improvements,

therapeutic resistance remains a formidable challenge, compromising the

treatment efficacy and patient outcomes. This review delves into the intricate

mechanisms driving immunotherapy resistance in melanoma, emphasizing

alterations in key metabolic pathways, changes within the tumor

microenvironment, and the critical role of the gut microbiota. This review also

examines how metabolic reprogramming supports tumor proliferation and

immune evasion, it highlights the impact of extracellular acidification and

angiogenic processes on resistance development. By synthesizing current

insights, this review emphasizes the importance of targeting these multifaceted

interactions to overcome resistance, thereby paving the way for more effective and

durable therapeutic strategies in melanoma treatment.
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1 Introduction

Melanoma is increasingly being diagnosed, particularly among younger populations.

Although immunotherapy has significantly improved patient prognosis, research has

indicated that melanoma progression involves multiple metabolic pathways linked to

oncogene activation and immune tolerance, so existing immunotherapies cannot be

satisfactory for all patients.

Metabolic alterations are linked to the development of melanoma, a prominent feature

of which is the “Warburg effect,” in which transformed melanocytes rely predominantly on

glycolysis for energy, facilitating rapid growth (1, 2). Even under hypoxic conditions,
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1597770/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1597770/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1597770/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1597770/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1597770/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1597770&domain=pdf&date_stamp=2025-06-05
mailto:jsdxwx@126.com
mailto:710204914@qq.com
https://doi.org/10.3389/fimmu.2025.1597770
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1597770
https://www.frontiersin.org/journals/immunology


Wang et al. 10.3389/fimmu.2025.1597770
melanoma cells convert glucose to lactate and utilize oxidative

phosphorylation, further promoting tumor progression (3). In

addition to glycolysis, amino acid metabolism and lipid

metabolism undergo metabolic reprogramming in melanoma

cells, enabling energy production, redox balance, and adaptation

to acidic microenvironments. These adaptations support tumor

proliferation, growth, and immune evasion. Additionally,

metabolic alterations in the gut microbiota influence

melanoma progression.

However, how the above mechanisms lead to immunosuppression

remains unclear. Therefore, clinical treatment strategies can be

informed and treatment outcomes can be improved by

understanding the interaction between tumors and immune cell

metabolism and the mechanisms that generate drug resistance.
2 Metabolism and immune tolerance

2.1 Glycolytic metabolism and immune
tolerance

Glycolysis modulates tumor immunology through immune

checkpoint regulation, gene expression, and cytokine secretion,

particularly in melanoma (4). Enhanced glycolysis leads to the

accumulation of lactate, which inhibits approximately 95% of

immune cell proliferation, attenuates cytokine secretion and activity,

and supports regulatory T cells (Tregs) (5, 6). Monocarboxylate

transporter-1 (MCT-1) on cytotoxic T lymphocytes (CTLs) exports

lactate; however, excessive lactate impairs the functionality of CTLs
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despite their increased presence (5). Lactate-induced extracellular

acidification via monocarboxylate transporter-4 (MCT-4) inhibits

nuclear factor of activated T cells (NFAT) in T and natural killer

(NK) cells, reducing interferon-g (IFN-g) production and antitumor

activity (7). Competition for glycolytic resources with melanoma cells

weakens the T cell efficacy and promotes Treg differentiation,

facilitating immune evasion (8). Additionally, lactate upregulates

vascular endothelial-derived growth factor (VEGF), driving tumor-

associated macrophages to the protumorigenic M2 phenotype (9).

High-glycolytic tumors express elevated levels of immune inhibitors,

such as TGF-B1, CD274, and PDCD1LG2, which suppress immune

functions (10). TGF-b inhibits the mammalian target of rapamycin

(mTOR) pathway in NK cells, decreasing IFN-g and antitumor

responses (11). Thus, targeting glycolysis may mitigate immune

evasion and resistance in melanoma. However, whether the efficacy

of immunosuppressants can be improved by directly inhibiting

melanoma glycolysis remains to be seen. (Figure 1 Interactions

between tumor metabolism and immune cells in melanoma).

The mitogen-activated protein kinase (MAPK) pathway is

intricately linked to glycolysis; the v-raf murine sarcoma viral

oncogene homolog B (BRAF)/MAPK pathway is initiated by

growth factors, cytokines or hormones binding to a membrane-

bound receptor tyrosine kinase (RTK), which induces an

interaction between activated RAS and the RAF domain,

modulating the shift from oxidative phosphorylation (OXPHOS)

to glycolysis in melanoma cells (12, 13). In the MAPK pathway, the

BRAFV600E mutation negatively regulates the microphthalmia-

associated transcription factor (MITF)-peroxisome proliferator-

activated receptor-gamma coactivator 1-alpha (PGC1a) axis,
FIGURE 1

Interactions between tumor metabolism and immune cells in melanoma.
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thereby promoting glycolysis (14). BRAF inhibitors (BRAFis) can

inhibit the driving effect of hypoxia-induced factor 1a (HIF1a) and
Myc on glycolysis, and they can also enhance the tolerance of

PGC1a to oxidative stress, which not only maintains the energy

balance but also provides a survival environment for tumor cells,

thus affecting the therapeutic effect (15). Pyruvate kinase M2

(PKM2) is upregulated in melanoma and resistant cells; its

inhibition suppresses growth and resensitizes cells to BRAFis

(16). Although combining BRAFis with mitogen-activated protein

kinase kinase inhibitors (MEKis) can improve patient prognosis

and inhibit the growth of advanced melanoma, this combination

cannot achieve an eradication effect. More importantly,

upregulation of glycolysis generates resistance to BRAFis and

MEKis, allowing previously suppressed melanoma cells to regain

their growth advantage, leading to tumor recurrence (17, 18). These

mechanisms indicate that glycolysis modulation is pivotal in

resistance development.
2.2 Amino acid metabolism and immune
tolerance

Amino acids, including glutamate, cysteine, leucine,

tryptophan, and arginine, play pivotal roles by supporting

melanoma proliferation and facilitating antitumor immunity (4).

Although amino acid depletion can activate the inositol-requiring

enzyme 1a (IRE1a) and retinoic acid-inducible gene 1 (RIG1)

pathways to increase cytokine production and the immune

response, amino acid depletion impairs essential immune

function, making potential strategies for reducing amino acids to

enhance antitumor immunity infeasible (19).

2.2.1 Glutamic acid-cysteine and glutamine
In melanoma, PD-1 antibody therapy enhances IFN-g secretion

by CD8+ T cells, leading to suppression of the glutamate–cysteine

antiporter system Xc⁻ subunit. This suppression induces cysteine

depletion and ferroptosis, ultimately compromising immune

function (20, 21). Glutamine (Gln) is metabolized to glutamate by

glutaminase (GLS), the rate-limiting enzyme in Gln catabolism,

which is essential for tumor development (22). In temozolomide

(TMZ)-resistant melanoma cells, both Gln metabolism and GLS

expression are upregulated, and overexpression of miR-203, which

targets GLS, can reverse TMZ resistance (23). The expression of Gln

and GLS is greater under long-term action of BRAFis. When

melanoma cells are resistant to BRAFis, inhibition of GLS can

increase their sensitivity, but the clinical application of GLN as a

drug resistance-related factor is not clear (12).

2.2.2 Tryptophan
In melanoma, rat sarcoma (RAS) activation causes tryptophan

deficiency, which affects mRNA translation and increases the

sensitivity of melanoma cells to immune surveillance (24, 25).

However, tryptophan (Trp) depletion concurrently starves

cytotoxic T cells and activates immunosuppressive regulatory T

cells (Tregs), hindering an effective antitumor response (26, 27).
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Dysregulated activation of indoleamine 2,3-dioxygenase

(IDO1) and tryptophan 2,3-dioxygenase (TDO) in tryptophan

metabolism significantly alters the tumor microenvironment

(TME), and simultaneous accumulation of kynurenine (Kyn)

activates the aryl hydrocarbon receptor (AhR), promoting the

production of FoxP3+ regulatory T cells, which eventually leads to

immune escape (4). Within the TME, IFN-g induces excessive

activation of IDO1 and TDO in both melanoma cells and tumor-

infiltrating lymphocytes, leading to tryptophan depletion, thereby

enhancing immune recognition (24). Additionally, an elevated

kynurenine-to-tryptophan (Kyn/Trp) ratio in peripheral blood,

driven by IDO1 activity, is associated with resistance development

and poor prognosis in patients receiving PD-1 antibody therapy

(28). Although many studies have focused on the effects of

inhibiting the IDO1 pathway, no significant immune efficacy has

been achieved. Therefore, further exploration of the impact of

tryptophan metabolism on immune effects is needed.

2.2.3 Arginine and branched-chain amino acids
L-arginine plays a pivotal role in immunomodulation.

Sufficient levels of L-arginine promote proliferation of T cells and

their differentiation into central memory-like T cells, which

increases survival rates and enhances antitumor efficacy (29).

The immunosuppressive mechanism of myeloid-derived

suppressor cells (MDSCs) promotes the expression of arginase

(ARG)-1, which depletes the L-arginine required for T cell

functional activity, leading to T cell dysfunction and reduced

immunotherapy efficacy (30).

Branched-chain amino acid transaminase 1 (BCAT1)

expression is markedly elevated in melanoma cells, which

mediates the metastasis of specific nitrogen atoms in branched-

chain amino acids, and inhibition of BCAT1 suppresses tumor

proliferation (31, 32). Leucine (Leu) at elevated levels synergizes

with anti-PD-1 antibodies to augment the antitumor activity of

immune cells (33). In contrast, leucine deficiency impairs mTORC1

signaling in a RagD-dependent manner, thereby delaying T cell-

mediated clearance of melanoma cells. Furthermore, under leucine-

depleted conditions, mTOR signaling, which maintains the initial c-

Myc expression in NK cells, is disrupted (4). Melanoma cells

harboring BRAF mutations exhibit a heightened dependence on

leucine; consequently, leucine deficiency may impede autophagy

within tumor cells, suggesting a potential novel strategy for

immunotherapy (34).
2.3 Lipid metabolism and immune
tolerance

2.3.1 Lipid metabolism and immune modulation
in melanoma

Lipids function as both energy reservoirs and essential

structural components for melanoma proliferation, and they

undergo substantial modifications during tumor progression (35).

These lipid alterations modulate the immunogenicity of melanoma

cells and the phenotypes of immune cells, thereby regulating
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immune evasion and response to immunotherapy, which are crucial

for the therapeutic efficacy (4). Statins, such as atorvastatin and

lovastatin, inhibit the mevalonate (MVA) and cholesterol

biosynthesis pathways, resulting in reduced programmed cell

death ligand 1 (PD-L1) expression in melanoma cells via protein

kinase B (AKT)- and b-catenin-dependent mechanisms. This

downregulation enhances the efficacy of PD-1 antibody therapy

in preclinical tumor models (36). Additionally, MVA pathway

inhibition in tumor cells promotes antitumor immunity mediated

by type 1 conventional dendritic cells (cDC1s) through enhanced

tumor recognition and antigen cross-presentation. This inhibition

also disrupts Rac family small GTPase 1 (Rac1) prenylation,

exposing actin filaments that are recognized by c-type lectin

domain family 9 member A (CLEC9A) on cDC1s, thereby

activating T cells (37). However, the varying impacts of different

lipid metabolic pathways on melanoma cell immunogenicity during

lipid remodeling (4). (Figure 2 Metabolic reprogramming-mediated

immune tolerance in melanoma).

2.3.2 Therapeutic implications of lipid pathway
modulation

Preclinical studies have confirmed that the antitumor function of

CD8+ T cells in melanoma is enhanced by the combined action of

fatty acid metabolism and anti-PD-1 antibodies; immunotherapy-
Frontiers in Immunology 04
induced IFN-g production suppresses solute carrier family 7 member

11 (SLC7A11) expression, enhances lipid oxidation, and promotes

ferroptosis, thereby improving tumor control (20, 38). Additionally,

high expression of the CD36 membrane-bound exogenous lipid

transporter enables melanoma cells to absorb dietary lipids,

promoting metastasis. Inhibition of CD36 expression suppresses

melanoma metastasis and improves patient prognosis (39).

Moreover, melanoma cells upregulate ATP-citrate lyase (ACLY)

and sterol regulatory element-binding proteins (SREBPs) to activate

de novo lipogenesis. Inhibition of these enzymes results in tumor

regression, highlighting the significant impact of lipid alterations on

melanoma cell viability (40, 41). The ACLY lipid synthesis enzyme

activates the P300 acetyltransferase, leading to histone acetylation at

the microphthalmia-associated transcription factor (MITF) locus and

increased transcription of the MITF-PGC1a axis, promoting

melanoma progression and resistance to MAPK inhibitors (42).

Conversely, sterol regulator element binding (SREBP-1) inhibition

increases immunotherapy sensitivity, linking lipid synthesis enzyme

activation to immunotherapy resistance (43). However, a previous

study on uveal melanoma revealed a metabolic shift toward lipid

production during tumor growth, which promotes tumor cell growth

and increases the metastasis rate (44). Thus, targeting lipid-related

pathways is a promising strategy for enhancing immunotherapeutic

outcomes in patients with melanoma.
FIGURE 2

Metabolic reprogramming-mediated immune tolerance in melanoma.
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3 Microenvironment acidification and
immune tolerance

An acidic extracellular milieu profoundly impacts tumor cell

proliferation, survival, migration, and invasion, serving as a pivotal

hallmark of malignancies (45). In solid tumors, including

melanoma, a reversed pH gradient is observed relative to that for

normal cells. Specifically, tumor cells maintain an intracellular pH

(pHi) that exceeds 7.4, whereas the extracellular pH (pHe) ranges

between 6.7 and 7.1, highlighting the distinct pH profiles between

malignant and nonmalignant cells (45). Matrix metalloproteinase 2

(MMP2) and interleukin-8 (IL-8) are secreted by melanoma in

acidic environments, and they can accelerate the degradation of the

extracellular matrix and enhance the invasion and metastasis of

tumor cells (46). Most melanoma cells die as they adapt to an acidic

environment, but the melanoma cells that survive become more

aggressive in a normal environment, leading to treatment resistance

(47). In addition, MITF is downregulated in acidic environments

and resists the action of MAPKis (48).

Alterations in tumor angiogenesis play critical roles in

modulating the extracellular acidity, facilitating the formation of

new vascular networks, and increasing the spatial separation

between tumor cells and blood vessels, which influence

the metabolic preferences of tumor cells, thus dictating a

shift between glycolysis and OXPHOS (49, 50). Moreover, short-

term interactions between melanoma cells and an acidic

microenvironment induce vascular remodeling and impair

lymphatic drainage (51). During melanoma progression,

overproduction of lymphangiogenic factors alongside diminished

levels of lymphangiogenesis inhibitors promotes lymphatic growth

at specific stages (52). Vascular endothelial growth factor C (VEGF-

C), which is a lymphangiogenic factor secreted by melanoma cells

and tumor-associated macrophages (TAMs), is upregulated in the

A375P melanoma cell line under acidic conditions, and

the expression of VEGF-C depends on the nuclear factor kappa-

B (NF-kB) activity (53). Notably, esomeprazole has been

demonstrated to inhibit VEGF-C expression in melanoma cells

subjected to acidic environments (53).

Carbonic anhydrase IX (CAIX) has emerged as a crucial regulator

of pHi in tumor cells (54). CAIX overexpression is correlated with

malignancy across various tumor types (55). In metastatic melanoma

cells, CAIX expression is significantly elevated when cells are cultured

in acidified media, both transiently and chronically (51). Treatment

with FC16-670, a CAIX inhibitor, effectively suppresses CAIX

expression and induces cell death under acidic conditions,

indicating that CAIX activity is indispensable for melanoma cell

survival in an extracellularly acidified environment (51). Collectively,

these findings underscore the intricate interplay among metabolic

pathways, angiogenic processes, and pH regulation in shaping the

tumor microenvironment, suggesting potential therapeutic targets for

combating malignancy.
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4 Gut microbiota metabolism and
immune tolerance

4.1 Dual role of the gut microbiota in
tumor immune regulation

In recent years, the gut microbiota has emerged as a pivotal

regulator of tumor progression. Empirical studies have revealed that

melanoma patients predominantly harboring the Bacteroides genus

within their gut microbiota tend to exhibit elevated levels of

circulating CD4+ and CD8+ T cells. In contrast, individuals with a

gut microbiota dominated by the Prevotella genus display increased

populations of regulatory Tregs and MDSCs in their peripheral

blood (56). Notably, the gut microbiota can negatively regulate

MDSCs, thereby diminishing immune evasion and decelerating

tumor progression. Additionally, the gut microbiota can activate

antigen-presenting cells (APCs), which may inhibit tumor immune

escape (57). The gut microbiota plays dual roles in tumor

regulation, as antitumor responses within the TME can be

attenuated by elevated levels of inflammatory cells and cytokines,

thereby facilitating tumor immune evasion. Using a melanoma

mouse model, researchers reported that mice subjected to a high-

fat diet present increases in the Clostridia and Desulfovibrio

populations. This shift in population activates the HMG-B1/NF-

kB signaling pathway in macrophages, leading to secretion of the C-

C motif chemokine ligand 2 (CCL2) and tumor necrosis factor-a
(TNF-a) chemokines, which in turn promotes MDSC infiltration

and tumor metastasis (58).
4.2 Gut microbiota as a modulator of the
PD-1 antibody therapeutic efficacy

Moreover, the gut microbiota has been identified as a key

component of antitumor immunity in the context of PD-1

antibody therapy. Research has indicated that mice colonized

with fecal microbiota from melanoma patients who achieved a

complete response to PD-1 antibody therapy develop significantly

smaller MC38 tumors when treated with anti-PD-L1 monotherapy

than mice colonized with fecal microbiota from nonresponding

patients (59). Furthermore, the combination of anti-PD-L1 and

anti-PD-L2 therapies markedly enhances the antitumor response in

mice harboring nonresponder fecal microbiota, resulting in a

substantial increase in the overall survival. Additionally, the

combined administration of anti-PD-L2 and anti-PD-L1

treatments tends to reduce the growth of ovalbumin-expressing

B16 melanoma tumors (B16-L1) (60). These findings underscore

the critical role of gut microbiota modulation in melanoma

development and the emergence of resistance to immune

therapies. However, unlike PD-1 antibody therapy, not all

combination therapies have an antitumor effect.
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4.3 Therapeutic interventions targeting the
gut microbiota for melanoma treatment

Accumulating evidence supports the potential of fecal

microbiota transplantation (FMT) in mitigating immune

tolerance in patients with melanoma. FMT alters the gut

microbiota composition of the recipient to enrich beneficial

bacteria that regulate tumor immunity and potentially

enhance therapeutic outcomes. In melanoma mice transplanted

with Bacteroides, the expression of chemokines and antigen

presentation-related genes increases, which promotes the

activation of dendritic cells (DCs) and CD8+ T cells in tumor

cells, thereby inhibiting tumor growth (61). In a study conducted at

the Hillman Cancer Center at the University of Pittsburgh Medical

Center (UPMC) involving 15 participants undergoing FMT, 3 of 5

patients demonstrated positive clinical responses, thereby

indicating the efficacy of FMT in melanoma treatment (62).

However, the efficacy of FMT is not stable. Antibiotics are

commonly used as infection control agents in clinical settings,

and their frequent use is extremely detrimental to patient

prognosis; the timing of antibiotic administration during PD-1

therapy is strongly associated with patient survival (63, 64).

Furthermore, interest in microbiota-modulating pharmacological

agents has increased. Studies have demonstrated that treatment of

the gut microbiota in melanoma-bearing mice with Ganoderma

lucidum polysaccharides inhibits melanoma metastasis (65).

Astragalus polysaccharides, through modulation of Lactobacillus

spp. and Lactobacillus johnsonii, can enhance immune suppression

within the TME, thereby promoting CD8+ T cell-mediated

cytotoxic functions (57). Similarly, ginseng polysaccharides and

inulin have been shown to augment the efficacy of PD-1 antibody

therapy by modulating microbial metabolism; however, long-term

follow-up and further validation of these effects are necessary.

In summary, the intricate interplay between the gut microbiota

and tumor immunity highlights the potential of microbiota-targeted

interventions in enhancing the melanoma treatment efficacy and

overcoming immune resistance. Most current studies are in the

preclinical validation stage, and clinical studies confirming the

significant effects of microbiota-targeted interventions are lacking.

The inconsistency of the results encourages investigation into more

feasible immune mechanisms to explore therapeutic strategies that

benefit most patients.
5 Conclusion

Rapid advancements in immunotherapy have revolutionized

melanoma treatment, yet the emergence of therapeutic resistance

significantly undermines the treatment efficacy and patient prognosis.

Recent studies have shown that immunotherapy resistance is

intricately linked to the biological and immunological behaviors of

tumor cells. However, the mechanism by which the interaction

between different metabolic pathways promotes melanoma

progression still needs to be further clarified, as a single metabolic
Frontiers in Immunology 06
pathway may reduce the regulatory efficacy and cause unexpected

side effects. This review consolidates current insights into alterations

within the three major metabolic pathways, modifications in the

tumor microenvironment, and the pivotal role of the gut microbiota

in the context of melanoma immunotherapy.

Although signaling pathways, such as the BRAF and MAPK

pathways, have been demonstrated to be involved in regulating

melanoma cell behavior, their complex regulatory roles in

immunotherapy resistance require further investigation. The

current treatment strategies have not been fully validated in the

clinic and have certain limitations. Achieving precise regulation of

tumor cells while minimizing collateral damage to normal cells may

provide novel insights into the mechanisms underlying

immunotherapy resistance. With advancements in metabolomics,

predictive biomarkers for metabolic pathways can be further

explored, and individualized treatment and comprehensive

evaluation to select the best treatment plan can be achieved.
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